Effect of Low- and High-Si/Al Synthetic Zeolites on the Performance of Renovation Plasters
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology
3. Results and Discussion
3.1. Physical Properties of the Renovation Plasters—Strength Features
3.2. Measurements of Electrical Resistivity
3.3. Mechanical Properties of the Renovation Plasters
3.4. Frost Resistance
3.5. Salt Crystallization Resistance
3.6. Adhesion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Groot, C.; van Hees, R.; Wijffels, T. Selection of plasters and renders for salt laden masonry substrates. Constr. Build. Mater. 2009, 23, 1743–1750. [Google Scholar] [CrossRef]
- Pavlíková, M.; Pavlík, Z.; Keppert, M.; Černý, R. Salt transport and storage parameters of renovation plasters and their possible effects on restored buildings’ walls. Constr. Build. Mater. 2011, 25, 1205–1212. [Google Scholar] [CrossRef]
- Klimek, B. Wpływ dodatku zeolitu na właściwości tynków do murów o wysokim stopniu zasolenia. Mater. Bud. 2015, 1, 224–226. [Google Scholar] [CrossRef]
- Barnat-Hunek, D.; Klimek, B. Wpływ dodatku zeolitu na właściwości fizykomechaniczne tynków renowacyjnych. Izolacje 2014, 19, 58–64. [Google Scholar]
- Franus, W.; Wdowin, M.; Franus, M. Synthesis and characterization of zeolites prepared from industrial fly ash. Environ. Monit. Assess. 2014, 186, 5721–5729. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, Z.; Yu, L.; Wang, W. Fly ash-based zeolites: From waste to value—A comprehensive overview of synthesis, properties, and applications. Chem. Eng. Res. Des. 2024, 212, 240–260. [Google Scholar] [CrossRef]
- Styczeń, J.; Barnat-Hunek, D.; Panek, R.; Franus, W. The microstructural and physical properties of renovation renders with clinoptilolite, Na-P1 and Na-X zeolites. Constr. Build. Mater. 2020, 261, 120016. [Google Scholar] [CrossRef]
- Barnat-Hunek, D.; Siddique, R.; Klimek, B.; Franus, M. The use of zeolite, lightweight aggregate and boiler slag in restoration renders. Constr. Build. Mater. 2017, 142, 162–174. [Google Scholar] [CrossRef]
- Sezemanas, G.; Sinica, M.; Zacharčenko, P.; Pivenj, N.; Mikulskis, D.; Kligys, M. Influence of zeolite additive on the properties of plaster used for external walls from autoclaved aerated concrete. Mater. Sci. 2013, 19, 222–229. [Google Scholar] [CrossRef]
- Sobol, K.; Markiv, T.; Terlyha, V.; Franus, W. Peculiarities of hydration processes of cements containing natural zeolite. Bud. Archit. 2015, 14, 105–113. [Google Scholar] [CrossRef]
- Ranesi, A.; Faria, P.; Veiga, M.R. Traditional and Modern Plasters for Built Heritage: Suitability and Contribution for Passive Relative Humidity Regulation. Heritage 2021, 4, 2337–2355. [Google Scholar] [CrossRef]
- McGregor, F.; Heath, A.; Shea, A.; Lawrence, M. The moisture buffering capacity of unfired clay masonry. Build. Environ. 2014, 82, 599–607. [Google Scholar] [CrossRef]
- Zhang, M.; Qin, M.; Rode, C.; Chen, Z. Moisture buffering phenomenon and its impact on building energy consumption. Appl. Therm. Eng. 2017, 124, 337–345. [Google Scholar] [CrossRef]
- Wang, P.; Dong, B.; Wang, Y.; Hong, S.; Fang, G.; Zhang, Y. Electrical conductive mortar based on expanded graphite for auxiliary anode. Case Stud. Constr. Mater. 2024, 20, e03268. [Google Scholar] [CrossRef]
- Dong, W.; Ahmed, A.H.; Liebscher, M.; Li, H.; Guo, Y.; Pang, B.; Adresi, M.; Li, W.; Mechtcherine, V. Electrical resistivity and self-sensing properties of low-cement limestone calcined clay cement (LC3) mortar. Mater. Des. 2025, 252, 113790. [Google Scholar] [CrossRef]
- Horňáková, M.; Lehner, P.; Le, T.D.; Konečný, P.; Katzer, J. Durability Characteristics of Concrete Mixture Based on Red Ceramic Waste Aggregate. Sustainability 2020, 12, 8890. [Google Scholar] [CrossRef]
- Franus, M.; Panek, R.; Madej, J.; Franus, W. The properties of fly ash derived lightweight aggregates obtained using microwave radiation. Constr. Build. Mater. 2019, 227, 116677. [Google Scholar] [CrossRef]
- Gjyli, S.; Korpa, A.; Teneqja, V.; Siliqi, D.; Belviso, C. Siliceous Fly Ash Utilization Conditions for Zeolite Synthesis. Environ. Sci. Proc. 2021, 6, 24. [Google Scholar] [CrossRef]
- Kunecki, P.; Panek, R.; Wdowin, M.; Bień, T.; Franus, W. Influence of the fly ash fraction after grinding process on the hydrothermal synthesis efficiency of Na-A, Na-P1, Na-X and sodalite zeolite types. Int. J. Coal Sci. Technol. 2021, 8, 291–311. [Google Scholar] [CrossRef]
- EN 1015-11:1999; Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. CEN: Brussels, Belgium, 1999.
- EN 1015-2:1998; Methods of Test for Mortar for Masonry—Part 2: Bulk Sampling of Mortars and Preparation of Test Mortars. CEN: Brussels, Belgium, 1998.
- Styczeń, J.; Radlińska, A.; Stępień, P.; Fronczyk, J.; Franus, W. Investigation of alite hydration in the presence of low- and high-silica zeolites. Arch. Civ. Mech. Eng. 2024, 24, 214. [Google Scholar] [CrossRef]
- DIN 18947:2024-03; Earth Plasters—Requirements, Test and Labelling. DIN: Berlin, Germany, 2024.
- Rode, C.; Peuhkuri, R.; Time, B.; Svennberg, K.; Ojanen, T. Moisture Buffer Value of Building Materials. J. ASTM Int. 2007, 4, 1–12. [Google Scholar] [CrossRef]
- PN-EN 1015-7; Test Methods for Mortars for Masonry—Determination of Air Content in Fresh Mortar. PKN: Warsaw, Poland, 1998.
- EN 1015-18:2002; Methods of Test for Mortar for Masonry—Part 18: Determination of Water Absorption Coefficient Due to Capillarity Action of Hardened Mortar. CEN: Brussels, Belgium, 2002.
- PN-85-B-04500:1985; Building Mortars—Testing of Physical and Mechanical Properties. PKN: Warsaw, Poland, 1985.
- EN 12370:1999; Natural Stone Test Methods—Determination of Resistance to Salt Crystallisation. CEN: Brussels, Belgium, 1999.
- EN 1015-12:2016; Methods of Test for Mortar for Masonry—Determination of Adhesive Strength of Hardened Rendering and Plastering Mortars on Substrates. CEN: Brussels, Belgium, 2016.
- WTA-Merkblatt 2-9-04/D; Sanierputzsysteme. Renovation Mortar Systems. Deutsche Fassung: Munich, Germany, 2020.
- Markiv, T.; Sobol, K.; Franus, M.; Franus, W. Mechanical and durability properties of concretes incorporating natural zeolite. Arch. Civ. Mech. Eng. 2016, 16, 554–562. [Google Scholar] [CrossRef]
- Koniorczyk, M.; Konca, P.; Gawin, D. Salt crystallization-induced damage of cement mortar microstructure investigated by multi-cycle mercury intrusion. In Proceedings of the VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures (FraMCoS-8), Toledo, Spain, 10–14 March 2013. [Google Scholar]
- Giosuè, C.; Pierpaoli, M.; Mobili, A.; Ruello, M.L.; Tittarelli, F. Influence of Binders and Lightweight Aggregates on the Properties of Cementitious Mortars: From Traditional Requirements to Indoor Air Quality Improvement. Materials 2017, 10, 978. [Google Scholar] [CrossRef] [PubMed]
- Benachour, Y.; Davy, C.A.; Skoczylas, F.; Houari, H. Effect of a high calcite filler addition upon microstructural, mechanical, shrinkage and transport properties of a mortar. Cem. Concr. Res. 2008, 38, 727–736. [Google Scholar] [CrossRef]
- Santos, T.; Faria, P.; Sotomayor, J.; Silvestre, J.D.; Santos Silva, A. Effect of Different Surface Treatments on the Performance of Earth Plasters. Coatings 2024, 14, 1537. [Google Scholar] [CrossRef]
- Cascione, V.; Maskell, D.; Shea, A.; Walker, P.; Mani, M. Full-Scale Simulation of Indoor Humidity and Moisture Buffering Properties of Clay. In Earthen Dwellings and Structures: Current Status in Their Adoption; Reddy, B.V.V., Mani, M., Eds.; Springer: Singapore, 2019; pp. 395–406. [Google Scholar] [CrossRef]
- Brachaczek, W. Study of the Impact of Microstructure and Sorption Properties of the Renovation Plasters on the Wall Drying Rate. Period. Polytech. Civ. Eng. 2018, 62, 792–799. [Google Scholar] [CrossRef]
- Rode, C.; Grau, K. Moisture Buffering and its Consequence in Whole Building Hygrothermal Modeling. J. Build. Phys. 2008, 31, 333–360. [Google Scholar] [CrossRef]
- Cascione, V.; Maskell, D.; Shea, A.; Walker, P.; Mani, M. Comparison of moisture buffering properties of plasters in full scale simulations and laboratory testing. Constr. Build. Mater. 2020, 252, 119033. [Google Scholar] [CrossRef]
- Kurda, R.; de Brito, J.; Silvestre, J.D. Water absorption and electrical resistivity of concrete with recycled concrete aggregates and fly ash. Cem. Concr. Compos. 2019, 95, 169–182. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Y.; Zhang, P.; Ma, Y.; Zhao, T.; Wang, H.; Zhang, Z. Water absorption and chloride diffusivity of concrete under the coupling effect of uniaxial compressive load and freeze–thaw cycles. Constr. Build. Mater. 2019, 209, 566–576. [Google Scholar] [CrossRef]
- Szeląg, M.; Styczeń, J.; Fediuk, R.; Polak, R. Properties and Strength Prediction Modeling of Green Mortar with Brick Powder Subjected to a Short-Term Thermal Shock at Elevated Temperatures. Materials 2021, 14, 6331. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, W.; Zhou, Q.; Wang, Z.; Sant, G.; Guo, L.; Bauchy, M. Topological origin of phase separation in hydrated gels. J. Colloid Interface Sci. 2021, 590, 199–209. [Google Scholar] [CrossRef]
- Cosoli, G.; Mobili, A.; Tittarelli, F.; Revel, G.M.; Chiariotti, P. Electrical Resistivity and Electrical Impedance Measurement in Mortar and Concrete Elements: A Systematic Review. Appl. Sci. 2020, 10, 4912. [Google Scholar] [CrossRef]
- Alexa-Stratulat, S.-M.; Olteanu, I.; Toma, A.-M.; Pastia, C.; Banu, O.-M.; Corbu, O.-C.; Toma, I.-O. The Use of Natural Zeolites in Cement-Based Construction Materials—A State of the Art Review. Coatings 2024, 14, 18. [Google Scholar] [CrossRef]
- Zhang, G.-Z.; Lee, H.-S.; Wang, X.-Y.; Han, Y. Internal Curing Effect of Pre-Soaked Zeolite Sand on the Performance of Alkali-Activated Slag. Materials 2021, 14, 718. [Google Scholar] [CrossRef]
- Girskas, G.; Pundienė, I.; Pranckevičienė, J. The Effect of Natural and Synthesised Zeolites on Cement-Based Materials Hydration and Hardened State Properties. Materials 2023, 16, 5608. [Google Scholar] [CrossRef] [PubMed]
- Lanas, J.; Alvarez, J.I. Masonry repair lime-based mortars: Factors affecting the mechanical behavior. Cem. Concr. Res. 2003, 33, 1867–1876. [Google Scholar] [CrossRef]
- Liguori, B.; Aprea, P.; de Gennaro, B.; Iucolano, F.; Colella, A.; Caputo, D. Pozzolanic Activity of Zeolites: The Role of Si/Al Ratio. Materials 2019, 12, 4231. [Google Scholar] [CrossRef] [PubMed]
- Shekarchi, M.; Ahmadi, B.; Azarhomayun, F.; Shafei, B.; Kioumarsi, M. Natural zeolite as a supplementary cementitious material—A holistic review of main properties and applications. Constr. Build. Mater. 2023, 409, 133766. [Google Scholar] [CrossRef]
- Özen, S.; Göncüoğlu, M.C.; Liguori, B.; de Gennaro, B.; Cappelletti, P.; Gatta, G.D.; Iucolano, F.; Colella, C. A comprehensive evaluation of sedimentary zeolites from Turkey as pozzolanic addition of cement- and lime-based binders. Constr. Build. Mater. 2016, 105, 46–61. [Google Scholar] [CrossRef]
- Mertens, G.; Snellings, R.; Van Balen, K.; Bicer-Simsir, B.; Verlooy, P.; Elsen, J. Pozzolanic reactions of common natural zeolites with lime and parameters affecting their reactivity. Cem. Concr. Res. 2009, 39, 233–240. [Google Scholar] [CrossRef]
- Caputo, D.; Liguori, B.; Colella, C. Some advances in understanding the pozzolanic activity of zeolites: The effect of zeolite structure. Cem. Concr. Compos. 2008, 30, 455–462. [Google Scholar] [CrossRef]
- Janek, M.; Fronczyk, J.; Pyzik, A.; Szeląg, M.; Panek, R.; Franus, W. Diatomite and Na-X zeolite as carriers for bacteria in self-healing cementitious mortars. Constr. Build. Mater. 2022, 343, 128103. [Google Scholar] [CrossRef]
- Diamond, S. The composition of the gel phase in Portland cement paste. In Hydraulic Cement Pastes: Their Structure and Properties; Cement and Concrete Association: London, UK, 1976; p. 334. [Google Scholar]
- Klimek, B.; Barnat-Hunek, D.; Franus, M. Influence of zeolite additive on the properties of plaster used for monumental salted walls. Izolacje 2014, 781, 72–78. [Google Scholar]
- Franus, W.; Panek, R.; Wdowin, M. SEM Investigation of Microstructures in Hydration Products of Portland Cement. In Proceedings of the NANOCON Conference, Voronezh, Russia, 14–16 October 2015; Polychroniadis, E.K., Oral, A.Y., Ozer, M., Eds.; Springer: Cham, Switzerland, 2015; pp. 105–112. [Google Scholar]
- Smarzewski, P.; Barnat-Hunek, D. Mechanical and durability related properties of high performance concrete made with coal cinder and waste foundry sand. Constr. Build. Mater. 2016, 121, 9–17. [Google Scholar] [CrossRef]
- Fic, S.B. Adhezja i Samoorganizacja Struktury Materiału w Tworzeniu Konstrukcji; Oficyna Wydawnicza Politechniki Rzeszowskiej: Rzeszów, Poland, 2019. [Google Scholar]
- Rudawska, A. Wybrane Zagadnienia Konstytuowania Połączeń Adhezyjnych Jednorodnych i Hybrydowych; Politechnika Lubelska: Lublin, Poland, 2013. [Google Scholar]
P | Na-A 15% | Na-A 35% | Na-A 50% | ZSM-5 15% | ZSM-5 35% | ZSM-5 50% | |
---|---|---|---|---|---|---|---|
CEM I 52.5R | 15.5 | 13.2 | 10.1 | 7.75 | 13.2 | 10.1 | 7.75 |
Synthetic zeolite | - | 2.3 | 5.4 | 7.75 | 2.3 | 5.4 | 7.75 |
Expanded clay | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 |
Hydrated lime | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Quartz sand 0–2 mm | 60.35 | 60.35 | 60.35 | 60.35 | 60.35 | 60.35 | 60.35 |
Zeolite clinoptilolite | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
Methylcellulose | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 |
Ethylene vinyl acetate copolymer | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Na-A (LTA) Three-dimensional channel system: 4.1 × 4.1 Å Si/Al ratio = 0.85 Pore volume—0.03 cm3/g Pore diameter—3.4 nm Specific surface area SBET = 11.9 [m2/g] | ZSM-5 (MFI) Three-dimensional channel system: 5.1 × 5.6 Å Si/Al = 90.00 Pore volume—0.1 cm3/g Pore diameter—3.2 nm Specific surface area SBET = 369.1 [m2/g] | |
(a) | ||
(b) | The synthesis was carried out using 0.5 dm3 of post-synthesis waste solution (ROZ), 1 dm3 of 1 M NaOH, and 10 g of aluminum foil, under the reaction temperature of 80 °C for 24 h. | The synthesis was carried out using 0.1 dm3 of post-synthesis waste solution (ROZ), 0.1 dm3 of a 3.5% aqueous solution of tetrapropylammonium bromide (TPABr), and 0.008 dm3 of 5 M sulfuric acid (VI), under the reaction temperature of 195 °C for 65 h. |
(c) |
Physical Characteristics | P | Na-A 15% | Na-A 35% | Na-A 50% | ZSM-5 15% | ZSM-5 35% | ZSM-5 50% |
---|---|---|---|---|---|---|---|
Distribution [mm] | 175 | 172 | 169 | 165 | 170 | 168 | 165 |
Density of fresh mortar [kg/m3] | 1435 | 1501 | 1508 | 1532 | 1510 | 1513 | 1542 |
Apparent density ρa [kg/m3] | 1307 | 1332 | 1311 | 1282 | 1321 | 1294 | 1280 |
Specific density ρ [kg/m3] | 2390 | 2380 | 2360 | 2328 | 2420 | 2430 | 2470 |
Tightness [%] | 0.54 | 0.56 | 0.55 | 0.55 | 0.54 | 0.53 | 0.51 |
Total porosity [%] | 44.0 | 45.0 | 45.4 | 46.4 | 45.4 | 47.7 | 51.9 |
Contents of pores in fresh air render [%] | 28.1 | 27.4 | 26.8 | 25.1 | 27 | 26.2 | 26.3 |
Factor water absorption [mm] | 31 | 32 | 36 | 45 | 34 | 40 | 70 |
Factor water absorption Cm [kg/m2] | 7.4 | 7.1 | 9.5 | 13.4 | 8.2 | 11.4 | 14.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Styczeń, J.; Majewski, J. Effect of Low- and High-Si/Al Synthetic Zeolites on the Performance of Renovation Plasters. Materials 2025, 18, 4710. https://doi.org/10.3390/ma18204710
Styczeń J, Majewski J. Effect of Low- and High-Si/Al Synthetic Zeolites on the Performance of Renovation Plasters. Materials. 2025; 18(20):4710. https://doi.org/10.3390/ma18204710
Chicago/Turabian StyleStyczeń, Joanna, and Jacek Majewski. 2025. "Effect of Low- and High-Si/Al Synthetic Zeolites on the Performance of Renovation Plasters" Materials 18, no. 20: 4710. https://doi.org/10.3390/ma18204710
APA StyleStyczeń, J., & Majewski, J. (2025). Effect of Low- and High-Si/Al Synthetic Zeolites on the Performance of Renovation Plasters. Materials, 18(20), 4710. https://doi.org/10.3390/ma18204710