Robocasting as an Additive Manufacturing Method for Oxide Ceramics: A Study of Mechanical Properties and Microstructure
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Three-Point Bending Strength Testing
2.3. Compressive Strength Testing
2.4. Microstructural Analysis
- two solid specimens formed by robocasting and pressureless sintered, designated SC (solid cylinder);
- five ceramic filters, examined at different locations across the transverse cross-section—top (FT), middle (FM), bottom (FB), and side (FS); see Figure 6—in backscattered electron (BSE) and secondary electron (SEI) modes, at an accelerating voltage of 10 kV and magnifications in the range of 50–1000×. In addition, macrographs of selected filter regions were acquired at 50× in SEI mode.
2.5. Hardness Testing
2.6. Phase Composition Analysis
2.7. Density Determination
- ρo—apparent density of the material [g/cm3],
- m1—dry mass of the specimen [g],
- m2—apparent (buoyant) mass of the immersed specimen in the liquid [g],
- m3—mass of the specimen saturated with the liquid, [g],
- ρl—density of the liquid used for weighing [g/cm3].
2.8. Young’s Modulus Determination
- E—Young’s modulus [GPa],
- CL—longitudinal wave velocity [km/s],
- CT—transverse (shear) wave velocity [km/s],
- p—material density [g/cm3].
3. Results
3.1. Phase Composition Analysis
3.2. Young’s Modulus and Density Determination
3.3. Microstructural Analysis
3.4. Hardness Testing
3.5. Three-Point Bending Strength Testing
3.6. Compressive Strength Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DIW | direct ink writing |
Al2O3 | aluminum oxide |
ZrO2 | zirconium oxide |
Y2O3 | yttrium oxide |
SiO2 | silicon dioxide |
TiO2 | titanium dioxide |
AM | additive manufacturing |
BJ | binder jetting |
SLA | stereolithography |
SEM | scanning electron microscopy |
XRD | X-ray diffraction |
SB | solid bar |
SBL | solid par perpendicular force |
SBII | solid bar parallel force |
FT | filter top |
FM | filter middle |
FB | filter bottom |
FS | filter side |
BSE | backscattered-electron imaging |
SEI | secondary-electron imaging |
CIM | ceramic injection molding |
FP40 | filter platen (40 mm) |
FP22 | filter platen (22 mm) |
Appendix A
References
- Zhu, Z.; Liu, Y.; Qin, Y.; Gu, F.; Zhuang, L.; Yu, H.; Chu, Y. Tough and strong bioinspired high-entropy all-ceramics with a contiguous network structure. Nat. Commun. 2025, 16, 4587. [Google Scholar]
- Ramachandran, K.; Bear, C.J.; Jayaseelan, D.D. Oxide-Based Ceramic Matrix Composites for High-Temperature Environments: A Review. Adv. Eng. Mater. 2025, 27, 2402000. [Google Scholar] [CrossRef]
- Sheinerman, A.G. Model of enhanced flexural strength of ceramics at elevated temperatures. Mech. Mater. 2025, 208, 105398. [Google Scholar] [CrossRef]
- Volosova, M.A.; Okunkova, A.A.; Kropotkina, E.Y.; Mustafaev, E.S.; Gkhashim, K.I. Wear Resistance of Ceramic Cutting Inserts Using Nitride Coatings and Microtexturing by Electrical Discharge Machining. Eng 2025, 6, 11. [Google Scholar] [CrossRef]
- Varga, M.; Grundtner, R.; Maj, M.; Tatzgern, F.; Alessio, K.O. Impact-abrasive wear resistance of high alumina ceramics and ZTA. Wear 2023, 522, 204700. [Google Scholar] [CrossRef]
- Wu, T.; Li, Y.; Liu, G.; Zhao, H.; Wu, B. Effect of Yb2O3 and Tm2O3 on the wear resistance of high-alumina ceramics. Wear 2020, 452–453, 203281. [Google Scholar]
- Jeon, J.Y.; Ha, S.J.; Cha, H.A.; Kim, J.H.; Ahn, C.W.; Choi, J.J.; Hahn, B.-D.; Bae, S.-H.; Moon, Y.K. Engineering oxide ceramic fillers for thermal interface materials: Enhanced thermal conductivity and thixotropy through hydrophobated MgO/PDMS composite materials. Adv. Compos. Hybrid Mater. 2025, 8, 248. [Google Scholar] [CrossRef]
- Sun, Y.; Li, S.; Zhao, Q.; Cong, Z.; Xia, Y.; Jiao, X.; Chen, D. Recent Advancements in Alumina-Based High-Temperature Insulating Materials: Properties, Applications, and Future Perspectives. High-Temp. Mater. 2025, 2, 10001. [Google Scholar] [CrossRef]
- Kamutzki, F.; Schneider, S.; Barowski, J.; Gurlo, A.; Hanaor, D.A.H. Silicate dielectric ceramics for millimetre wave applications. J. Eur. Ceram. Soc. 2021, 41, 3879–3894. [Google Scholar] [CrossRef]
- Guo, P.; Su, L.; Jia, S.; Dai, Z.; Ni, Z.; Guo, J.; Wang, X.; Peng, K.; Wang, H. High-strength and damage-resistant ceramic nanowire Bouligand Architectures. Chem. Eng. J. 2025, 514, 162817. [Google Scholar] [CrossRef]
- Ćurković, L.; Žmak, I. Mechanical Properties and Applications of Advanced Ceramics. Materials 2024, 17, 3143. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, Y.; Koutná, N.; Gao, Z.; Sangiovanni, D.G.; Fellner, S.; Haberfehlner, G.; Jin, S.; Mayrhofer, P.H.; Kothleitner, G.; et al. Large mechanical properties enhancement in ceramics through vacancy-mediated unit cell disturbance. Nat. Commun. 2023, 14, 8387. [Google Scholar] [CrossRef]
- Lei, Z.; Ding, Y.; Ju, X.; Wang, Q.; Peng, Y.; Chen, M. Integrated cold sintering of ceramic circuit substrate for power device packaging. Ceram. Int. 2025, 51, 17870–17878. [Google Scholar] [CrossRef]
- Cho, H.S.; Kim, S.H.; Kim, H.N.; Kim, M.-J.; Ko, J.-W.; Lee, J.-W.; Park, Y.-J.; Kim, J.-H.; Lee, H.-C.; Yoon, S.-Y.; et al. Microstructural evolution and plasma etching resistance of Y2O3-YAM composite layers sinter-bonded on Al2O3 substrate for semiconductor processing equipment. Ceram. Int. 2025, 51, 39476–39485. [Google Scholar] [CrossRef]
- Tang, B.; Shi, Y.; Li, J.; Tang, J.; Feng, Q. Design, Simulation, and Fabrication of Multilayer Al2O3 Ceramic Micro-Hotplates for High Temperature Gas Sensors. Sensors 2022, 22, 6778. [Google Scholar] [CrossRef]
- Yatoo, M.A.; Habib, F.; Malik, A.H.; Qazi, M.J.; Ahmad, S.; Ganayee, M.A.; Ahmad, Z. Solid-oxide fuel cells: A critical review of materials for cell components. MRS Commun. 2023, 13, 378–384. [Google Scholar] [CrossRef]
- Li, J.; Xu, Q.; Dou, A.; Shah, M.Y.; Rauf, S.; Mushtaq, N.; Khalid, M.; Akbar, N.; Yousaf, M.; Lu, Y. Advanced composite electrolyte membranes for enhanced ionic conduction in ceramic fuel cells. Renew. Energy 2025, 243, 122550. [Google Scholar] [CrossRef]
- Stefan, A.; Manoliu, V.; Cristea, G.C. Zirconia-Based Thermal Barrier Coatings Systems for Aero-Industry. In Ceramic Coatings for High-Temperature Environments. Engineering Materials; Pakseresht, A., Amirtharaj Mosas, K.K., Eds.; Springer: Cham, Switzerland, 2024; Volume 1, pp. 151–177. [Google Scholar]
- Phokobye, S.N.; Desai, D.A.; Tlhabadira, I.; Sadiku, R.E.; Daniyan, I.A. Comparative analysis of the cutting performances of SiAlON ceramic, cubic boron nitride and carbide cutting tools for titanium machining. Int. J. Adv. Manuf. Technol. 2023, 128, 3775–3786. [Google Scholar] [CrossRef]
- Guo, S.; Zhu, F.; Xiu, Z.; Zhang, M.; Sun, X. Enhanced Performance in Si3N4 Ceramics Cutting Tool Materials by Tailoring of Phase Composition and Hot-Pressing Temperature. Coatings 2023, 13, 475. [Google Scholar] [CrossRef]
- Su, B.; Lu, C.; Li, C. Current Status of Research on Hybrid Ceramic Ball Bearings. Machines 2024, 12, 510. [Google Scholar] [CrossRef]
- Almasri, D.; Manawi, Y.; Makki, S.; Tasneem, N.; Simson, S.; Abdel-Hadi, I.; Agcaoili, J.; Lawler, J.; Kochkodan, V. A novel, low-cost clay ceramic membrane for the separation of oil-water emulsions. Sci. Rep. 2025, 15, 14457. [Google Scholar] [CrossRef]
- Islam, A.; Raghupathy, B.P.C.; Sivakumaran, M.V.; Keshri, A.K. Ceramic membrane for water filtration: Addressing the various concerns at once. Chem. Eng. J. 2022, 446, 137386. [Google Scholar] [CrossRef]
- Hang, F.; Xu, H.; Xie, C.; Li, K.; Wen, T.; Meng, L. Pretreatment of Glucose–Fructose Syrup with Ceramic Membrane Ultrafiltration Coupled with Activated Carbon. Membranes 2024, 14, 57. [Google Scholar] [CrossRef] [PubMed]
- Eschweiler, J.; Greven, J.; Rath, B.; Kobbe, P.; Modabber, A.; Hildebrand, F.; Migliorini, F.; Hofmann, U.K. High-Performance Ceramics in Musculoskeletal Surgery: Current Use and Future Perspectives. Ceramics 2024, 7, 310–328. [Google Scholar] [CrossRef]
- Vaiani, L.; Boccaccio, A.; Uva, A.E.; Palumbo, G.; Piccininni, A.; Guglielmi, P.; Cantore, S.; Santacroce, L.; Charitos, I.A.; Ballini, A. Ceramic Materials for Biomedical Applications: An Overview on Properties and Fabrication Processes. J. Funct. Biomater. 2023, 14, 146. [Google Scholar] [CrossRef]
- Su, G.; Zhang, Y.; Jin, C.; Zhang, Q.; Lu, J.; Liu, Z.; Wang, Q.; Zhang, X.; Ma, J. 3D printed zirconia used as dental materials: A critical review. J. Biol. Eng. 2023, 17, 78. [Google Scholar] [CrossRef]
- Shvydyuk, K.O.; Nunes-Pereira, J.; Rodrigues, F.F.; Silva, A.P. Review of Ceramic Composites in Aeronautics and Aerospace: A Multifunctional Approach for TPS, TBC and DBD Applications. Ceramics 2023, 6, 195–230. [Google Scholar] [CrossRef]
- Baier, L.; Frieß, M.; Hensch, N.; Leisner, V. Development of ultra-high temperature ceramic matrix composites for hypersonic applications via reactive melt infiltration and mechanical testing under high temperature. CEAS Space J. 2025, 17, 635–644. [Google Scholar] [CrossRef]
- Gautam, S.S.; Singh, R.; Vibhuti, A.S.; Sangwan, G.; Mahanta, T.K.; Gobinath, N.; Feroskhan, M. Thermal barrier coatings for internal combustion engines: A review. Mater. Today Proc. 2022, 51, 1554–1560. [Google Scholar] [CrossRef]
- Moustafa, E.B.; Hussein, H. Enhancing Automotive Performance: A Comparative Study of Spark Plug Electrode Configurations on Engine Behaviour and Emission Characteristics. Vehicles 2025, 7, 55. [Google Scholar] [CrossRef]
- Sezavar, A.; Sajjadi, S.A. A review on the performance and lifetime improvement of thermal barrier coatings. J. Eur. Ceram. Soc. 2025, 45, 117274. [Google Scholar] [CrossRef]
- Verma, P.C.; Tiwari, S.K.; Saurabh, A.; Manoj, A. Recent Advances in High-Entropy Ceramics: Synthesis Methods, Properties, and Emerging Applications. Ceramics 2024, 7, 1365–1389. [Google Scholar] [CrossRef]
- Tang, K.; Long, F.; Zhang, F.; Yin, H.; Zhao, J.; Xie, M.; An, Y.; Yang, W.; Chi, B. Research Progress on High-Temperature-Resistant Electromagnetic Wave Absorbers Based on Ceramic Materials: A Review. Nanomaterials 2025, 15, 268. [Google Scholar] [CrossRef]
- Wang, W.; Fu, Q.; Ge, J.; Xu, S.; Liu, Q.; Zhang, J.; Shan, H. Advancements in Thermal Insulation through Ceramic Micro-Nanofiber Materials. Molecules 2024, 29, 2279. [Google Scholar] [CrossRef]
- Xu, Z.; Lyu, Y.; Hou, C.; Han, Y.; Bai, Y.; Huang, Y.; Li, K. Advancements in Flexible Ceramic Fibers for High-Temperature Applications: A Comprehensive Review. High-Temp. Mater. 2025, 2, 10007. [Google Scholar] [CrossRef]
- Kaushal, S.; Saloni; Zeeshan, M.D.; Ansari, M.D.I.; Sharma, D. Progress in tribological research of Al2O3 ceramics: A review. Mater. Today Proc. 2023, 82, 163–167. [Google Scholar] [CrossRef]
- Costakis, W.; Schlup, A.; Youngblood, J.; Trice, R. Aligning α-alumina platelets via uniaxial pressing of ceramic-filled polymer blends for improved sintered transparency. J. Am. Ceram. Soc. 2020, 103, 3500–3512. [Google Scholar] [CrossRef]
- Raju, P.; Khanra, A.; Buchi Suresh, M.; Rao, Y.; Johnson, R. Pressure slip cast processing of alumina (Al2O3) products and comparative evaluation of mechanical properties. Adv. Appl. Ceram. 2022, 121, 211–221. [Google Scholar] [CrossRef]
- Bhargav Chandan, P.; Ravi Sankar, M. Extrusion-based additive manufacturing of alumina ceramics through controlled extrusion pressure. Int. J. Appl. Ceram. Technol. 2024, 22, 14935. [Google Scholar] [CrossRef]
- Kwiatkowski, M.; Przybyła, S.; Kwiatkowski, M.; Hebda, M. The Concept of Using 3D Printing Technology in Ceramic Foundry Filter Manufacturing. J. Mater. Eng. Perform. 2024, 33, 14426–14432. [Google Scholar] [CrossRef]
- Hossain, S.S.; Lu, K. Recent progress of alumina ceramics by direct ink writing: Ink design, printing and post-processing. Ceram. Int. 2023, 49, 10199–10212. [Google Scholar] [CrossRef]
- Mahboubizadeh, S.; Kazemi, A.; Khodaei, M. Optimizing the Printability of 3D Printed Alumina Parts Fabricated by Direct Ink Writing. Adv. J. Chem. Sect. A 2025, 8, 1776–1788. [Google Scholar]
- Marczyk, J.; Hebda, M. Effect of the Particle Size Distribution of Irregular Al Powder on Properties of Parts for Electronics Fabricated by Binder Jetting. Electronics 2023, 12, 2733. [Google Scholar] [CrossRef]
- Zhao, J.-J.; Zhang, Y.-Z.; Li, J.-H.; Wang, Z.-H.; Miao, W.-J.; Wu, F.-B.; Wang, S.-Q.; Ouyang, J.-H. Additive Manufacturing of Alumina-Based Ceramic Structures by Vat Photopolymerization: A Review of Strategies for Improving Shaping Accuracy and Properties. Materials 2025, 18, 2445. [Google Scholar] [CrossRef]
- Lamnini, S.; Elsayed, H.; Lakhdar, Y.; Baino, F.; Smeacetto, F.; Bernardo, E. Robocasting of advanced ceramics: Ink optimization and protocol to predict the printing parameters—A review. Heliyon 2022, 8, 10651. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Li, H.; Han, W.; Yang, J.; Xu, W.; Zhou, Y. Three-Dimensional Printing of Yttrium Oxide Transparent Ceramics via Direct Ink Writing. Materials 2024, 17, 3366. [Google Scholar] [CrossRef] [PubMed]
- Saadi, M.A.S.R.; Maguire, A.; Pottackal, N.T.; Thakur, S.H.; Ikram, M.M.; Hart, A.J.; Ajayan, P.M.; Rahman, M.M. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Adv. Mater. 2022, 34, 2108855. [Google Scholar] [CrossRef] [PubMed]
- McCauley, P.J.; Bayles, A.V. Nozzle Innovations That Improve Capacity and Capabilities of Multimaterial Additive Manufacturing. ACS Eng. Au 2024, 4, 368–380. [Google Scholar] [CrossRef] [PubMed]
- del-Mazo-Barbara, L.; Ginebra, M.P. Rheological characterisation of ceramic inks for 3D direct ink writing: A review. J. Eur. Ceram. Soc. 2021, 41, 18–33. [Google Scholar] [CrossRef]
- Zocca, A.; Günster, J. Towards a debinding-free additive manufacturing of ceramics: A development perspective of water-based LSD and LIS technologies. Open Ceram. 2024, 19, 100632. [Google Scholar] [CrossRef]
- Fabuel, C.; Gómez-Tena, M.P.; Moreno, A.; González-Juárez, F.; Rico-Pérez, V.; Balcells, J. Binder Jetting for Functional Testing of Ceramic Sanitaryware. Ceramics 2025, 8, 58. [Google Scholar] [CrossRef]
- Du, W.; Li, M.; Pei, Z.; Ma, C. Roller-compaction-assisted binder jetting with different granulated zirconia powders. Manuf. Lett. 2023, 35, 576–582. [Google Scholar] [CrossRef]
- Mariani, M.; Beltrami, R.; Brusa, P.; Galassi, C.; Ardito, R.; Lecis, N. 3D printing of fine alumina powders by binder jetting. J. Eur. Ceram. Soc. 2021, 41, 5307–5315. [Google Scholar] [CrossRef]
- Vogt, J.; Friedrich, H.; Stepanyan, M.; Eckardt, C.; Lam, M.; Lau, D.; Chen, B.; Shan, R.; Chan, J. Improved green and sintered density of alumina parts fabricated by binder jetting and subsequent slurry infiltration. Prog. Addit. Manuf. 2022, 7, 161–171. [Google Scholar] [CrossRef]
- Stampfl, J.; Schwentenwein, M.; Homa, J.; Prinz, F.B. Lithography-based additive manufacturing of ceramics: Materials, applications and perspectives. MRS Commun. 2023, 13, 786–794. [Google Scholar] [CrossRef]
- Patil, A.; D, D.J.; Bomze, D.; Gopal, V. Wear behaviour of lithography ceramic manufactured dental zirconia. BMC Oral Health 2023, 23, 276. [Google Scholar] [CrossRef] [PubMed]
- Lube, T.; Staudacher, M.; Hofer, A.-K.; Schlacher, J.; Bermejo, R. Stereolithographic 3D Printing of Ceramics: Challenges and Opportunities for Structural Integrity. Adv. Eng. Mater. 2022, 25, 2200520. [Google Scholar] [CrossRef]
- Sänger, J.C.; Schwentenwein, M.; Bermejo, R.; Günster, J. Hybridizing Lithography-Based Ceramic Additive Manufacturing with Two-Photon-Polymerization. Appl. Sci. 2023, 13, 3974. [Google Scholar] [CrossRef]
- Arora, P.; Mostafa, K.G.; Russell, E.; Dehgahi, S.; Butt, S.U.; Talamona, D.; Qureshi, A.J. Shrinkage Compensation and Effect of Building Orientation on Mechanical Properties of Ceramic Stereolithography Parts. Polymers 2023, 15, 3877. [Google Scholar] [CrossRef]
- Álvarez-Chimal, R.; Vázquez-Vázquez, F.C.; Serrano-Bello, J.; López-Barrios, K.; Marichi-Rodríguez, F.J.; Álvarez-Pérez, M.A. A Review of 3D Printing by Robocasting and Stereolithography for Cartilage and Ocular Tissue Regeneration. Biomed. Mater. Devices 2025, 3, 1087–1103. [Google Scholar] [CrossRef]
- Przybyła, S.; Kwiatkowski, M.; Kwiatkowski, M.; Hebda, M. Optimization of Ceramic Paste Composition for 3D Printing via Robocasting. Materials 2024, 17, 4560. [Google Scholar] [CrossRef] [PubMed]
- Zocca, A.; Colombo, P.; Gomes, C.M.; Günster, J. Additive Manufacturing of Ceramics: Issues, Potentialities, and Opportunities. J. Am. Ceram. Soc. 2015, 98, 1983–2001. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; He, Y. 3D Printing of Ceramics: A Review. J. Eur. Ceram. Soc. 2019, 39, 661–687. [Google Scholar] [CrossRef]
- Lewis, J.A. Direct Ink Writing of Three-Dimensional Ceramic Structures. J. Am. Ceram. Soc. 2006, 89, 3599–3609. [Google Scholar] [CrossRef]
- Rueschhoff, L.M.; Duty, C.E.; Krug, J.A.; Love, L.; Kunc, V.; Elliott, A.M. Additive Manufacturing of Dense Ceramic Parts via Direct Ink Writing. Int. J. Appl. Ceram. Technol. 2016, 13, 821–830. [Google Scholar] [CrossRef]
- Ziaee, M.; Crane, N.B. Binder Jetting: A Review of Process, Materials, and Methods. Addit. Manuf. 2019, 28, 781–801. [Google Scholar] [CrossRef]
- Du, W.; Ren, X.; Liang, X.; Zhao, C.; Zhang, D.Z. Ceramic Binder Jetting Additive Manufacturing: A Literature Review. J. Manuf. Sci. Eng. 2020, 142, 090804. [Google Scholar] [CrossRef]
- Miyanaji, H.; Orth, M.; Akbar, J.M.; Yang, L. Process Development for Green Part Printing Using Binder Jetting Additive Manufacturing. Front. Mech. Eng. 2018, 13, 504–512. [Google Scholar] [CrossRef]
- Halloran, J.W. Ceramic Stereolithography: Additive Manufacturing by Photopolymerization. Annu. Rev. Mater. Res. 2016, 46, 19–40. [Google Scholar] [CrossRef]
- Zakeri, S.; Nonahal, M.; Garmabi, H.; Fotouhi, M.; Fard, M.; Heidari, B.S.; Hosseini, S.R. A Comprehensive Review of the Photopolymerization of Ceramic Resins Used in Stereolithography. Addit. Manuf. 2020, 35, 101278. [Google Scholar] [CrossRef]
- Hannink, R.H.J.; Kelly, P.M.; Muddle, B.C. Transformation Toughening in Zirconia-Containing Ceramics. J. Am. Ceram. Soc. 2000, 83, 461–487. [Google Scholar] [CrossRef]
- Cesar, P.F.; Miranda, R.B.P.; Santos, K.F.; Scherrer, S.S.; Zhang, Y. Recent advances in dental zirconia: 15 years of material and processing evolution. Dent. Mater. 2024, 40, 824–836. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, A.; McLaren, I.; Mitchell, D.R.G.; Williams, B.; Davis, J. Cristobalite Crystallization in Silica-Based Ceramic Cores: Implications for Investment Casting. J. Eur. Ceram. Soc. 2013, 33, 3245–3254. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Sorrell, C.C. Review of the Anatase-to-Rutile Phase Transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef]
- PN-EN 843-1:2007; Advanced Technical Ceramics—Mechanical Properties of Monolithic Ceramics at Room Temperature—Part 1: Determination of Flexural Strength. Polish Committee for Standardization (PKN): Warsaw, Poland, 2007.
- PN-EN 843-4:2007; Advanced Technical Ceramics—Mechanical Properties of Monolithic Ceramics at Room Temperature—Part 4: Vickers, Knoop and Rockwell Superficial Hardness. Polish Committee for Standardization (PKN): Warsaw, Poland, 2007.
- PN-EN 623-2:2001; Advanced Technical Ceramics—Monolithic Ceramics—General and Textural Properties—Part 2: Determination of Density and Porosity. Polish Committee for Standardization (PKN): Warsaw, Poland, 2001.
- Polychronis, G.; Papageorgiou, S.N.; Riollo, C.S.; Panayi, N.; Zinelis, S.; Eliades, T. Fracture toughness and hardness of in-office, 3D-printed ceramic brackets. Orthod. Craniofacial Res. 2023, 26, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Gnanasagaran, C.L.; Ramachandran, K.; Ramesh, S.; Ubenthiran, S.; Jamadon, N.H. Effect of co-doping manganese oxide and titania on sintering behaviour and mechanical properties of alumina. Ceram. Int. 2023, 49, 5110–5118. [Google Scholar] [CrossRef]
- Sivamaran, V.; Kavimani, V.; Bakkiyaraj, M.; Rajendran, C.; Sonar, T. An Optimization of Particle Size and Additives of Slip Cast Alumina Samples to Reduce Warpage and Porosity. Adv. Mater. Sci. Eng. 2022, 1, 5222633. [Google Scholar] [CrossRef]
- Šimonová, P.; Pabst, W. Porosity dependence of sound velocities in partially sintered alumina, zirconia, ATZ, and mullite ceramics. J. Am. Ceram. Soc. 2023, 107, 1262–1273. [Google Scholar] [CrossRef]
- Vukšić, M.; Žmak, I.; Ćurković, L.; Kocjan, A. Effect of Two-Step Sintering on Properties of Alumina Ceramics Containing Waste Alumina Powder. Materials 2022, 15, 7840. [Google Scholar] [CrossRef]
- Osada, T.; Nagai, Y.; Kobayashi, S. Fabrication and mechanical characterization of biocompatible oxide ceramic parts by injection molding. Open Ceram. 2023, 13, 100328. [Google Scholar] [CrossRef]
- Kanno, T.; Sakatani, A.; Kurita, H.; Narita, F. Prediction of internal stress in alumina laminates induced by shrinkage mismatch based on elastic model modification. J. Am. Ceram. Soc. 2024, 108, 7201–7211. [Google Scholar] [CrossRef]
Material | Chemical Composition [wt.%] |
---|---|
Al2O3 | 78.5 |
H2O | 21.15 |
Dispersant | 0.1 |
Methylcellulose | 0.25 |
Sample | Apparent Density ρo [g/cm3] | Mean Apparent Density ρo [g/cm3] | Open Porosity [%] | Mean Open Porosity [%] | Young’s Modulus E [GPa] | Mean Young’s Modulus E [GPa] |
---|---|---|---|---|---|---|
SC1 | 3.88 | 3.91 ± 0.02 | 0.6 | 0.34 ± 0.23 | 380 | 384.4 ± 2.7 |
SC2 | 3.91 | 0.5 | 386 | |||
SC3 | 3.91 | 0.4 | 384 | |||
SC4 | 3.93 | 0.1 | 385 | |||
SC5 | 3.93 | 0.1 | 387 | |||
Slip Casting [82,83] | 3.86 | 3 | 370–385 | |||
Ceramic Injection Molding (CIM) [82,84] | 3.58–3.96 | 2–8 | 360–385 | |||
Dry Pressing [82] | 3.85–3.90 | 1–3 | 370–400 |
Sample | HV1 [GPa] | Mean HV1 [GPa] | HV10 [GPa] | Mean HV10 [GPa] | KIC(HV) [MPa∙m1/2] | Mean KIC(HV) [MPa∙m1/2] |
---|---|---|---|---|---|---|
SC1 | 18.2 | 17.8 ± 0.44 | 16.5 | 16.2 ± 0.38 | 3.82 | 3.80 ± 0.03 |
SC2 | 17.2 | 15.5 | 3.78 | |||
SC3 | 17.4 | 17.0 | 3.77 | |||
SC4 | 17.9 | 16.1 | 3.84 | |||
SC5 | 18.1 | 15.7 | 3.81 | |||
FT1 | 17.2 | 17.0 ± 0.18 | 15.8 | 15.7 ± 0.14 | 3.51 | 3.47 ± 0.04 |
FT2 | 17.0 | 15.8 | 3.47 | |||
FT3 | 17.0 | 15.2 | 3.44 | |||
FT4 | 16.9 | 16.1 | 3.51 | |||
FT5 | 16.7 | 15.6 | 3.40 | |||
FM1 | 17.5 | 17.6 ± 0.28 | 15.6 | 15.4 ± 0.18 | 3.42 | 3.46 ± 0.05 |
FM2 | 17.4 | 15.5 | 3.52 | |||
FM3 | 18.0 | 15.4 | 3.40 | |||
FM4 | 17.3 | 15.2 | 3.46 | |||
FM5 | 17.6 | 15.4 | 3.50 | |||
FB1 | 17.4 | 16.9 ± 0.27 | 15.3 | 15.6 ± 0.16 | 3.56 | 3.60 ± 0.03 |
FB2 | 17.0 | 15.6 | 3.63 | |||
FB3 | 16.8 | 15.6 | 3.59 | |||
FB4 | 16.8 | 15.7 | 3.62 | |||
FB5 | 16.7 | 15.7 | 3.60 | |||
FS1 | 17.5 | 17.1 ± 0.30 | 14.8 | 15.3 ± 0.25 | 3.69 | 3.64 ± 0.04 |
FS2 | 16.7 | 15.5 | 3.58 | |||
FS3 | 17.3 | 15.8 | 3.66 | |||
FS4 | 17.1 | 15.2 | 3.60 | |||
FS5 | 17.2 | 15.2 | 3.68 |
Sample | Dimensions | Force F [kN] | Three-Point Flexural Strength G [MPa] | Mean Three-Point Flexural Strength G [MPa] | |
---|---|---|---|---|---|
b [mm] | h [mm] | ||||
SBL1 | 10 | 10 | 6.4 | 576 | 480 ± 99 |
SBL2 | 4.2 | 378 | |||
SBL3 | 5.4 | 486 | |||
SBII1 | 5.6 | 504 | 516 ± 10 | ||
SBII2 | 5.8 | 522 | |||
SBII3 | 5.8 | 522 |
Sample | Dimensions | Compressive Force F [kN] | Compressive Strength G [MPa] | Mean Compressive Strength G [MPa] | |
---|---|---|---|---|---|
D [mm] | h [mm] | ||||
SC1 | 11 | 11 | 63.5 | 668.2 | 1205.53 ± 475.33 |
SC2 | 152.2 | 1601.5 | |||
SC3 | 131.3 | 1381.6 | |||
SC4 | 55.6 | 585.1 | |||
SC5 | 163.3 | 1718.3 | |||
SC6 | 121.5 | 1278.5 | |||
SC7 | 15 | 15 | 190.3 | 1076.9 | 1379.15 ± 280.71 |
SC8 | 269.0 | 1522.2 | |||
SC9 | 320.0 | 1810.8 | |||
SC10 | 233.0 | 1318.5 | |||
SC11 | 192.0 | 1086.5 | |||
SC12 | 258.0 | 1460.0 |
Sample | Platen Diameter D [mm] | Compressive Force F [kN] | Mean Compressive Force F [kN] |
---|---|---|---|
F1P40 | 40 | 4.3 | 3.40 ± 0.78 |
F2P40 | 2.6 | ||
F3P40 | 4.1 | ||
F4P40 | 2.7 | ||
F5P40 | 3.3 | ||
F6P22 | 22 | 2.8 | 2.94 ± 0.70 |
F7P22 | 3.2 | ||
F8P22 | 4.0 | ||
F9P22 | 2.5 | ||
F10P22 | 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przybyła, S.; Kwiatkowski, M.; Kwiatkowski, M.; Hebda, M. Robocasting as an Additive Manufacturing Method for Oxide Ceramics: A Study of Mechanical Properties and Microstructure. Materials 2025, 18, 4775. https://doi.org/10.3390/ma18204775
Przybyła S, Kwiatkowski M, Kwiatkowski M, Hebda M. Robocasting as an Additive Manufacturing Method for Oxide Ceramics: A Study of Mechanical Properties and Microstructure. Materials. 2025; 18(20):4775. https://doi.org/10.3390/ma18204775
Chicago/Turabian StylePrzybyła, Szymon, Maciej Kwiatkowski, Michał Kwiatkowski, and Marek Hebda. 2025. "Robocasting as an Additive Manufacturing Method for Oxide Ceramics: A Study of Mechanical Properties and Microstructure" Materials 18, no. 20: 4775. https://doi.org/10.3390/ma18204775
APA StylePrzybyła, S., Kwiatkowski, M., Kwiatkowski, M., & Hebda, M. (2025). Robocasting as an Additive Manufacturing Method for Oxide Ceramics: A Study of Mechanical Properties and Microstructure. Materials, 18(20), 4775. https://doi.org/10.3390/ma18204775