Influence of Sc Microalloying and Low-Frequency Electromagnetic Casting on the Microstructure and Properties of As-Rolled 7A36 Aluminum Alloy
Abstract
1. Introduction
2. Experimental Section
2.1. Alloy Preparation
2.2. Characterizations and Testing
3. Results and Discussion
3.1. Macro and Microstructure of As-Rolled 7A36 Aluminum Alloy
3.2. Effects of Sc and LFEC on the Microstructure and Texture Evolution of As-Rolled 7A36 Aluminum Alloys
3.3. Effects of Sc and LFEC on the Mechanical Properties of As-Rolled and As-Aged 7A36 Aluminum Alloys
3.4. Effects of Sc and LFEC on the Corrosion Resistance As-Rolled 7A36 Aluminum Alloy
4. Conclusions
- After the secondary hot deformation of the 7A36 aluminum alloy, the transverse and longitudinal sections of the rolled plate showed delamination, with fine recrystallized grains at the edges and a fibrous structure at the core. After the addition of Sc, the average grain size decreased from 3.8 to 0.9 mm, the content of small-angle grain boundaries increased, and the content of deformed texture decreased. Among them, the content of Brass texture decreased from 17.3% to 10.4%. The S and R textures decreased from 27.2% and 19.6% to 8.9% and 8.1%, respectively.
- After hot rolling and solution aging treatment, the hardness of the rolled plates increased. In the T6 aging state, the hardness of the alloy increased from 234 HV to 238 HV when Sc was added and a low-frequency electromagnetic field was applied. After the double-stage aging treatment, the hardness of the alloy decreased. However, after the regression and re-aging processes, the hardness increased again. The variation patterns of the EC and hardness were opposite.
- The addition of Sc and the application of low-frequency electromagnetic fields enhanced the strength and elongation of the 7A36 aluminum alloy. In the peak aging state, the tensile strength of the alloy increased from 647 MPa to 693 MPa. The fracture modes were all brittle fractures, mainly cleavage fractures, mixed with a small number of intergranular fractures.
- The heat treatment state significantly affects the corrosion resistance of the rolled plates. The corrosion resistance of the plates was the worst in the rolled state and the best in the double-stage aging state. In the two-stage aging state, the maximum corrosion depth of the 7A36 aluminum alloy with added Sc and an applied low-frequency electromagnetic field decreased from 113.6 μm to 49.1 μm.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dai, Y.; Yan, L.; Hao, J. Review on Micro-Alloying and Preparation Method of 7xxx Series Aluminum Alloys: Progresses and Prospects. Materials 2022, 15, 1216. [Google Scholar] [CrossRef] [PubMed]
- Li, S.S.; Yue, X.; Li, Q.Y.; Peng, H.L.; Dong, B.X.; Liu, T.S.; Yang, H.Y.; Fan, J.; Shu, S.L.; Qiu, F.; et al. Development and applications of aluminum alloys for aerospace industry. J. Mater. Res. Technol. 2023, 27, 944–983. [Google Scholar] [CrossRef]
- Li, H.X.; Bai, Q.L.; Li, Y.; Du, Q.; Katgerman, L.; Zhang, J.S.; Zhuang, L.Z. Mechanical properties and cold cracking evaluations of four 7××× series aluminum alloys using a newly developed index. Mater. Sci. Eng. A 2017, 698, 230–237. [Google Scholar] [CrossRef]
- Shin, S.-S.; Lim, K.-M.; Park, I.-M. Effects of high Zn content on the microstructure and mechanical properties of Al–Zn–Cu gravity-cast alloys. Mater. Sci. Eng. A 2017, 679, 340–349. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, D.; Zhang, W.; Qiu, C.; Liang, G.; Chen, J. Microstructure and mechanical properties of a rapidly-solidified and extruded Al-13.2Zn-2.5Mg −1.2Cu-0.2Zr alloy and its aging hardening response at 120 °C. Mater. Sci. Eng. A 2021, 826, 141969. [Google Scholar] [CrossRef]
- Jeon, J.; Lee, S.; Jeon, J.; Kang, M.; Kang, H. The Influence of As-Cast Grain Size on the Formation of Recrystallized Grains and the Related Mechanical Properties in Al–Zn–Mg–Cu-Based Alloy Sheets. Materials 2024, 17, 5267. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Guo, M.; Wang, Y.; Wang, Y.; Zhuang, L. Synergistic effect of gradient Zn content and multiscale particles on the mechanical properties of Al–Zn–Mg–Cu alloys with coupling distribution of coarse–fine grains. Int. J. Miner. Metall. Mater. 2024, 31, 1392–1405. [Google Scholar] [CrossRef]
- Balasubramani, N.; Venezuela, J.; StJohn, D.; Wang, G.; Dargusch, M. A review of the origin of equiaxed grains during solidification under mechanical stirring, vibration, electromagnetic, electric-current, and ultrasonic treatments. J. Mater. Sci. Technol. 2023, 144, 243–265. [Google Scholar] [CrossRef]
- Zou, J.; Zhang, H.; Qiao, X.; Wu, Z.; Wang, L.; Li, Y.; Nagaumi, H.; Li, B.; Cui, J. Research on grain refinement and its mechanism of pure aluminum under a novel permanent magnet stirring. J. Mater. Res. Technol. 2021, 15, 5894–5905. [Google Scholar] [CrossRef]
- Zou, Y.; Wu, X.; Tang, S.; Zhu, Q.; Song, H.; Guo, M.; Cao, L. Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg ratios. J. Mater. Sci. Technol. 2021, 85, 106–117. [Google Scholar] [CrossRef]
- Zhang, H.; Nan, Y.; Guo, C.; Cui, J. Age hardening and intergranular corrosion behavior of new type Al-4.5Mg-0.6Zn-0.5Cu-XAg(wt%) alloy. J. Alloys Compd. 2022, 910, 164767. [Google Scholar] [CrossRef]
- Peng, X.; Li, Y.; Liang, X.; Guo, Q.; Xu, G.; Peng, Y.; Yin, Z. Precipitate behavior and mechanical properties of enhanced solution treated Al-Zn-Mg-Cu alloy during non-isothermal ageing. J. Alloys Compd. 2018, 735, 964–974. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, R.; Li, R.; Liu, Y.; Bai, S.; Zhao, X.; Sang, J.; Huang, J.; Liu, C.; Liu, X.; et al. Effect of Trace Er Addition on the Microstructural Evolution and Heat Resistance Properties of an Al-Zn-Mg-Cu Alloy During High Temperature Tensile and Thermal Exposure. Coatings 2025, 15, 368. [Google Scholar] [CrossRef]
- Li, L.; Tang, J.; Liu, Z.; Wang, Y.; Jiang, Y.; Sha, G. Micro-alloying effects of Ni on the microstructure and mechanical properties of an Al-Zn-Mg-Cu-Sc-Zr alloy. J. Alloys Compd. 2023, 947, 169667. [Google Scholar] [CrossRef]
- Fan, C.; Li, Y.; Wu, Q.; Yang, J.; Hu, Z.; Ni, Y.; Ding, L. Effect of cold rolling deformation on the microstructure and mechanical properties of spray-formed Al-Zn–Mg–Cu alloy. J. Mater. Res. 2024, 39, 471–479. [Google Scholar] [CrossRef]
- Wang, W.; Pan, Q.; Wang, X.; Ye, J.; Huang, Z.; Xiang, S.; Liu, B. Effect of laser shock peening on corrosion behaviors of ultra-high strength Al-Zn-Mg-Cu alloys prepared by spray forming and ingot metallurgy. Corros. Sci. 2022, 205, 110458. [Google Scholar] [CrossRef]
- Zhao, Z.-H.; Xu, Z.; Wang, G.-S.; Zhu, Q.-F.; Cui, J.-Z. As-cast structure of DC casting 7075 aluminum alloy obtained under dual-frequency electromagnetic field. Int. J. Miner. Metall. Mater. 2014, 21, 150–154. [Google Scholar] [CrossRef]
- Wang, F.; Wang, N.; Yu, F.; Wang, X.; Cui, J. Study on micro-structure, solid solubility and tensile properties of 5A90 Al–Li alloy cast by low-frequency electromagnetic casting processing. J. Alloys Compd. 2020, 820, 153318. [Google Scholar] [CrossRef]
- Yang, L.; Yu, F.; Chen, C.; Song, Z.; Xu, Y.; Chen, C.; Song, D.; He, G.; Cui, J.; Wang, X. Study on microstructure evolution, three-point bending behavior and mechanical properties of 6005 A alloy by low-frequency electromagnetic casting. Mater. Today Commun. 2025, 45, 112211. [Google Scholar] [CrossRef]
- Won, S.-J.; So, H.; Han, J.-W.; Oh, S.J.; Kang, L.; Kim, K.-H. Effects of Sc and Be Microalloying Elements on Mechanical Properties of Al-Zn-Mg-Cu (Al7xxx) Alloy. Metals 2023, 13(2), 340. [Google Scholar] [CrossRef]
- Sun, Y.; Luo, Y.; Pan, Q.; Liu, B.; Long, L.; Wang, W.; Ye, J.; Huang, Z.; Xiang, S. Effect of Sc content on microstructure and properties of Al-Zn-Mg-Cu-Zr alloy. Mater. Today Commun. 2021, 26, 101899. [Google Scholar] [CrossRef]
- Li, B.; Pan, Q.; Chen, C.; Wu, H.; Yin, Z. Effects of solution treatment on microstructural and mechanical properties of Al–Zn–Mg alloy by microalloying with Sc and Zr. J. Alloys Compd. 2016, 664, 553–564. [Google Scholar] [CrossRef]
- Yang, L.; Chen, C.; Yu, F.; Chen, C.; Liu, J.; Wang, Z.; Wang, X.; Cui, J. Coordinated deformation and high formability mechanisms of 7A36 aluminum alloy by Sc micro-alloying and low-frequency electromagnetic casting. J. Mater. Res. Technol. 2023, 24, 5186–5201. [Google Scholar] [CrossRef]
- Yang, L.; Yu, F.; Chen, C.; Xu, Y.; Song, Z.; Cui, J.; Wang, X. Bendability and ductility enhancement of 7A36 alloys through adding Sc and applying LFEC with a rapid solid solution heating rate treatment. J. Mater. Sci. 2023, 58, 13831–13853. [Google Scholar] [CrossRef]
- Yang, L.; Yu, F.; Chen, C.; Xu, Y.; Song, Z.; Cui, J.; Wang, X. Synergetic Effect of Sc Micro-alloying and Low-Frequency Electromagnetic Casting in 7A36 Aluminum Alloy with Enhanced Mechanical and Corrosion Properties. Met. Mater. Int. 2024, 30, 2110–2126. [Google Scholar] [CrossRef]
- GB/T 228.1-2010; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. Standards Press of China: Beijing, China, 2010.
- GB/T 7998-2005; Test Method for Intergranular Corrosion of Aluminium Alloy. Standards Press of China: Beijing, China, 2005.
- Hu, H.E.; Zhen, L.; Zhang, B.Y.; Yang, L.; Chen, J.Z. Microstructure characterization of 7050 aluminum alloy during dynamic recrystallization and dynamic recovery. Mater. Charact. 2008, 59, 1185–1189. [Google Scholar] [CrossRef]
- Deng, Y.; Xu, G.; Yin, Z.; Lei, X.; Huang, J. Effects of Sc and Zr microalloying additions on the recrystallization texture and mechanism of Al-Zn-Mg alloys. J. Alloys Compd. 2013, 580, 412–426. [Google Scholar] [CrossRef]
- Fuller, C.B.; Murray, J.L.; Seidman, D.N. Temporal evolution of the nanostructure of Al(Sc, Zr) alloys: Part I—Chemical compositions of Al3(Sc1−xZrx) precipitates. Acta Mater. 2005, 53, 5401–5413. [Google Scholar] [CrossRef]
- Cheng, J.; Shao, H.; Wen, J.; Liu, Y.; Huang, Y.; Huang, Y. Effect of extrusion ratio on microstructure evolution and mechanical properties of ultra-high strength Al-Zn-Mg-Cu-Zr-Sc alloy. Mater. Sci. Eng. A 2025, 925, 147903. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Liao, X.Z.; Jin, Z.; Valiev, R.Z.; Zhu, Y.T. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Mater. 2004, 52, 4589–4599. [Google Scholar] [CrossRef]
- Zuo, Y.; Cui, J.; Zhao, Z.; Zhang, H.; Li, L.; Zhu, Q. Mechanism of grain refinement of an Al–Zn–Mg–Cu alloy prepared by low-frequency electromagnetic casting. J. Mater. Sci. 2012, 47, 5501–5508. [Google Scholar] [CrossRef]
- Zuo, Y.; Nagaumi, H.; Cui, J. Study on the sump and temperature field during low frequency electromagnetic casting a superhigh strength Al-Zn-Mg-Cu alloy. J. Mater. Process. Technol. 2008, 197, 109–115. [Google Scholar] [CrossRef]
- Cheng, Q.; Ye, L.; Huang, Q.; Dong, Y.; Liu, S. Effect of two-stage overaging on microstructure and corrosion properties of an Al-Zn-Mg-Cu alloy. J. Mater. Res. Technol. 2022, 20, 3185–3194. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H.; Huang, R.; Sun, P.; Zheng, S.; Li, M.; Wang, X.; Du, Q. Investigation of microstructure and corrosion resistance of an Al-Zn-Mg-Cu alloy under various ageing conditions. Corros. Sci. 2024, 227, 111719. [Google Scholar] [CrossRef]
- Deng, Y.; Yin, Z.; Zhao, K.; Duan, J.; Hu, J.; He, Z. Effects of Sc and Zr microalloying additions and aging time at 120 °C on the corrosion behaviour of an Al-Zn-Mg alloy. Corros. Sci. 2012, 65, 288–298. [Google Scholar] [CrossRef]
- Lu, Z.; Jiang, Y.; Xu, J.; Yu, L.; Zhang, H. Effects of Sc microalloying on mechanical properties and corrosion resistance of FSW joints of spray formed 7055 aluminum alloy. Mater. Charact. 2025, 220, 114633. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, Y.; Yang, H.; Zhang, L.; Zheng, S.; Li, M. Effect of non-isothermal retrogression and re-aging treatment on microstructure evolution and mechanical properties of Al-Zn-Mg-Cu alloy. J. Mater. Res. Technol. 2024, 31, 1728–1743. [Google Scholar] [CrossRef]













| Alloy | Zn | Mg | Cu | Zr | Mn | Ti | Si | Fe | Sc | Al |
|---|---|---|---|---|---|---|---|---|---|---|
| A1 | 11.413 | 2.593 | 1.092 | 0.138 | 0.006 | 0.015 | 0.245 | 0.014 | - | Bal |
| A2 | 11.620 | 2.501 | 1.070 | 0.129 | 0.005 | 0.010 | 0.247 | 0.013 | 0.012 | Bal |
| A3 | 11.350 | 2.571 | 1.041 | 0.130 | 0.005 | 0.010 | 0.250 | 0.013 | 0.013 | Bal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Yang, L.; Liu, J.; Shao, W.; Wang, X. Influence of Sc Microalloying and Low-Frequency Electromagnetic Casting on the Microstructure and Properties of As-Rolled 7A36 Aluminum Alloy. Materials 2025, 18, 4899. https://doi.org/10.3390/ma18214899
Liu H, Yang L, Liu J, Shao W, Wang X. Influence of Sc Microalloying and Low-Frequency Electromagnetic Casting on the Microstructure and Properties of As-Rolled 7A36 Aluminum Alloy. Materials. 2025; 18(21):4899. https://doi.org/10.3390/ma18214899
Chicago/Turabian StyleLiu, Honglei, Lingfei Yang, Jiangpeng Liu, Wenzhu Shao, and Xiangjie Wang. 2025. "Influence of Sc Microalloying and Low-Frequency Electromagnetic Casting on the Microstructure and Properties of As-Rolled 7A36 Aluminum Alloy" Materials 18, no. 21: 4899. https://doi.org/10.3390/ma18214899
APA StyleLiu, H., Yang, L., Liu, J., Shao, W., & Wang, X. (2025). Influence of Sc Microalloying and Low-Frequency Electromagnetic Casting on the Microstructure and Properties of As-Rolled 7A36 Aluminum Alloy. Materials, 18(21), 4899. https://doi.org/10.3390/ma18214899

