Ternary Synergistic Electrolyte Enabling Stable Li-Ion Battery Operation Across −40 °C to 60 °C
Abstract
1. Introduction
2. Experimental Sections
2.1. Materials
2.2. Preparation of Electrolyte and Electrode
2.3. Preparation of LFP|Gr Pouch Cell
2.4. Electrochemical Measurement
2.5. Characterization
3. Results and Discussion
3.1. Electrolyte Design and Physicochemical Properties
3.2. Solvation Environment Characterization
3.3. Electrochemical Performance
3.4. Electrode/Electrolyte Interphase
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Q.; Wang, L. Fundamentals of Electrolyte Design for Wide-Temperature Lithium Metal Batteries. Adv. Energy Mater. 2023, 13, 2301742. [Google Scholar] [CrossRef]
- Chen, L.; Wu, H.; Ai, X.; Cao, Y.; Chen, Z. Toward Wide-Temperature Electrolyte for Lithium–Ion Batteries. Battery Energy 2022, 1, 20210006. [Google Scholar] [CrossRef]
- Li, Q.; Jiao, S.; Luo, L.; Ding, M.S.; Zheng, J.; Cartmell, S.S.; Wang, C.-M.; Xu, K.; Zhang, J.-G.; Xu, W. Wide-Temperature Electrolytes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 18826–18835. [Google Scholar] [CrossRef]
- Li, Q.; Liu, G.; Cheng, H.; Sun, Q.; Zhang, J.; Ming, J. Low-Temperature Electrolyte Design for Lithium-Ion Batteries: Prospect and Challenges. Chem.-Eur. J. 2021, 27, 15842–15865. [Google Scholar] [CrossRef]
- Hubble, D.; Emory Brown, D.; Zhao, Y.; Fang, C.; Lau, J.D.; McCloskey, B.; Liu, G. Liquid Electrolyte Development for Low-Temperature Lithium-Ion Batteries. Energy Environ. Sci. 2022, 15, 550–578. [Google Scholar] [CrossRef]
- Tan, S.; Shadike, Z.; Cai, X.; Lin, R.; Kludze, A.; Borodin, O.; Lucht, B.L.; Wang, C.; Hu, E.; Xu, K.; et al. Review on Low-Temperature Electrolytes for Lithium-Ion and Lithium Metal Batteries. Electrochem. Energy Rev. 2023, 6, 35. [Google Scholar] [CrossRef]
- Li, R.; Wang, L.; Qu, Y.; Su, C.; Ma, Y.; Jiang, W.; Li, B.; Jian, X.; Hu, F. Enhancing Wide-Temperature Performance of Lithium Batteries with a LiFSI-KFSI Dual-Salt Electrolyte. Small 2025, 21, 2502592. [Google Scholar] [CrossRef]
- Logan, E.R.; Eldesoky, A.; Eastwood, E.; Hebecker, H.; Aiken, C.P.; Metzger, M.; Dahn, J.R. The Use of LiFSI and LiTFSI in LiFePO4/Graphite Pouch Cells to Improve High-Temperature Lifetime. J. Electrochem. Soc. 2022, 169, 040560. [Google Scholar] [CrossRef]
- Meng, T.; Yang, S.; Peng, Y.; Li, P.; Ren, S.; Yun, X.; Hu, X. Solvent Descriptors Guided Wide-Temperature Electrolyte Design for High-Voltage Lithium-Ion Batteries. Adv. Energy Mater. 2025, 15, 2404009. [Google Scholar] [CrossRef]
- Fan, X.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F.; Yue, J.; Piao, N.; Wang, R.; Zhou, X.; et al. All-Temperature Batteries Enabled by Fluorinated Electrolytes with Non-Polar Solvents. Nat. Energy 2019, 4, 882–890. [Google Scholar] [CrossRef]
- You, L.; Duan, K.; Zhang, G.; Song, W.; Yang, T.; Song, X.; Wang, S.; Liu, J. N,N-Dimethylformamide Electrolyte Additive Via a Blocking Strategy Enables High-Performance Lithium-Ion Battery under High Temperature. J. Phys. Chem. C 2019, 123, 5942–5950. [Google Scholar] [CrossRef]
- Lan, X.; Yang, S.; Meng, T.; Zhang, C.; Hu, X. A Multifunctional Electrolyte Additive With Solvation Structure Regulation and Electrode/Electrolyte Interface Manipulation Enabling High-Performance Li-Ion Batteries in Wide Temperature Range. Adv. Energy Mater. 2023, 13, 2203449. [Google Scholar] [CrossRef]
- Wang, Z.; Han, R.; Huang, D.; Wei, Y.; Song, H.; Liu, Y.; Xue, J.; Zhang, H.; Zhang, F.; Liu, L.; et al. Co-intercalation-free ether-based weakly solvating electrolytes enable fast-charging and wide-temperature lithium-ion batteries. ACS Nano 2023, 17, 18103–18113. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, Z.; Yin, Y.; Cao, Y.; Wang, Y.; Dong, X.; Xia, Y. Synergy of weakly-solvated electrolyte and optimized interphase enables graphite anode charge at low temperature. Angew. Chem. Int. Ed. 2022, 61, e202208345. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Lin, W.; Zhang, Y.; Yang, J.; Li, Z.; Ren, Y.; Wang, D.; Huang, Y.; Yuan, L. A weakly solvating ether electrolyte ena-bles fast-charging and wide-temperature lithium-ion pouch cells. ACS Nano 2024, 18, 20762–20771. [Google Scholar] [CrossRef]
- Li, Z.; Yao, Y.X.; Zheng, M.; Sun, S.; Yang, Y.; Xiao, Y.; Xu, X.; Jin, C.-B.; Yue, X.-Y.; Song, T.; et al. Electrolyte design enables rechargeable LiFePO4/graphite batteries from −80 °C to 80 °C. Angew. Chem. Int. Ed. 2025, 137, e202409409. [Google Scholar] [CrossRef]
- Cheng, H.; Sun, Q.; Li, L.; Zou, Y.; Wang, Y.; Cai, T.; Zhao, F.; Liu, G.; Ma, Z.; Wahyudi, W.; et al. Emerging Era of Electrolyte Solvation Structure and Interfacial Model in Batteries. ACS Energy Lett. 2022, 7, 490–513. [Google Scholar] [CrossRef]
- Tian, Z.; Zou, Y.; Liu, G.; Wang, Y.; Yin, J.; Ming, J.; Alshareef, H.N. Electrolyte Solvation Structure Design for Sodium Ion Batteries. Adv. Sci. 2022, 9, 2201207. [Google Scholar] [CrossRef]
- Lee, S.-I.; Jung, U.-H.; Kim, Y.-S.; Kim, M.-H.; Ahn, D.-J.; Chun, H.-S. A Study of Electrochemical Kinetics of Lithium Ion in Organic Electrolytes. Korean J. Chem. Eng. 2002, 19, 638–644. [Google Scholar] [CrossRef]
- Zhou, P.; Xiang, Y.; Liu, K. Understanding and Applying the Donor Number of Electrolytes in Lithium Metal Batteries. Energy Environ. Sci. 2024, 17, 8057–8077. [Google Scholar] [CrossRef]
- Li, L.; Lv, W.; Chen, J.; Zhu, C.; Dmytro, S.; Zhang, Q.; Zhong, S. Lithium Difluorophosphate (LiPO2F2): An Electrolyte Additive to Help Boost Low-Temperature Behaviors for Lithium-Ion Batteries. ACS Appl. Energy Mater. 2022, 5, 11900–11914. [Google Scholar] [CrossRef]
- Chen, L.; Lu, J.; Wang, Y.; He, P.; Huang, S.; Liu, Y.; Wu, Y.; Cao, G.; Wang, L.; He, X.; et al. Double-Salt Electrolyte for Li-Ion Batteries Operated at Elevated Temperatures. Energy Storage Mater. 2022, 49, 493–501. [Google Scholar] [CrossRef]
- Petzl, M.; Kasper, M.; Danzer, M.A. Lithium Plating in a Commercial Lithium-Ion Battery—A Low-Temperature Aging Study. J. Power Sources 2015, 275, 799–807. [Google Scholar] [CrossRef]
- Zhang, G.; Wei, X.; Han, G.; Dai, H.; Zhu, J.; Wang, X.; Tang, X.; Ye, J. Lithium Plating on the Anode for Lithium-Ion Batteries during Long-Term Low Temperature Cycling. J. Power Sources 2021, 484, 229312. [Google Scholar] [CrossRef]









| Abbreviation | Formulation | Ionic Conductivity |
|---|---|---|
| Baseline | 1 M LiPF6 in EC:EMC:DMC (v:v:v = 1:1:1) | 9.04 mS cm−1 |
| MA | 1 M LiFSI in MA:EC:EMC (v:v:v = 1:1:1) + 0.5 wt.% LiDFP | 16.5 mS cm−1 |
| MP | 1 M LiFSI in MP:EC:EMC (v:v:v = 1:1:1) + 0.5 wt.% LiDFP | 5.73 mS cm−1 |
| EA | 1 M LiFSI in EA:EC:EMC (v:v:v = 1:1:1) + 0.5 wt.% LiDFP | 14.31 mS cm−1 |
| EP | 1 M LiFSI in EP:EC:EMC (v:v:v = 1:1:1) + 0.5 wt.% LiDFP | 10.28 mS cm−1 |
| EB | 1 M LiFSI in EB:EC:EMC (v:v:v = 1:1:1) + 0.5 wt.% LiDFP | 7.69 mS cm−1 |
| DFEA | 1 M LiFSI in DFEA:EC:EMC (v:v:v = 1:1:1) + 0.5 wt.% LiDFP | 7.34 mS cm−1 |
| TFEA | 1 M LiFSI in TFEA:EC:EMC (v:v:v = 1:1:1) + 0.5 wt.% LiDFP | 7.18 mS cm−1 |
| Reference | Electrolyte | Ionic Conductivity (mS cm−1) | Full Cell | Mass Loading (mg cm−2) | Room Temperature Discharge Capacity (mAh g−1) | Low Temperature Discharge Capacity (mAh g−1) | Low Temperature Cycle Performance | High Temperature Discharge Capacity (mAh g−1) | High Temperature Cycle Performance |
|---|---|---|---|---|---|---|---|---|---|
| [16] | LiFSI in MP/FEC (9/1) | 3.1 (−60 °C) | Gr/LFP (coin cell) | 10.5 | 125 (2C) | 78 (−30 °C, 0.1C) | 70 (−30 °C, 0.1C, 100th) | 130 (60 °C, 0.1C) 115 (80 °C, 0.4C) | / |
| [14] | LiTFSI in ETFA/FEC (7/3) | 0.1 (−70 °C) | Gr/LFP (coin cell) | 2.5–4.5 | 115 (2C) | ~90 (−30 °C, 0.1C); ~43 (−60 °C, 0.1C) | / | / | / |
| [15] | LiFSI in THP | / | Gr/LFP (pouch cell) | / | 2.9 Ah (2C) | 2.25 Ah (−20 °C, 1C) | / | 3 Ah (60 °C, 1C) | / |
| [13] | LiTFSI in CPME/FEC (7/3) | 2.23 (25 °C) | Gr/LFP (pouch cell) | / | 0.32 Ah (1C) | 0.27 Ah (−20 °C, 1C) 0.2 Ah (−40 °C, 0.1C) 0.1 Ah (−60 °C, 0.1C) | / | / | / |
| This work | ACE | 6.43 (−40 °C) | Gr/LFP (coin/pouch cell) | 20 | 143 (25 °C, 1C) 1.77 Ah (25 °C, 1C) | 122 (0 °C, 1C) 108 (−20 °C, 0.1C) 93 (−40 °C, 0.1C) 1.17 Ah (0 °C, 1C) 0.84 Ah (−20 °C, 1C) | 112 (0 °C, 0.1C, 500th) 1.25 Ah (0 °C, 0.1C, 100th) | 165 (60 °C, 0.1C) 147 (45 °C, 1C) 1.85Ah (45 °C, 1C) | 115 (45 °C, 1C, 500th) 1.74 Ah (45 °C, 1C, 100th) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Liu, Y.; Liu, J.; Ying, D.; Gong, X.; Xie, L.; Guo, X.; Yao, C.; Chen, B.; Wu, C. Ternary Synergistic Electrolyte Enabling Stable Li-Ion Battery Operation Across −40 °C to 60 °C. Materials 2025, 18, 4803. https://doi.org/10.3390/ma18204803
Zhao Y, Liu Y, Liu J, Ying D, Gong X, Xie L, Guo X, Yao C, Chen B, Wu C. Ternary Synergistic Electrolyte Enabling Stable Li-Ion Battery Operation Across −40 °C to 60 °C. Materials. 2025; 18(20):4803. https://doi.org/10.3390/ma18204803
Chicago/Turabian StyleZhao, Yali, Yutao Liu, Jingju Liu, Daofa Ying, Xuanlin Gong, Linjin Xie, Xiaohan Guo, Caiyun Yao, Baohui Chen, and Chuanping Wu. 2025. "Ternary Synergistic Electrolyte Enabling Stable Li-Ion Battery Operation Across −40 °C to 60 °C" Materials 18, no. 20: 4803. https://doi.org/10.3390/ma18204803
APA StyleZhao, Y., Liu, Y., Liu, J., Ying, D., Gong, X., Xie, L., Guo, X., Yao, C., Chen, B., & Wu, C. (2025). Ternary Synergistic Electrolyte Enabling Stable Li-Ion Battery Operation Across −40 °C to 60 °C. Materials, 18(20), 4803. https://doi.org/10.3390/ma18204803
