Effect of Sodium Silicate and Sodium Hydroxide Ratios on Compressive Strength of Ceramic Brick and Metakaolin Waste-Based Geopolymer Binder
Abstract
1. Introduction
2. Materials and Experimental Techniques
2.1. Initial Materials
2.2. Experimental Techniques
3. Results
3.1. Compressive Strength
3.2. Mineralogy and Microstructure
4. Conclusions
- The utilization of CBW and MKW precursor materials yielded disparate oxide and compound compositions. Therefore, in order to preserve an identical mixture consistency and mixing time, the compositions that were designed used different alkaline solutions to precursor (AS/P) ratios. The utilization of disparate AS/P ratios led to the conclusion that the evaluation of the Na2SiO3/NaOH ratio’s influence on geopolymer mechanical properties is challenging, as other essential ratios, such as AS/P, W/S, and the total percentage of Na2O content, exert a substantial influence on the mechanical properties of hardened geopolymer.
- The utilization of CBW precursor alone within the geopolymer binder system (compositions: C100 0.5; C100 1.0; C100 2.0) has resulted in mediocre compressive strengths (up to 30MPa) when varying Na2SiO3/NaOH ratios are employed. The compositions in question exhibited the lowest AS/P and W/S ratios and total Na2O content, while concurrently demonstrating the highest SiO2/Al2O3 content. This phenomenon is attributed to the fact that CBW particles exhibit a low content of Al2O3 and a low amorphous phase, both of which are prerequisites for stimulating the geopolymerization reaction at an early age. This results in a significant presence of unreacted particles, as evidenced by XRD and SEM analyses, while an excessive amount of Na2O prompts the efflorescence effect. The utilization of a higher intensity curing regime is more probable in inducing secondary geopolymerization and enhancing mechanical properties of CBW-based geopolymer binder.
- The incorporation of blend CBW and MKW precursors in geopolymer binder systems (compositions C50M50 0.5, C50M50 1.0, and C50M50 2.0) has resulted in the enhancement of compressive strength, with values reaching up to 62 MPa at a Na2SiO3/NaOH ratio of 1.0. This composition exhibited mediocre AS/P and W/S ratios, total Na2O content, and SiO2/Al2O3 content. The observed compressive strength is primarily attributed to a relatively optimal CBW and MKW particle distribution, which contains a sufficient number of reactive particles to facilitate adequate geopolymerization reactions. The XRD and FT-IR analyses demonstrated the formation of new phases, namely sodium aluminum silicate hydrate gel, which strengthens the geopolymer matrix and results in favorable mechanical properties.
- The use of MKW precursor in isolation within the geopolymer binder system (compositions M100 0.5, M100 1.0, and M100 2.0) has yielded the maximum compressive strengths. The highest recorded compressive strength of 74.91 MPa after 28 days was attained with a Na2SiO3/NaOH ratio of 1.0. This composition exhibited the highest AS/P ratio, W/S ratio, and total Na2O content, but concurrently demonstrated the lowest SiO2/Al2O3 content. The observed strength growth is attributable to the high reactivity of the MKW particles, which are characterized by substantial Al2O3 content and a high degree of amorphousness. This inherent reactivity leads to a robust geopolymerization process. The XRD and FT-IR analyses demonstrated the formation of new phases, namely calcium aluminum silicate hydrate (goosecreekite) and N-A-S-H gels. These phases contribute to the formation of a compact matrix, thereby enhancing the material’s compressive strength. Thus, these compositions are strong, but the high AS/P ratio indicates excessive free water in the matrix, leading to high open porosity and brittleness.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, P.; Meng, W.; Bao, Y. Knowledge-guided data-driven design of ultra-high-performance geopolymer (UHPG). Cem. Concr. Compos. 2024, 153, 105723. [Google Scholar] [CrossRef]
- Mache, E.; Rajczakowska, M.; Cwirzen, A. Process residues in cement clinker Production: A review. Waste Manag. Bull. 2025, 3, 100205. [Google Scholar] [CrossRef]
- Winnefeld, F.; Leemann, A.; German, A.; Lothenbach, B. CO2 storage in cement and concrete by mineral carbonation. Curr. Opin. Green Sustain. Chem. 2022, 38, 100672. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Hosen, K. Cement Industry Pollution and Its Impact on the Environment and Population Health: A Review. Toxics 2025, 13, 587. [Google Scholar] [CrossRef]
- Liao, S.; Wang, D.; Xia, C.; Tang, J. China’s provincial process CO2 emissions from cement production during 1993–2019. Sci. Data 2022, 9, 165. [Google Scholar] [CrossRef]
- Salas, D.A.; Ramirez, A.D.; Rodríguez, C.R.; Petroche, D.M.; Boero, A.J.; Duque-Rivera, J. Environmental impacts, life cycle assessment and potential improvement measures for cement production: A literature review. J. Clean. Prod. 2016, 113, 114–122. [Google Scholar] [CrossRef]
- Bai, C.; Zheng, K.; Sun, F.; Wang, X.; Zhang, L.; Zheng, T.; Colombo, P.; Wang, B. A review on metakaolin-based porous geopolymers. Appl. Clay Sci. 2024, 258, 107490. [Google Scholar] [CrossRef]
- Drabczyk, A.; Kudłacik-Kramarczyk, S.; Korniejenko, K.; Figiela, B.; Furtos, G. Review of geopolymer nanocomposites: Novel materials for sustainable development. Materials 2023, 16, 3478. [Google Scholar] [CrossRef] [PubMed]
- Ghafoor, M.T.; Rakhimova, N.; Shi, C. One Part Geopolymers: A Comprehensive Review of Advances and Key Challenges. J. Build. Eng. 2025, 111, 113112. [Google Scholar] [CrossRef]
- Li, G.; Zhang, W.; Chen, T.; Kong, X. Preparation and properties of geopolymer recycled concrete: A review of recent developments. Int. J. Appl. Ceram. Technol. 2025, 22, e70033. [Google Scholar] [CrossRef]
- Lahoti, M.; Tan, K.H.; Yang, E.H. A critical review of geopolymer properties for structural fire-resistance applications. Constr. Build. Mater. 2019, 221, 514–526. [Google Scholar] [CrossRef]
- Metwally, G.A.; Elemam, W.E.; Mahdy, M.; Ghannam, M. A comprehensive review of metakaolin-based ultra-high-performance geopolymer concrete enhanced with waste material additives. J. Build. Eng. 2025, 103, 112019. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, P.; Wu, J.; Guo, Z.; Zhang, Y.; Zheng, Y. Mechanical Properties and Durability of Sustainable Concrete Manufactured Using Ceramic Waste: A Review. J. Renew. Mater. 2023, 11, 937–974. [Google Scholar] [CrossRef]
- Jerônimo, V.L.; Meira, G.R.; da Silva Filho, L.C.P. Performance of self-compacting concretes with wastes from heavy ceramic industry against corrosion by chlorides. Constr. Build. Mater. 2018, 169, 900–910. [Google Scholar] [CrossRef]
- Provis, J.L.; Bernal, S.A. Geopolymers and related alkali-activated materials. Annu. Rev. Mater. Res. 2014, 44, 299–327. [Google Scholar] [CrossRef]
- da Silva Rocha, T.; Dias, D.P.; França, F.C.C.; de Salles Guerra, R.R.; de Oliveira, L.R.D.C. Metakaolin-based geopolymer mortars with different alkaline activators (Na+ and K+). Constr. Build. Mater. 2018, 178, 453–461. [Google Scholar] [CrossRef]
- Ivanović, M.M.; Kljajević, L.M.; Gulicovski, J.J.; Petković, M.; Janković-Častvan, I.; Bučevac, D.; Nenadović, S.S. The effect of the concentration of alkaline activator and aging time on the structure of metakaolin based geopolymer. Sci. Sinter. 2020, 52, 219–229. [Google Scholar] [CrossRef]
- Petrus, H.T.B.M.; Hulu, J.; Dalton, G.S.; Malinda, E.; Prakosa, R.A. Effect of bentonite addition on geopolymer concrete from geothermal silica. Mater. Sci. Forum 2016, 841, 7–15. [Google Scholar] [CrossRef]
- Görhan, G.; Kürklü, G. The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Compos. Part B Eng. 2014, 58, 371–377. [Google Scholar] [CrossRef]
- Doğan-Sağlamtimur, N.; Öznur Öz, H.; Bilgil, A.; Vural, T.; Süzgeç, E. The effect of alkali activation solutions with different water glass/NaOH solution ratios on geopolymer composite materials. IOP Conf. Ser. Mater. Sci. Eng. 2019, 660, 012003. [Google Scholar] [CrossRef]
- Morsy, M.S.; Alsayed, S.H.; Al-Salloum, Y.; Almusallam, T. Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder. Arab. J. Sci. Eng. 2014, 39, 4333–4339. [Google Scholar] [CrossRef]
- Cao, B.; Li, Y.; Li, P. Synergistic effect of blended precursors and silica fume on strength and high temperature resistance of geopolymer. Materials 2024, 17, 2975. [Google Scholar] [CrossRef] [PubMed]
- Statkauskas, M.; Vaičiukynienė, D.; Grinys, A. Mechanical properties of low calcium alkali activated binder system under ambient curing conditions. Sci. Rep. 2024, 14, 13060. [Google Scholar] [CrossRef]
- EN 196-3:2016; Methods of Testing Cement—Part 3: Determination of Setting Times and Soundness. European Committee for Standardization: Brussels, Belgium, 2019.
- EN 12390-3:2019; Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. European Committee for Standardization: Brussels, Belgium, 2019.
- Chairunnisa, N.; Nurwidayati, R.; Haryanti, N.H.; Pratiwi, A.Y.; Krasna, W.A.; Setyadin, I. The effect of curing temperature on properties of metakaolin-fly ash based geopolymer mortar used bemban fiber. AIP Conf. Proc. 2025, 3317, 060008. [Google Scholar] [CrossRef]
- Görhan, G.; Aslaner, R.; Şinik, O. The effect of curing on the properties of metakaolin and fly ash-based geopolymer paste. Compos. Part B Eng. 2016, 97, 329–335. [Google Scholar] [CrossRef]
- Herbudiman, B.; Subari, S.; Nugraha, B.; Pratiwi, I.; Rinovian, A.; Widyaningsih, E.; Yanti, E.D.; Erlangga, B.D.; Jakah, J.; Roseno, S. Effect of different ceramic waste powder on characteristics of fly Ash-Based geopolymer. Civ. Eng. J. 2024, 10, 431–443. [Google Scholar] [CrossRef]
- Bhavsar, J.K.; Panchal, V. Ceramic waste powder as a partial substitute of fly ash for geopolymer concrete cured at ambient temperature. Civ. Eng. J. 2022, 8, 1369–1387. [Google Scholar] [CrossRef]
- Aouan, B.; Alehyen, S.; Fadil, M.; Alouani, M.E.; Khabbazi, A.; Atbir, A.; Taibi, M.H. Compressive strength optimization of metakaolin-based geopolymer by central composite design. Chem. Data Collect. 2021, 31, 100636. [Google Scholar] [CrossRef]
- Mendes, J.P.; Elyseu, F.; Nieves, L.J.J.; Zaccaron, A.; Bernardin, A.M.; Angioletto, E. Synthesis and characterization of geopolymers using clay ceramic waste as source of aluminosilicate. Sustain. Mater. Technol. 2021, 28, e00264. [Google Scholar] [CrossRef]
- Shoaei, P.; Musaeei, H.R.; Mirlohi, F.; Ameri, F.; Bahrami, N. Waste ceramic powder-based geopolymer mortars: Effect of curing temperature and alkaline solution-to-binder ratio. Constr. Build. Mater. 2019, 227, 116686. [Google Scholar] [CrossRef]
- Sarkar, M.; Dana, K. Partial replacement of metakaolin with red ceramic waste in geopolymer. Ceram. Int. 2021, 47, 3473–3483. [Google Scholar] [CrossRef]
- Chen, X.; Niu, Z.; Wang, J.; Zhu, G.R.; Zhou, M. Effect of sodium polyacrylate on mechanical properties and microstructure of metakaolin-based geopolymer with different SiO2/Al2O3 ratio. Ceram. Int. 2018, 44, 18173–18180. [Google Scholar] [CrossRef]
- Statkauskas, M.; Vaičiukynienė, D.; Grinys, A.; Dvořák, K. Effect of elevated temperature on mechanical properties of ceramic brick and metakaolin waste-based geopolymer mortar. Constr. Build. Mater. 2025, 470, 140431. [Google Scholar] [CrossRef]
- Furtos, G.; Prodan, D.; Sarosi, C.; Moldovan, M.; Korniejenko, K.; Miller, L.; Fiala, L.; Iveta, N. Mechanical properties of minibars™ basalt fiber-reinforced geopolymer composites. Materials 2024, 17, 248. [Google Scholar] [CrossRef]
- Mahmoodi, O.; Siad, H.; Lachemi, M.; Dadsetan, S.; Sahmaran, M. Development and characterization of binary recycled ceramic tile and brick wastes-based geopolymers at ambient and high temperatures. Constr. Build. Mater. 2021, 301, 124138. [Google Scholar] [CrossRef]
- Marques da Silva Moura, T.; Cavalcante Rocha, J. Valorization of Red Mud and Bottom Ash as Precursors for the Synthesis of Alkaline Activation in Metakaolin-Based Binder. J. Mater. Civ. Eng. 2025, 37, 04025240. [Google Scholar] [CrossRef]
- Provis, J.L.; Lukey, G.C.; Van Deventer, J.S. Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chem. Mater. 2005, 17, 3075–3085. [Google Scholar] [CrossRef]
- Mahrous, M.A.; Abdelghany, M.A.; Trindade, A.C.C.; Aboukhatwa, M.; Kriven, W.M.; Jasiuk, I.M. Investigating irradiation effects on metakaolin-based geopolymer. Constr. Build. Mater. 2024, 437, 136837. [Google Scholar] [CrossRef]
- Jozanikohan, G.; Abarghooei, M.N. The Fourier transform infrared spectroscopy (FTIR) analysis for the clay mineralogy studies in a clastic reservoir. J. Pet. Explor. Prod. Technol. 2022, 12, 2093–2106. [Google Scholar] [CrossRef]
- Rajini, B.; Rao, A.N.; Sashidhar, C. Micro-level studies of fly ash and GGBS–based geopolymer concrete using Fourier transform Infra-Red. Mater. Today Proc. 2021, 46, 586–589. [Google Scholar] [CrossRef]
- He, P.; Wang, M.; Fu, S.; Jia, D.; Yan, S.; Yuan, J.; Xu, J.; Wang, P.; Zhou, Y. Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer. Ceram. Int. 2016, 42, 14416–14422. [Google Scholar] [CrossRef]
- Allaoui, D.; Nadi, M.; Hattani, F.; Majdoubi, H.; Haddaji, Y.; Mansouri, S.; Oumam, M.; Hannache, H.; Manoun, B. Eco-friendly geopolymer concrete based on metakaolin and ceramics sanitaryware wastes. Ceram. Int. 2022, 48, 34793–34802. [Google Scholar] [CrossRef]
- Karatas, M.; Dener, M.; Mohabbi, M.; Benli, A. A study on the compressive strength and microstructure characteristic of alkali-activated metakaolin cement. Matéria 2019, 24, e12507. [Google Scholar] [CrossRef]





| Notation | Precursor | Alkaline Activator | Essential Ratios | Depth of Plunger Penetration, (mm) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CBW | MKW | PG | Sodium Silicate (SS) | Sodium Hydroxide (SH) | SS/SH ratio | Na2O Content (%) | SiO2/Al2O3 | Na2O/Al2O3 | H2O/Na2O | AS/P1 | W/S2 | ||
| C100 0.5 | 100 | 0 | 5 | 11.9 | 23.9 | 0.5 | 5.36 | 9.46 | 0.90 | 12.33 | 0.36 | 0.22 | 19 | 
| C100 1.0 | 100 | 0 | 5 | 17.9 | 17.9 | 1.0 | 4.79 | 9.68 | 0.81 | 13.30 | 0.36 | 0.21 | 22 | 
| C100 2.0 | 100 | 0 | 5 | 23.9 | 11.9 | 2.0 | 4.23 | 9.89 | 0.71 | 14.54 | 0.36 | 0.21 | 24 | 
| C50M50 0.5 | 50 | 50 | 5 | 18.1 | 36.1 | 0.5 | 8.98 | 5.22 | 1.03 | 9.80 | 0.54 | 0.32 | 18 | 
| C50M50 1.0 | 50 | 50 | 5 | 27.1 | 27.1 | 1.0 | 8.23 | 5.42 | 0.95 | 10.33 | 0.54 | 0.31 | 21 | 
| C50M50 2.0 | 50 | 50 | 5 | 36.1 | 18.1 | 2.0 | 7.48 | 5.61 | 0.86 | 10.96 | 0.54 | 0.30 | 23 | 
| M100 0.5 | 0 | 100 | 5 | 27.8 | 55.6 | 0.5 | 12.19 | 3.46 | 1.19 | 9.34 | 0.83 | 0.45 | 18 | 
| M100 1.0 | 0 | 100 | 5 | 41.7 | 41.7 | 1.0 | 11.21 | 3.68 | 1.09 | 9.80 | 0.83 | 0.44 | 22 | 
| M100 2.0 | 0 | 100 | 5 | 55.6 | 27.8 | 2.0 | 10.24 | 3.89 | 1.00 | 10.35 | 0.83 | 0.42 | 25 | 
| Precursor | Mixture Type | Na2SiO3/NaOH Ratio | NaOH Concentration | Curing Conditions | Highest Comp. Strength, MPa | Reference | 
|---|---|---|---|---|---|---|
| metakaolin & fly ash | binder | 2.5 | 8 M | 100 °C for 12 h | 29.9 | [26] | 
| metakaolin & fly ash | binder | 2.0 | 9 M | 60 °C for 2 h | 25.1 | [27] | 
| fly ash & ceramic waste powder | mortar | 3.0 | 14 M | ambient temp. | 40.2 | [28] | 
| fly ash & ceramic brick waste | mortar | 2.5 | 14 M | ambient temp. | 50.0 | [29] | 
| metakaolin | binder | 1.0 | 10 M | 60 °C for 24 h | 16.4 | [22] | 
| metakaolin | binder | 2.5 | 14 M | 70 °C for 24 h | 34.8 | [30] | 
| Ceramic clay waste | binder | 1.0 | 10 M | 45 °C for 72 h | 28.9 | [31] | 
| Ceramic waste powder | mortar | 2.5 | 10 M | 90 °C for 24 h | 27.9 | [32] | 
| ceramic brick waste & metakaolin | binder | 2.0 | 13 M | 60 °C for 24 h | >60.0 | [33] | 
| ceramic brick waste | binder | 1.0 | 10 M | 60 °C for 24 h | 29.3 | current study | 
| metakaolin | binder | 74.9 | ||||
| ceramic brick waste & metakaolin | binder | 61.7 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Statkauskas, M.; Vaičiukynienė, D.; Grinys, A.; Bajare, D. Effect of Sodium Silicate and Sodium Hydroxide Ratios on Compressive Strength of Ceramic Brick and Metakaolin Waste-Based Geopolymer Binder. Materials 2025, 18, 4947. https://doi.org/10.3390/ma18214947
Statkauskas M, Vaičiukynienė D, Grinys A, Bajare D. Effect of Sodium Silicate and Sodium Hydroxide Ratios on Compressive Strength of Ceramic Brick and Metakaolin Waste-Based Geopolymer Binder. Materials. 2025; 18(21):4947. https://doi.org/10.3390/ma18214947
Chicago/Turabian StyleStatkauskas, Martynas, Danutė Vaičiukynienė, Audrius Grinys, and Diana Bajare. 2025. "Effect of Sodium Silicate and Sodium Hydroxide Ratios on Compressive Strength of Ceramic Brick and Metakaolin Waste-Based Geopolymer Binder" Materials 18, no. 21: 4947. https://doi.org/10.3390/ma18214947
APA StyleStatkauskas, M., Vaičiukynienė, D., Grinys, A., & Bajare, D. (2025). Effect of Sodium Silicate and Sodium Hydroxide Ratios on Compressive Strength of Ceramic Brick and Metakaolin Waste-Based Geopolymer Binder. Materials, 18(21), 4947. https://doi.org/10.3390/ma18214947
 
        



 
       