Influence Mechanism of Chemically Modified Alumina on the Hydration of Gypsum-Based Self-Leveling Mortar
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of KH550-Functionalized Nano-γ-Al2O3 Modified Mortar
2.3. Test Methods
2.3.1. Fluidity
2.3.2. Setting Time
2.3.3. Mechanical Properties
2.3.4. XRD Analysis
2.3.5. TG-DTG
2.3.6. Hydration Heat Evolution
2.3.7. SEM/EDS Analysis
2.3.8. FT-IR Analysis
3. Results and Discussion
3.1. Effect of KH-Al on Fluidity and Setting Time of GSL
3.2. Effect of KH-Al on Mechanical Properties of GSL
3.3. XRD Analysis
3.4. TG-DTG Analysis
3.5. Heat Flow Analysis of GSL Hydration Process
3.6. SEM Analysis
3.7. FT-IR Analysis
4. Conclusions
- The high specific surface area of KH-Al adsorbs free water, leading to a decrease in mortar fluidity. Meanwhile, it acts as nucleation sites that accelerate the hydration reaction, thereby shortening the initial and final setting times of GSL.
- With the increase in KH-Al dosage, the mechanical properties of GSL improve significantly. At a dosage of 0.5%, the 24-h flexural strength and compressive strength of GSL increase by 42.83% and 45.89%, respectively, while the 28-day flexural strength and compressive strength increase by 70.86% and 78.12%, respectively.
- KH-Al provides numerous nucleation sites for mortar hydration, increases the formation proportion of AFt and CŜH2, refines the crystal structure, and exhibits a significant hydration-promoting effect. Additionally, an appropriate dosage of KH-Al ensures a more uniform release of hydration heat throughout the reaction process, which benefits the development of later strength.
- The SEM analysis results show that nanomaterials cause hydration products to interlock and overlap, filling pores and forming a dense structure. The FT-IR results are consistent with the XRD findings, confirming that KH-Al promotes the hydration reaction, whereas excessive KH-Al inhibits the overall hydration process.
- The utilization of KH-Al modification enables the production of high-performance GSL, establishing a foundation for manufacturing high-value-added construction materials from industrial by-product gypsum. This approach paves the way for producing premium building materials from industrial gypsum by-products. For future industrial scalability, a cost–benefit analysis of employing surface-modified nanomaterials, as well as an assessment of the long-term durability of the modified GSL under real-service conditions, warrants further investigation. Nevertheless, the significant performance gains achieved at a relatively low dosage (0.5%) present a promising and potentially viable strategy for the advanced resource utilization of industrial solid waste.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, Z.-Y.; Sun, X.-P.; Luo, Y.-Q.; Fu, X.-L.; Xu, A.; Bi, Y.-Z. Recycling, reusing and environmental safety of industrial by-product gypsum in construction and building materials. Constr. Build. Mater. 2024, 432, 136609. [Google Scholar] [CrossRef]
- Qi, J.; Zhu, H.; Zhou, P.; Wang, X.; Wang, Z.; Yang, S.; Yang, D.; Li, B. Application of phosphogypsum in soilization: A review. Int. J. Environ. Sci. Technol. 2023, 20, 10449–10464. [Google Scholar] [CrossRef]
- Gu, K.; Chen, B. Research on the incorporation of untreated flue gas desulfurization gypsum into magnesium oxysulfate cement. J. Clean. Prod. 2020, 271, 122497. [Google Scholar] [CrossRef]
- Wang, Q.; Jia, R. A novel gypsum-based self-leveling mortar produced by phosphorus building gypsum. Constr. Build. Mater. 2019, 226, 11–20. [Google Scholar] [CrossRef]
- Huang, Y.; Qian, J.; Lu, L.; Zhang, W.; Wang, S.; Wang, W.; Cheng, X. Phosphogypsum as a component of calcium sulfoaluminate cement: Hazardous elements immobilization, radioactivity and performances. J. Clean. Prod. 2020, 248, 119287. [Google Scholar] [CrossRef]
- Xiao, X.; Li, J.; Meng, Q.; Hou, X.; Liu, Y.; Wang, X.; Wang, W.; Lu, S.; Li, Y.; Mao, Y.; et al. Reuse of by-product gypsum with solid wastes-derived sulfoaluminate cement modification for the preparation of self-leveling mortar and influence mechanism of H3PO4. Constr. Build. Mater. 2024, 411, 134298. [Google Scholar] [CrossRef]
- Xiao, X.; Li, J.; Yang, S.; Hou, X.; Liu, Y.; Li, Y.; Wang, X.; Wang, W.; Mao, Y. Effect of phosphorus impurities on sulfoaluminate cement-modified gypsum-based self-leveling mortar and improvement method. Constr. Build. Mater. 2024, 442, 137616. [Google Scholar] [CrossRef]
- Al-Oqla, F.M.; Faris, H.; Habib, M.; Castillo, P.A. Evolving Genetic Programming Tree Models for Predicting the Mechanical Properties of Green Fibers. Emerg. Sci. J. 2023, 7, 1863–1874. [Google Scholar] [CrossRef]
- Jung, M.; Lee, Y.-S.; Hong, S.-G.; Moon, J. Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): Dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE). Cem. Concr. Res. 2020, 131, 106017. [Google Scholar] [CrossRef]
- Yu, J.; Zheng, Q.; Hou, D.; Zhang, J.; Li, S.; Jin, Z.; Wang, P.; Yin, B.; Wang, X. Insights on the capillary transport mechanism in the sustainable cement hydrate impregnated with graphene oxide and epoxy composite. Compos. Part B 2019, 173, 106907. [Google Scholar] [CrossRef]
- Bekhti, H.; Boucheffa, Y.; Blal, A.H.A.; Travert, A. In situ FTIR investigation of CO2 adsorption over MgO–Impregnated NaY zeolites. Vib. Spectrosc. 2021, 117, 103313. [Google Scholar] [CrossRef]
- German, A.; Winnefeld, F.; Lura, P.; Rentsch, D.; Lothenbach, B. Hydrous carbonate-containing brucite (HCB) in MgO/hydromagnesite blends. Cem. Concr. Res. 2023, 173, 107304. [Google Scholar] [CrossRef]
- Nazerigivi, A.; Najigivi, A. Study on mechanical properties of ternary blended concrete containing two different sizes of nano-SiO2. Compos. Part B 2019, 167, 20–24. [Google Scholar] [CrossRef]
- Acikgoz, M.; Harrell, J.; Pavanello, M. Seeking a Structure–Function Relationship for γ-Al2O3 Surfaces. J. Phys. Chem. C 2018, 122, 25314–25330. [Google Scholar] [CrossRef]
- Roelofs, F.; Vogelsberger, W. Dissolution kinetics of nanodispersed γ-alumina in aqueous solution at different pH: Unusual kinetic size effect and formation of a new phase. J. Colloid Interface Sci. 2006, 303, 450–459. [Google Scholar] [CrossRef]
- Evju, C.; Hansen, S. Expansive properties of ettringite in a mixture of calcium aluminate cement, Portland cement and β-calcium sulfate hemihydrate. Cem. Concr. Res. 2001, 31, 257–261. [Google Scholar] [CrossRef]
- Michel, M.; Georgin, J.-F.; Ambroise, J.; Péra, J. The influence of gypsum ratio on the mechanical performance of slag cement accelerated by calcium sulfoaluminate cement. Constr. Build. Mater. 2011, 25, 1298–1304. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, P.; Pan, F.; He, Y. The synergistic effect of AFt enhancement and expansion in Portland cement-aluminate cement-FGD gypsum composite cementitious system. Constr. Build. Mater. 2018, 190, 985–994. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, Z.; De Lima Junior, L.M.; Çopuroğlu, O. Early age hydration of model slag cement: Interaction among C3S, gypsum and slag with different Al2O3 contents. Cem. Concr. Res. 2022, 161, 106954. [Google Scholar] [CrossRef]
- Yu, J.; Song, H.; Jeon, D.; Sim, S.; Kim, D.; Lee, H.; Yoon, S.; Yum, W.S.; Oh, J.E. Influence of the degree of crystallinity of added nano-alumina on strength and reaction products of the CaO-activated GGBFS system. Constr. Build. Mater. 2021, 296, 123647. [Google Scholar] [CrossRef]
- Sun, H.; Pan, G.; Lu, X.; Iqbal, S.; Meng, H. The in-situ grown nano-γ-Al2O3@FA composite synthesized by carbonization method improves the properties of gypsum slag cement. Constr. Build. Mater. 2024, 426, 136172. [Google Scholar] [CrossRef]
- Zhou, J.; Zheng, K.; Liu, Z.; He, F. Chemical effect of nano-alumina on early-age hydration of Portland cement. Cem. Concr. Res. 2019, 116, 159–167. [Google Scholar] [CrossRef]
- Shao, Q.; Zheng, K.; Zhou, X.; Zhou, J.; Zeng, X. Enhancement of nano-alumina on long-term strength of Portland cement and the relation to its influences on compositional and microstructural aspects. Cem. Concr. Compos. 2019, 98, 39–48. [Google Scholar] [CrossRef]
- Xavier, J.R.; Vinodhini, S.P.; Raja Beryl, J. Flame retardant and corrosion protection performance of multifunctional nanocomposites containing graphitic carbon nitride/silanized Ta2O5 nanofillers for the protection of steel surface for industrial applications. Colloids Surf. A 2024, 681, 132748. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, L.; Chen, Y.; Bao, B.; Xu, J.; Zhou, W. Preparation and characterization of hydrophilic silicon dioxide film on acrylate polyurethane coatings with self-cleaning ability. Appl. Surf. Sci. 2015, 349, 916–923. [Google Scholar] [CrossRef]
- Mallakpour, S.; Madani, M. A review of current coupling agents for modification of metal oxide nanoparticles. Prog. Org. Coat. 2015, 86, 194–207. [Google Scholar] [CrossRef]
- JC/T 1023–2021; Gypsum Based Self-Leveling Compound for Floor. Ministry of Industry and Information Technology: Beijing, China, 2021.
- GB/T 17669.4-1999; Gypsum Plasters-Determination of Physical Properties of Pure Paste. Standardization Administration of the People’s Republic of China: Beijing, China, 1999.
- GB/T 17669.3-1999; Gypsum Plasters-Determination of Mechanical Properties. Standardization Administration of the People’s Republic of China: Beijing, China, 1999.
- Gao, J.; Ke, J.; Tang, Y.; Zhou, W.; Lu, Q.; Chen, B. Effect of multi-doped composite material on fluidity and compressive strength of cement mortar under acid erosion. Constr. Build. Mater. 2025, 470, 140530. [Google Scholar] [CrossRef]
- Tian, L.; Liu, T.; Fu, H.; Wang, P.; Taqi, M.; Li, W.; Cui, L.; Wang, Y. Electrochemical extraction of chloride in OPC-CSA composite conductive mortar with nano-Al2O3. J. Build. Eng. 2025, 105, 112432. [Google Scholar] [CrossRef]
- Bai, J.; Li, M.; Yuan, Y.; Zhao, T.; Yang, Y.; Xu, Z.; Li, Q.; Zhou, Y. Surface modified cellulose nanofibrils with γ-Aminopropyltriethoxysilane (KH550) for the performance enhancement of Portland cement systems. Constr. Build. Mater. 2025, 486, 141956. [Google Scholar] [CrossRef]
- Sousa, S.P.B.; Ribeiro, M.C.S.; Nóvoa, P.R.O.; Pereira, C.M.; Ferreira, A.J.M. Mechanical behaviour assessment of unsaturated polyester polymer mortars filled with nano-sized Al2O3 and ZrO2 particles. Ciênc. Tecnol. Mater. 2017, 29, e167–e171. [Google Scholar] [CrossRef]
- Bian, P.; Yu, Q.; Zhan, B.; Guo, B.; Gao, P.; Hong, L.; Yang, Y.; Wang, C. Broadband electromagnetic wave absorption cement-based composite using foam-loaded KH550@Fe3O4 nanoparticles. Constr. Build. Mater. 2024, 449, 138324. [Google Scholar] [CrossRef]
- Ma, H.; Zong, M.; Liu, H.; Chen, C.; Zhu, P. Enhancement mechanism of hydrophobicity and mechanical properties of gypsum based mortar by KH550 functionalized nano mineral composite coating. Constr. Build. Mater. 2025, 479, 141454. [Google Scholar] [CrossRef]
- Wang, Q.; Chu, H.; Jiang, J.; Zhu, B. Enhancing mechanical performance and durability of high strength mortar with incineration bottom ash via Al2O3 micro-powder: An experimental study. J. Build. Eng. 2024, 89, 109268. [Google Scholar] [CrossRef]
- Li, J.; Cao, J.; Ren, Q.; Ding, Y.; Zhu, H.; Xiong, C.; Chen, R. Effect of nano-silica and silicone oil paraffin emulsion composite waterproofing agent on the water resistance of flue gas desulfurization gypsum. Constr. Build. Mater. 2021, 287, 123055. [Google Scholar] [CrossRef]
- Zhou, J.; Li, M. Effect of nano-MgO on working, mechanical properties and microstructure of PC clinker-CSA-C$ ternary system cement. Constr. Build. Mater. 2025, 484, 141867. [Google Scholar] [CrossRef]
- Huang, J.; Wang, C.; Jian, S.; Tan, H.; Li, X.; Huang, J.; Lv, Y.; Gao, X.; Peng, B.; Tu, L. Feasibility of applying attapulgite, sodium bentonite and nano-silica as a viscosity modifier admixture for 3D printing of gypsum-based materials. J. Build. Eng. 2025, 107, 112745. [Google Scholar] [CrossRef]
- Zhonglin, L.; Ye, X.; Biao, P.; Wenbin, L.; Lusen, W.; Jie, Z.; Zonghui, H.; Weiguang, Z.; Long, F.; Yibing, L. Inhibiting pan-alkali in desulfurization gypsum-based materials with trace magnesium oxide: Synergistic interaction of polymerization degree, impair porosity and free water. Constr. Build. Mater. 2025, 470, 140634. [Google Scholar] [CrossRef]
- Fu, H.; Huang, J.; Yin, L.; Yu, J.; Lou, W.; Jiang, G. Retarding effect of impurities on the transformation kinetics of FGD gypsum to α-calcium sulfate hemihydrate under atmospheric and hydrothermal conditions. Fuel 2017, 203, 445–451. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Y.; Liu, H.; Song, S. Fabrication and mechanism of cement-based waterproof material using silicate tailings from reverse flotation. Powder Technol. 2017, 315, 422–429. [Google Scholar] [CrossRef]
- Tan, H.; Dong, F. Morphological regulation of calcium sulfate hemihydrate from phosphogypsum. Materialwiss. Werkstofftech. 2017, 48, 1191–1196. [Google Scholar] [CrossRef]











| SO3 | CaO | SiO2 | P2O5 | Al2O3 | K2O | MgO | Fe2O3 | Na2O | TiO2 | LOI | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| β-PG | 49.63 | 35.97 | 6.12 | 0.29 | 0.41 | 0.16 | 0.11 | 0.08 | 0.09 | 0.06 | 7.18 |
| β-FG | 52.79 | 39.31 | 3.42 | 0.04 | 1.37 | 0.14 | 0.67 | 0.15 | 0.11 | 0.06 | 1.94 |
| Sample No. | Binder (%) | Aggregate (%) | Mineral Admixture (%) | Nanomaterials | Additives (%) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| β-PG | β-FGD | SAC | MS | FA | Type | wt% | PCE | PR | HPMC | DA | |
| Reference | 20 | 40 | 10 | 15 | 15 | - | - | 0.3 | 0.04 | 0.04 | 0.08 |
| A1 | 20 | 40 | 10 | 15 | 15 | KH-Al | 0.05 | 0.3 | 0.04 | 0.04 | 0.08 |
| A2 | 20 | 40 | 10 | 15 | 15 | KH-Al | 0.1 | 0.3 | 0.04 | 0.04 | 0.08 |
| A3 | 20 | 40 | 10 | 15 | 15 | KH-Al | 0.25 | 0.3 | 0.04 | 0.04 | 0.08 |
| A4 | 20 | 40 | 10 | 15 | 15 | KH-Al | 0.5 | 0.3 | 0.04 | 0.04 | 0.08 |
| A5 | 20 | 40 | 10 | 15 | 15 | KH-Al | 1 | 0.3 | 0.04 | 0.04 | 0.08 |
| Sample No. | 24 h | 28-Day | ||||||
|---|---|---|---|---|---|---|---|---|
| AFt Mass Loss/% | CŜH2 Mass Loss/% | AFt/% | CŜH2/% | AFt Mass Loss/% | CŜH2 Mass Loss/% | AFt/% | CŜH2/% | |
| Reference | 0.68 | 10.49 | 2.37 | 50.12 | 0.63 | 10.41 | 2.19 | 49.74 |
| A1 | 1.42 | 10.65 | 4.95 | 50.89 | 1.48 | 11.07 | 5.16 | 52.90 |
| A2 | 1.86 | 11.06 | 6.48 | 52.85 | 1.63 | 10.91 | 5.68 | 52.13 |
| A3 | 2.13 | 11.21 | 7.42 | 53.56 | 1.86 | 10.89 | 6.48 | 52.04 |
| A4 | 2.31 | 11.56 | 8.05 | 55.24 | 2.08 | 10.86 | 7.25 | 51.89 |
| A5 | 1.97 | 10.96 | 6.86 | 52.37 | 1.69 | 10.58 | 5.89 | 50.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Zong, M.; Cedrick, N.; Sun, Y.; Wang, W.; Yan, X.; Liu, H.; Zhu, P.; Hua, M. Influence Mechanism of Chemically Modified Alumina on the Hydration of Gypsum-Based Self-Leveling Mortar. Materials 2025, 18, 4898. https://doi.org/10.3390/ma18214898
Ma H, Zong M, Cedrick N, Sun Y, Wang W, Yan X, Liu H, Zhu P, Hua M. Influence Mechanism of Chemically Modified Alumina on the Hydration of Gypsum-Based Self-Leveling Mortar. Materials. 2025; 18(21):4898. https://doi.org/10.3390/ma18214898
Chicago/Turabian StyleMa, Haozhe, Meirong Zong, Nshuti Cedrick, Yuting Sun, Wenhao Wang, Xiancui Yan, Hui Liu, Pinghua Zhu, and Minqi Hua. 2025. "Influence Mechanism of Chemically Modified Alumina on the Hydration of Gypsum-Based Self-Leveling Mortar" Materials 18, no. 21: 4898. https://doi.org/10.3390/ma18214898
APA StyleMa, H., Zong, M., Cedrick, N., Sun, Y., Wang, W., Yan, X., Liu, H., Zhu, P., & Hua, M. (2025). Influence Mechanism of Chemically Modified Alumina on the Hydration of Gypsum-Based Self-Leveling Mortar. Materials, 18(21), 4898. https://doi.org/10.3390/ma18214898

