Effect of Na2O, MgO, CaO, and Fe2O3 on Characteristics of Ceramsite Prepared from Lead–Zinc Tailings and Coal Gangue
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization
2.3.1. Chemical Composition Analysis
2.3.2. Apparent Density Test
2.3.3. Compressive Strength Test
2.3.4. Water Absorption Test
2.3.5. Heavy Metals Leaching Test
2.3.6. X-Ray Diffraction (XRD) Analysis
2.3.7. Scanning Electron Microscopy (SEM) Analysis
3. Results
3.1. Apparent Density and Compressive Strength
3.2. Water Absorption
3.3. Heavy Metals Leaching Test
3.4. XRD Analysis
3.5. SEM Analysis
4. Conclusions
- (1)
- Performance: Na2O, MgO, and CaO enhanced apparent density/compressive strength and reduced water absorption with higher dosage. 5 wt.% Na2O (Na5) achieved the most significant improvement—apparent density increased by approximately 111% to 854 kg/m3 and compressive strength by approximately 276% to 2.37 MPa compared to the control (405 kg/m3, 0.63 MPa). This superiority stems from the melting-liquid phase effect induced by the alkali flux Na2O, which optimized the pore structure and strengthened the matrix. Fe2O3 exhibited a non-monotonic effect (increase → decrease → recovery): 5 wt.% Fe2O3 caused pore coarsening and interconnection (minimum density 401 kg/m3, strength 0.57 MPa), while 10 wt.% reversed degradation via liquid phase densification, providing guidance for sintering dosage control. All fluxes reduced water absorption, with 5 wt.% Na2O achieving a maximum reduction of 87% (compared to the control sample, 11.79% water absorption).
- (2)
- Environmental safety: Fluxes slightly increased Pb/Zn leaching (undetected in control), but all values (max Pb 0.1975 mg/L, max Zn 0.0485 mg/L) were far below the Chinese national standard GB 5086.2-1997 limits (Pb 5 mg/L, Zn 100 mg/L). The low leaching was primarily attributed to Pb and Zn ions being solidified into the aluminosilicate matrix (either lattice incorporation or amorphous encapsulation), confirming eco-safety.
- (3)
- Mineral evolution: Control ceramsite was dominated by mullite, quartz, anorthite, and pyrope. Corundum emerged in all flux-added samples, attributed to fluxes promoting mullite decomposition—released silicon sources were preferentially consumed in other reactions, leading to aluminum source enrichment and subsequent corundum formation. Specifically, Na2O facilitated labradorite formation, MgO promoted cordierite, and Fe2O3 induced hematite. All fluxes weakened the diffraction peaks of quartz and mullite.
- (4)
- Microstructure: Flux type significantly modified LZTs-CG ceramsite microstructure. The control sample had irregular, uneven pores and incomplete pore wall densification (limited liquid phase). 5 wt.% alkali flux Na2O enhanced densification via abundant liquid phase (melting behavior, macropore reduction). 5 wt.% alkaline earth flux MgO reduced pore size and strengthened bonding (cordierite & liquid phase). 5 wt.% alkaline earth flux CaO yielded a smooth, stable matrix (anorthite formation). 5 wt.% Fe2O3 induced interconnected pores (redox gas generation).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Owen, J.R.; Kemp, D.; Lechner, A.M.; Ern, M.A.L.; Lèbre, E.; Mudd, G.M.; Macklin, M.G.; Saputra, M.R.U.; Witra, T.; Bebbington, A. Increasing mine waste will induce land cover change that results in ecological degradation and human displacement. J. Environ. Manag. 2024, 351, 119691. [Google Scholar] [CrossRef]
- Wang, S.; Yang, L. Mineral resource extraction and resource sustainability: Policy initiatives for agriculture, economy, energy, and the environment. Resour. Policy 2024, 89, 104657. [Google Scholar] [CrossRef]
- Luo, Z.; Ge, M.; Ou, J.; Liu, X.; Mu, Y.; Zhang, W.; Ye, J.; Zhang, M.; Gao, M.; Yang, Y.; et al. Precalcination-modified lead-zinc tailings for supersulfated cement production: Insights into phase assemblages, microstructure, and mechanical properties. Constr. Build. Mater. 2025, 473, 141076. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, G.; Wang, M.; Zhen, S. Preparation of high-purity vaterite CaCO3 from lead-zinc tailings. Sustain. Chem. Pharm. 2022, 29, 100835. [Google Scholar] [CrossRef]
- Tao, M.; Zhang, X.; Wang, S.; Cao, W.; Jiang, Y. Life cycle assessment on lead-zinc ore mining and beneficiation in China. J. Clean. Prod. 2019, 237, 117833. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Deng, R.; Xing, D.; Chen, Q. Research status and significance of comprehensive utilization of lead-zinc tailings in China. Geol. Explor. 2024, 60, 724–734. [Google Scholar]
- Hudson-Edwards, K.A.; Kemp, D.; Torres-Cruz, L.A.; Macklin, M.G.; Brewer, P.A.; Owen, J.R.; Franks, D.M.; Marquis, E.; Thomas, C.J. Tailings storage facilities, failures and disaster risk. Nat. Rev. Earth Environ. 2024, 5, 612–630. [Google Scholar] [CrossRef]
- Li, R.; Yin, Z.; Lin, H. Research status and prospects for the utilization of lead-zinc tailings as building materials. Buildings 2023, 13, 150. [Google Scholar] [CrossRef]
- Li, S.; Zhao, B.; Jin, M.; Hu, L.; Zhong, H.; He, Z. A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter. J. Hazard. Mater. 2020, 400, 123255. [Google Scholar] [CrossRef]
- Wu, C.; Jiang, W.; Zhang, C.; Li, J.; Wu, S.; Wang, X.; Xu, Y.; Wang, W.; Feng, M. Preparation of solid-waste-based pervious concrete for pavement: A two-stage utilization approach of coal gangue. Constr. Build. Mater. 2022, 319, 125962. [Google Scholar] [CrossRef]
- Li, J.; Wang, J. Comprehensive utilization and environmental risks of coal gangue: A review. J. Clean. Prod. 2019, 239, 117946. [Google Scholar] [CrossRef]
- Duan, D.; Wang, C.; Bai, D.; Huang, D. Representative coal gangue in China: Physical and chemical properties, heavy metal coupling mechanism and risk assessment. Sustain. Chem. Pharm. 2024, 37, 101402. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, Z.; Han, L.; Zhang, Y.; Li, L.; Zhu, S.; Peng, Z.; Li, J.; Wang, D. Synthesis of coal-analcime composite from coal gangue and its adsorption performance on heavy metal ions. J. Hazard. Mater. 2022, 423, 127027. [Google Scholar] [CrossRef] [PubMed]
- Ducman, V.; Mirtic, B. The applicability of different waste materials for the production of lightweight aggregates. Waste Manag. 2009, 29, 2361–2368. [Google Scholar] [CrossRef]
- Pei, J.; Pan, X.; Qi, Y.; Yu, H.; Tu, G. Preparation and characterization of ultra-lightweight ceramsite using non-expanded clay and waste sawdust. Constr. Build. Mater. 2022, 346, 128410. [Google Scholar] [CrossRef]
- Chai, Y.; Hu, W.; Zhang, Y.; Wang, Y.; Peng, J.; An, S. Process and property optimization of ceramsite preparation by Bayan Obo tailings and blast furnace slag. J. Iron Steel Res. Int. 2023, 30, 1381–1389. [Google Scholar] [CrossRef]
- Mi, H.; Yi, L.; Wu, Q.; Xia, J.; Zhang, B. Preparation of high-strength ceramsite from red mud, fly ash, and bentonite. Ceram. Int. 2021, 47, 18218–18229. [Google Scholar] [CrossRef]
- Xiao, T.; Fan, X.; Zhou, C.; Wang, H.; Wu, K.; Zhou, H. Preparation of ultra-lightweight ceramsite from waste materials: Using phosphate tailings as pore-forming agent. Ceram. Int. 2024, 50, 15218–15229. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, Y.; Yan, J.; Chen, Z.; Wei, Q.; Wang, H.; Lu, Y. Microstructure and properties of high-strength lightweight ceramsites customised with ultra-fine copper tailings. Constr. Build. Mater. 2024, 429, 136433. [Google Scholar] [CrossRef]
- Pei, J.; Pan, X.; Qi, Y.; Yu, H.; Tu, G. Preparation of ultra-lightweight ceramsite from red mud and immobilization of hazardous elements. J. Environ. Chem. Eng. 2022, 10, 108157. [Google Scholar] [CrossRef]
- Hua, S.; Wu, D.; Wu, J.; Li, S.; Liu, G.; Pei, D. Characterization of the physical chemistry properties of iron-tailing-based ceramsite. Molecules 2023, 28, 2258. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tian, H.; Lei, W.; Dai, N.; Wang, H. Development of high-strength ceramsite via sintering of iron ore tailings: Process optimization and properties. Constr. Build. Mater. 2024, 457, 139440. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, S.; Yang, H.; Ni, W.; Li, J.; Zhang, G.; Teng, G. Influence on fine lead-zinc tailings solidified/stabilised by clinker-free slag-based binder. J. Environ. Chem. Eng. 2022, 10, 108692. [Google Scholar] [CrossRef]
- Liu, T.; Tang, Y.; Li, Z.; Wu, T.; Lu, A. Red mud and fly ash incorporation for lightweight foamed ceramics using lead-zinc mine tailings as foaming agent. Mater. Lett. 2016, 183, 362–364. [Google Scholar] [CrossRef]
- Wang, X.; Qin, Y.; Okeke, I.; He, C.; Li, X.; Wei, Y.; Yuan, J. Revealing the intrinsic sintering mechanism of high-strength ceramsite from CFB fly ash: Focus on the role of CaO. Ceram. Int. 2024, 50, 24281–24292. [Google Scholar] [CrossRef]
- Zhao, B.; Duan, X.; Li, Y. Effect of temperature and pyrolysis atmosphere on pore structure of sintered coal gangue ceramsites. Materials 2025, 18, 3386. [Google Scholar] [CrossRef]
- Tong, L.; Ji, J.; Yang, J.; Qian, X.; Li, X.; Wang, H.; Zhou, S.; Wu, Y.; Zhao, Y.; Yuan, X. Sludge-based ceramsite for environmental remediation and architecture ingredients. J. Clean. Prod. 2024, 448, 141556. [Google Scholar] [CrossRef]
- Molineux, C.J.; Newport, D.J.; Ayati, B.; Wang, C.; Connop, S.P.; Green, J.E. Bauxite residue (red mud) as a pulverised fuel ash substitute in the manufacture of lightweight aggregate. J. Clean. Prod. 2016, 112, 401–408. [Google Scholar] [CrossRef]
- Zou, J.L.; Xu, G.R.; Li, G.B. Ceramsite obtained from water and wastewater sludge and its characteristics affected by Fe2O3, CaO, and MgO. J. Hazard. Mater. 2009, 165, 995–1001. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, R.; Xu, Y.; Ye, F.; Xu, R.; Han, Y. Effect of SiO2, Al2O3 and CaO on characteristics of lightweight aggregates produced from MSWI bottom ash sludge (MSWI-BAS). Constr. Build. Mater. 2019, 205, 368–376. [Google Scholar] [CrossRef]
- Li, B.; Jian, S.; Zhu, J.; Yu, H.; Wu, R.; Gao, W.; Tan, H. Effect of flux components of lightweight aggregate on physical properties and heavy metal solidification performance. Waste Manag. 2020, 118, 131–138. [Google Scholar] [CrossRef]
- Luo, Z.; Guo, J.; Liu, X.; Mu, Y.; Zhang, M.; Zhang, M.; Tian, C.; Ou, J.; Mi, J. Preparation of ceramsite from lead-zinc tailings and coal gangue: Physical properties and solidification of heavy metals. Constr. Build. Mater. 2023, 368, 130426. [Google Scholar] [CrossRef]
- GB/T 17431.2-2010; Lightweight Aggregates and Its Test Methods—Part 2: Test Methods. Standardization Administration of China: Beijing, China, 2010.
- Yashima, S.; Kanda, Y.; Sano, S. Relationships between particle-size and fracture energy or impact velocity required to fracture as estimated from single-particle crushing. Powder Technol. 1987, 51, 277–282. [Google Scholar] [CrossRef]
- Li, Y.; Wu, D.; Zhang, J.; Chang, L.; Wu, D.; Fang, Z.; Shi, Y. Measurement and statistics of single pellet mechanical strength of differently shaped catalysts. Powder Technol. 2000, 113, 176–184. [Google Scholar] [CrossRef]
- GB 5086.2-1997; Leaching Toxicity of Solid Waste—Horizontal Vibration Extraction Procedure. Standardization Administration of China: Beijing, China, 1997.
- Goltsman, B.M.; Yatsenko, E.A. Modern fluxing materials and analysis of their impact on silicate structures: A review. Open Ceram. 2024, 17, 100540. [Google Scholar] [CrossRef]
- Pei, J.; Pan, X.; Wang, Y.; Lv, Z.; Yu, H.; Tu, G. Effects of alkali and alkaline-earth oxides on preparation of red mud based ultra-lightweight ceramsite. Ceram. Int. 2023, 49, 18379–18387. [Google Scholar] [CrossRef]
- Pei, D.; Li, Y.; Hua, S.; Li, S.; Jiang, F.; Yao, J. In situ XRD study on function mechanism of pyroxene and anorthite in Si-Ca ceramics from ferronickel slag. Mater. Lett. 2021, 305, 130839. [Google Scholar] [CrossRef]
- Feng, D.; Ren, Q.; Ru, H.; Wang, W.; Jiang, Y.; Ren, S.; Ye, C.; Zhang, C.; Wang, S. Pressureless sintering behaviour and mechanical properties of Fe2O3-containing SiC ceramics. J. Alloys Compd. 2019, 790, 134–140. [Google Scholar] [CrossRef]
- Chen, S.; Luo, L.; Sun, H.; Peng, T.; Lei, J.; Wu, M.; Wang, C.; Huang, S. Effect and mechanism of Fe2O3 decomposition in the preparation of foaming ceramics from industrial solid waste. Int. J. Appl. Ceram. Technol. 2024, 21, 934–946. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, T.; Hu, X.; Pan, Z.; Fan, X.; Zhou, H. Preparation of lightweight ceramsite from weathered granite washing sludge: Reinforcing roles of MgO and Na2O and thermal analysis. Chem. Eng. J. 2025, 521, 166694. [Google Scholar] [CrossRef]
- Li, J.; Du, M.; Zhang, Z.; Guan, R.; Chen, Y.; Liu, T. Selection of fluxing agent for coal ash and investigation of fusion mechanism: A first-principles study. Energy Fuels 2009, 23, 704–709. [Google Scholar] [CrossRef]
- Yan, K.; Guo, Y.; Liu, D.; Ma, Z.; Cheng, F. Thermal decomposition and transformation mechanism of mullite with the action of sodium carbonate. J. Solid State Chem. 2018, 265, 326–331. [Google Scholar] [CrossRef]
- Gao, J.; Wen, G.; Sun, Q.; Tang, P.; Liu, Q. The Influence of Na2O on the solidification and crystallization behavior of CaO-SiO2-Al2O3-based mold flux. Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. 2015, 46, 1850–1859. [Google Scholar] [CrossRef]
- Wu, J.; Lu, C.; Xu, X.; Wang, D.; Sang, Y.; Zhang, C. Influence of silica phase transformation on synthesis of cordierite ceramic. J. Aust. Ceram. Soc. 2017, 53, 499–510. [Google Scholar] [CrossRef]
- Ariyajinno, N.; Thiansem, S. Characterization and properties of cordierite—Mullite refractories from raw materials and Narathiwat clay (in Thailand). Mater. Today Proc. 2018, 5, 13948–13953. [Google Scholar] [CrossRef]
- Harabi, A.; Zaiou, S.; Guechi, A.; Foughali, L.; Harabi, E.; Karboua, N.E.; Zouai, S.; Mezahi, F.Z.; Guerfa, F. Mechanical properties of anorthite based ceramics prepared from kaolin DD2 and calcite. Cerâmica 2017, 63, 311–317. [Google Scholar] [CrossRef]









| SiO2 | Al2O3 | CaO | Fe2O3 | Na2O | K2O | MgO | PbO | ZnO | SO3 | Others | LOI | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| LZTs | 3.52 | 1.49 | 22.20 | 8.59 | 0.68 | 0.23 | 13.68 | 0.43 | 0.55 | 15.06 | 11.84 | 21.73 |
| CG | 61.63 | 27.36 | 0.31 | 2.82 | 0.12 | 0.07 | 0.54 | - | - | 0.08 | 3.19 | 3.88 |
| LZTs | CG | SiC | Water | Flux Components | Content | Sample Code |
|---|---|---|---|---|---|---|
| 20 | 80 | 0.5 | 25 | - | - | Con |
| Na2O | 1 | Na1 | ||||
| 2 | Na2 | |||||
| 5 | Na5 | |||||
| MgO | 1 | Mg1 | ||||
| 2 | Mg2 | |||||
| 5 | Mg5 | |||||
| CaO | 1 | Ca1 | ||||
| 2 | Ca2 | |||||
| 5 | Ca5 | |||||
| 10 | Ca10 | |||||
| Fe2O3 | 1 | Fe1 | ||||
| 2 | Fe2 | |||||
| 5 | Fe5 | |||||
| 10 | Fe10 |
| Sample Code | Pb Leaching Concentration (mg/L) | Zn Leaching Concentration (mg/L) |
|---|---|---|
| Con | N | N |
| Na5 | 0.1564 | 0.0387 |
| Mg5 | 0.1975 | 0.0016 |
| Ca10 | 0.1255 | 0.0485 |
| Fe10 | 0.1667 | 0.0302 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Z.; Zhang, Q.; Guo, J.; Liu, X.; Zhang, M.; Wan, X.; Ye, J.; Liu, L. Effect of Na2O, MgO, CaO, and Fe2O3 on Characteristics of Ceramsite Prepared from Lead–Zinc Tailings and Coal Gangue. Materials 2025, 18, 4928. https://doi.org/10.3390/ma18214928
Luo Z, Zhang Q, Guo J, Liu X, Zhang M, Wan X, Ye J, Liu L. Effect of Na2O, MgO, CaO, and Fe2O3 on Characteristics of Ceramsite Prepared from Lead–Zinc Tailings and Coal Gangue. Materials. 2025; 18(21):4928. https://doi.org/10.3390/ma18214928
Chicago/Turabian StyleLuo, Zhongtao, Qi Zhang, Jinyang Guo, Xiaohai Liu, Maoliang Zhang, Xindi Wan, Jiayuan Ye, and Lei Liu. 2025. "Effect of Na2O, MgO, CaO, and Fe2O3 on Characteristics of Ceramsite Prepared from Lead–Zinc Tailings and Coal Gangue" Materials 18, no. 21: 4928. https://doi.org/10.3390/ma18214928
APA StyleLuo, Z., Zhang, Q., Guo, J., Liu, X., Zhang, M., Wan, X., Ye, J., & Liu, L. (2025). Effect of Na2O, MgO, CaO, and Fe2O3 on Characteristics of Ceramsite Prepared from Lead–Zinc Tailings and Coal Gangue. Materials, 18(21), 4928. https://doi.org/10.3390/ma18214928

