Role of Crushable Biochar in the Micro and Macro Mechanical Behaviour of Biochar-Amended Soil: A DEM Study
Abstract
1. Introduction
2. Validation of Discrete Element Simulations
2.1. Mechanism Governing the Behaviour of Biochar-Amended Soils
2.2. Principles of MatDEM
2.3. Determination of Parameters
2.4. Numerical Modeling
2.5. Simulated Crushing of Biochar Pellets
3. Results
3.1. Comparison of Experimental and Numerical Simulation
3.2. Parametric Analysis
3.2.1. Biochar Content
3.2.2. Biochar Particle Size
3.2.3. Initial Void Ratio
3.2.4. Average Coordination Number
4. Discussions
4.1. The Effect of Internal Force Evolution on the Compressive Properties of Soils
4.2. Effect of Biochar Particle Crushing on Soil Compression Properties
4.3. Variation in the Biochar Fragmentation Rate Under Stepwise Loading
5. Conclusions
- (1)
- Appropriate addition of biochar can reduce soil compressibility by enhancing the stability of the soil skeleton. However, the numerical simulations conducted in this study indicate that when the biochar content exceeds approximately 40%, particle crushing becomes more pronounced, which in turn increases compressibility.
- (2)
- Force chain analysis demonstrates that biochar particles, owing to their larger contact area and higher stiffness relative to mineral soil particles, establish stable principal stress-transfer pathways during the initial loading stage. These pathways provide both skeletal support and stress dispersion, delaying structural failure. The robust force chains formed by biochar are the primary mechanism responsible for enhancing compressive strength, while the native soil particles predominantly contribute to maintaining the mixture’s overall stability.
- (3)
- A higher initial void ratio reduces interparticle constraints, loosens the soil structure, and facilitates microcrack propagation. Larger biochar particles are more susceptible to macro-fractures under stress concentration in soils with fewer contact points. These conditions increase fines production, reorganize the pore structure, elevate particle breakage rates, refine particle size distribution, and reduce coordination numbers, thereby diminishing the load-bearing capacity of the soil skeleton and exacerbating compressive deformation.
- (4)
- Biochar crushing proceeds through three stress-dependent stages: (i) initial compaction (<100 kPa), (ii) rapid skeletal damage (100–800 kPa), and (iii) crushing saturation (>800 kPa). At low stress, void ratio is the primary factor influencing crushing, whereas at high stress, internal defects within the biochar particles dominate. To mitigate damage and enhance soil stability, graded loading with stress increments of ≤100 kPa per stage is recommended.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CT | Computed Tomography |
CEC | Cation Exchange Capacity |
MRPE | Mean Relative Percentage Error |
3D | Three-Dimensional |
References
- Shaaban, M.; Van Zwieten, L.; Bashir, S.; Younas, A.; Núñez-Delgado, A.; Chhajro, M.A.; Hu, R. A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. J. Environ. Manag. 2018, 228, 429–440. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, C.; Zou, J.; Wang, B.; Song, F.; Yang, W. DEM exploration of the effect of particle shape on particle breakage in granular assemblies. Comput. Geotech. 2020, 122, 103542. [Google Scholar] [CrossRef]
- Lu, Y.; Gu, K.; Shen, Z.; Tang, C.S.; Shi, B.; Zhou, Q. Biochar implications for the engineering properties of soils: A review. Sci. Total Environ. 2023, 888, 164185. [Google Scholar] [CrossRef]
- Bian, X.; Peng, W.H.; Guo, G.Z.; Zeng, L.L.; Shi, X.S.; Xu, G.Z. Enhancing strength and environmental benefits of sustainable soil stabilization using phosphogypsum-activated GGBS and magnesium oxide. Acta Geotech. 2025, 1–14. [Google Scholar] [CrossRef]
- Bian, X.; Fan, Z.Y.; Liu, J.X.; Li, X.Z.; Zhao, P. Regional 3D geological modelling along metro lines based on stacking ensemble model. Undergr. Space 2024, 18, 65–82. [Google Scholar] [CrossRef]
- Bian, X.; Gao, Z.Y.; Zhao, P.; Li, X.Z. Quantitative analysis of low carbon effect of urban underground space in Xinjiekou district of Nanjing city, China. Tunn. Undergr. Space Technol. 2024, 143, 105502. [Google Scholar] [CrossRef]
- Bian, X.; Ren, Z.L.; Zeng, L.L.; Yao, Y.K.; Zhao, F.Y.; Li, X.Z. Effects of biochar on the compressibility of soil with high water content. J. Clean. Prod. 2024, 434, 140032. [Google Scholar] [CrossRef]
- Bian, X.; Zhao, F.Y.; Hong, J.T.; Zeng, L.L.; Li, X.Z.; Yao, Y.K. Dynamics-based environmental performance of excavated soil utilization in Xuzhou metro. Case Stud. Constr. Mater. 2024, 20, e03338. [Google Scholar]
- Reddy, K.R.; Yaghoubi, P.; Yukselen-Aksoy, Y. Effects of biochar amendment on geotechnical properties of landfill cover soil. Waste Manag. Res. 2015, 33, 524–532. [Google Scholar] [CrossRef]
- Ajayi, A.E.; Horn, R. Biochar-induced changes in soil resilience: Effects of soil texture and biochar dosage. Pedosphere 2017, 27, 236–247. [Google Scholar] [CrossRef]
- Li, J.W.; Gu, K.; Tang, Z.S. Research progress on the effect of biochar on soil physicochemical properties. J. Zhejiang Univ. 2018, 52, 192–206. (In Chinese) [Google Scholar]
- Bian, X.; Zhao, F.Y.; Zeng, L.L.; Ren, Z.L.; Li, X.Z. Role of superabsorbent polymer in compression behavior of high-water-content slurries. Acta Geotech. 2024, 19, 6163–6178. [Google Scholar] [CrossRef]
- Jiang, J.; Lin, C.; Cheng, Z.; Zuo, Y. Investigation of Macroscopic and Microscopic Behavior of Gravels Using Triaxial Compression Test with CT Scan. J. Test. Eval. 2019, 47, 4364–4378. [Google Scholar] [CrossRef]
- Sun, W.J.; Li, M.Y.; Zhang, W.J.; Tan, Y.Z. Saturated permeability behavior of biochar-amended clay. J. Soils Sediments 2020, 20, 3875–3883. [Google Scholar] [CrossRef]
- Xu, W.J.; Wang, S.; Zhang, H.Y.; Zhang, Z.L. Discrete element modelling of a soil-rock mixture used in an embankment dam. Int. J. Rock Mech. Min. Sci. 2016, 86, 141–156. [Google Scholar] [CrossRef]
- Wang, P.; Yin, Z.Y.; Wang, Z.Y. Micromechanical investigation of particle-size effect of granular materials in biaxial test with the role of particle breakage. J. Eng. Mech. 2022, 148, 04021133. [Google Scholar] [CrossRef]
- Khabazian, M.; Mirghasemi, A.A.; Bayesteh, H. Compressibility of montmorillonite/kaolinite mixtures in consolidation testing using discrete element method. Comput. Geotech. 2018, 104, 271–280. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.H.; Ma, C.H.; Mok, C.M.B. Experimental characterization and 3D DEM simulation of bond breakages in artificially cemented sands with different bond strengths when subjected to triaxial shearing. Acta Geotech. 2017, 12, 987–1002. [Google Scholar] [CrossRef]
- Shi, X.S.; Nie, J.Y.; Zhao, J.D.; Gao, Y.F. A homogenization equation for the small strain stiffness of gap-graded granular materials. Comput. Geotech. 2020, 121, 103440. [Google Scholar] [CrossRef]
- Shi, X.S.; Zhao, J.D. Practical estimation of compression behavior of clayey/silty sands using equivalent void-ratio concept. J. Geotech. Geoenviron. Eng. 2020, 146, 04020046. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, C.; Zhang, X.; Wang, X.; Shi, B.; Wang, Y.; Deng, S. A three-dimensional discrete element model of triaxial tests based on a new flexible membrane boundary. Sci. Rep. 2021, 11, 4753. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, W.Y.; Zhu, Q.Z.; Shao, J.F. A novel elastic–plastic damage model for rock materials considering micro-structural degradation due to cyclic fatigue. Int. J. Plast. 2023, 160, 103496. [Google Scholar] [CrossRef]
- Zeng, Y.W.; Shi, X.S.; Zhao, J.D.; Bian, X.; Liu, J.Y. Estimation of compression behavior of granular soils considering initial density effect based on equivalent concept. Acta Geotech. 2024, 20, 1035–1048. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Cundall, P.A. A computer model for simulating progressive, large-scale movement in blocky rock system. Proc. Int. Symp. Rock Mech. 1971, 8, 129–136. [Google Scholar]
- Liu, C.; Liu, H.; Zhang, H. MatDEM-fast matrix computing of the discrete element method. Earthq. Res. Adv. 2021, 1, 100010. [Google Scholar] [CrossRef]
- Chen, Z.; Song, D. Numerical investigation of the recent Chenhecun landslide (Gansu, China) using the discrete element method. Nat. Hazards 2021, 105, 717–733. [Google Scholar] [CrossRef]
- Luo, H.; Xing, A.; Jin, K.; Xu, S.; Zhuang, Y. Discrete element modeling of the Nayong rock avalanche, Guizhou, China constrained by dynamic parameters from seismic signal inversion. Rock Mech. Rock Eng. 2021, 54, 1629–1645. [Google Scholar] [CrossRef]
- Xue, Y.; Zhou, J.; Liu, C.; Shadabfar, M.; Zhang, J. Rock fragmentation induced by a TBM disc-cutter considering the effects of joints: A numerical simulation by DEM. Comput. Geotech. 2021, 136, 104230. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, F.; Sun, Y.G.; Zhang, W. DEM simulation of mechanical behaviour and bond breakage of different cemented sands. Chin. J. Geotech. Eng. 2012, 34, 1969–1976. [Google Scholar]
- Liu, C.; Pollard, D.D.; Gu, K.; Shi, B. Mechanism of formation of wiggly compaction bands in porous sandstone: 2. Numerical simulation using discrete element method. J. Geophys. Res. Solid Earth 2015, 120, 8153–8168. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, X.; Ke, F.J.; Xia, M.F.; Peng, K.Y. Numerical simulation of rock failure and earthquake process on mesoscopic scale. Pure Appl. Geophys. 2000, 157, 1905–1928. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Q.; Shi, B.; Deng, S.; Zhu, H. Mechanical properties and energy conversion of 3D close-packed lattice model for brittle rocks. Comput. Geosci. 2017, 103, 12–20. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Xu, H.; Ren, X.J.; Wang, Y.J.; Li, Y.; Yang, X.L. Preparation and properties of agricultural and forestry waste biochar/high-density polyethylene composites. Acta Mater. Compos. Sin. 2021, 38, 398–405. (In Chinese) [Google Scholar]
- Chia, C.H.; Downie, A.; Munroe, P. Characteristics of biochar: Physical and structural properties. In Biochar for Environmental Management; Routledge: London, UK, 2015; pp. 89–109. [Google Scholar]
- Bono, J.D.; McDowell, G.R.; Wanatowski, D. DEM of triaxial tests on crushable cemented sand. Granul. Matter 2014, 16, 563–572. [Google Scholar] [CrossRef]
- Xiao, Y.; Meng, M.; Daouadji, A.; Chen, Q.; Wu, Z.; Jiang, X. Effects of particle size on crushing and deformation behaviors of rockfill materials. Geosci. Front. 2020, 11, 375–388. [Google Scholar] [CrossRef]
- Cui, H.; Xiao, Y.; Shu, S.; He, X.; Liu, H. A constitutive model incorporating particle breakage for gravelly soil-structure interface under cyclic loading. Sci. China Technol. Sci. 2022, 65, 2846–2855. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, G.; Mei, J.; Zou, Y.; Zhang, D.; Zhou, W.; Cao, X. Machine learning reveals the influences of grain morphology on grain crushing strength. Acta Geotech. 2021, 16, 3617–3630. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, K.; Tang, C.; Shen, Z.; Narala, G.R.; Shi, B. Effects of biochar on the compression and swelling characteristics of clayey soils. Int. J. Geosynth. Ground Eng. 2020, 6, 22. [Google Scholar] [CrossRef]
- Wang, P.; Yin, Z.Y.; Hicher, P.Y.; Cui, Y.J. Micro-mechanical analysis of one dimensional compression of clay with DEM. Int. J. Numer. Anal. Methods Geomech. 2023, 47, 2706–2724. [Google Scholar] [CrossRef]
- Gupta, V.; Sun, X.; Xu, W.; Sarv, H.; Farzan, H. A discrete element method-based approach to predict the breakage of coal. Adv. Powder Technol. 2017, 28, 2665–2677. [Google Scholar] [CrossRef]
- Tavares, L.M.; Anderson, S. A stochastic particle replacement strategy for simulating breakage in DEM. Powder Technol. 2021, 377, 222–232. [Google Scholar] [CrossRef]
- Li, W.; Guo, J.; Jiao, Y.; Deng, D.; Zhong, Y.; Yang, S. Investigation on tectonically deformed coal particle crushing by DEM under triaxial loading: Implication for coal and gas outburst. Adv. Powder Technol. 2023, 34, 104155. [Google Scholar] [CrossRef]
- Huang, C.; Duan, X.; Nie, Z.; Fang, C.; Huang, Y. Effect of particle breakage on vibration compaction deformation of gap-graded granular mixtures under different fine particle content via DEM simulations. Granul. Matter 2025, 27, 44. [Google Scholar] [CrossRef]
- Zhou, M.; Song, E. A random virtual crack DEM model for creep behavior of rockfill based on the subcritical crack propagation theory. Acta Geotech. 2016, 11, 827–847. [Google Scholar] [CrossRef]
- Muir Wood, D.; Maeda, K. Changing grading of soil: Effect on critical states. Acta Geotech. 2008, 3, 3–14. [Google Scholar] [CrossRef]
- De Bono, J.P.; McDowell, G.R. DEM of triaxial tests on crushable sand. Granul. Matter 2014, 16, 551–562. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Cai, W.; So, P.S.; Liao, J.; Lau, S.Y. Effects of biochar on shear strength of completely decomposed granite. Environ. Sci. Pollut. Res. 2022, 29, 49422–49428. [Google Scholar] [CrossRef] [PubMed]
- Sadasivam, B.Y.; Reddy, K.R. Engineering properties of waste wood-derived biochars and biochar-amended soils. Int. J. Geotech. Eng. 2015, 9, 521–535. [Google Scholar] [CrossRef]
- Lamprinakos, R. Evaluation of the Geotechnical Engineering Properties of Soil-Biochar Mixtures. Ph.D. Dissertation, University of Delaware, Newark, DE, USA, 2019. [Google Scholar]
- Dugan, E.A.; Verhoef, A.; Robinson, S.; Sohi, S. Bio-char from sawdust, maize stover and charcoal: Impact on water holding capacities (WHC) of three soils from Ghana. World Congr. Soil Sci. 2011, 4, 9–12. [Google Scholar]
- Le, T.C.; Gu, Y.F.; Liu, C. Experimental and discrete element numerical simulation of the effect of grading and particle morphology on the compressibility of sandy soils. In Proceedings of the 2018 National Academic Annual Conference on Engineering Geology, Xi’an, China, 13–16 October 2018; Science Press: Beijing, China; Chinese Geological Society: Beijing, China, 2018. [Google Scholar]
- Zhang, Y.; Jiang, X.; Wan, S.; Wu, W.; Wu, S.; Jin, Y. Adsorption behavior of two glucanases on three lignins and the effect by adding sulfonated lignin. J. Biotechnol. 2020, 323, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, Y.; Yan, W.; Shangguan, Z. Effect of biochar application method on nitrogen leaching and hydraulic conductivity in a silty clay soil. Soil Tillage Res. 2018, 183, 100–108. [Google Scholar] [CrossRef]
- Feng, Q.; Hu, G.; Gan, Z.; Ma, L.; Pang, M.; Liu, Y.; Li, L. Effect of vibration assistance on the force chain properties of dense granular flow between friction interfaces. Granul. Matter 2025, 27, 73. [Google Scholar] [CrossRef]
- Guorui, F.; Zhilong, F.; Zhen, L. Effect of particle size on re-crushing characteristics of crushed coal during axial loading. Powder Technol. 2022, 407, 117675. [Google Scholar] [CrossRef]
- Bouzeboudja, A.; Melbouci, B.; Bouzeboudja, H. Evolution of the fractal dimension of granular materials in fragmentation tests. Granul. Matter 2022, 24, 59. [Google Scholar] [CrossRef]
- Kuang, D.M.; Long, Z.L.; Ogwu, I.; Chen, Z. A discrete element method (DEM)-based approach to simulating particle breakage. Acta Geotech. 2022, 17, 2751–2764. [Google Scholar] [CrossRef]
- Minh, N.H.; Cheng, Y.P. A DEM investigation of the effect of particle-size distribution on one-dimensional compression. Géotechnique 2013, 63, 44–53. [Google Scholar] [CrossRef]
- Jin, Z.; Liu, J.; Sun, H.; Sun, M.; Xu, X. Influence of gradation range on strong contact network in granular materials. Granul. Matter 2024, 26, 37. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, L.; Ma, G.; Chang, X.; Cheng, Y.; Li, D. Macro–micro responses of crushable granular materials in simulated true triaxial tests. Granul. Matter 2015, 17, 497–509. [Google Scholar] [CrossRef]
- Cao, W.; Mei, J.; Yang, X.; Zhou, W.; Chang, X.; Ma, G. A network-based investigation on static liquefaction of sheared granular materials. Granul. Matter 2024, 26, 60. [Google Scholar] [CrossRef]
- Voivret, C.; Radjai, F.; Delenne, J.Y.; El Youssoufi, M.S. Multiscale force networks in highly polydisperse granular media. Phys. Rev. Lett. 2009, 102, 178001. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Qi, Q.; Wang, X.; Zhu, Y. DEM investigation of strain behaviour and force chain evolution of gravel–sand mixtures subjected to cyclic loading. Particuology 2022, 68, 13–28. [Google Scholar] [CrossRef]
- Huang, D.; Wang, X.; Chang, X.; Qiao, S.; Lu, H.; Pan, X. Evolution law study of pore and fracture of coal gangue cemented filling body under axial compression using PFC2D. Constr. Build. Mater. 2024, 411, 134340. [Google Scholar] [CrossRef]
- Zhou, J.; Zheng, M.; Zhan, Q.; Zhou, R.; Zhang, Y.; Wang, Y. Discrete element modelling of the uniaxial compression behavior of pervious concrete. Case Stud. Constr. Mater. 2023, 18, e01937. [Google Scholar] [CrossRef]
- Jin, Z.; Liu, J.; Ma, G.; Hu, C.; Yang, Q.; Shi, X.; Wang, X. How does the largest cluster in the strong network rule granular soil mechanics? A DEM study. Int. J. Numer. Anal. Methods Geomech. 2025, 49, 839–859. [Google Scholar] [CrossRef]
Parameters | Value | |
---|---|---|
Soil | Biochar | |
Young’s modulus (E/GPa) | 0.04 | 10 |
Poisson’s ratio (ν) | 0.25 | 0.3 |
Tensile strength (Tu/MPa) | 0.01 | 5 |
Compression strength (Cu/MPa) | 0.1 | 9 |
Coefficient of intrinsic friction (μi) | 0.6 | 0.4 |
Density (ρ/kg/m3) | 1800 | 470 |
Particle size (mm) | 0~0.005 | 0.5~1, 1~2, 2~3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Ren, Z.; Wei, G.; Yao, Y. Role of Crushable Biochar in the Micro and Macro Mechanical Behaviour of Biochar-Amended Soil: A DEM Study. Materials 2025, 18, 4700. https://doi.org/10.3390/ma18204700
Xia Y, Ren Z, Wei G, Yao Y. Role of Crushable Biochar in the Micro and Macro Mechanical Behaviour of Biochar-Amended Soil: A DEM Study. Materials. 2025; 18(20):4700. https://doi.org/10.3390/ma18204700
Chicago/Turabian StyleXia, Yuanbing, Zhilin Ren, Gang Wei, and Yingkang Yao. 2025. "Role of Crushable Biochar in the Micro and Macro Mechanical Behaviour of Biochar-Amended Soil: A DEM Study" Materials 18, no. 20: 4700. https://doi.org/10.3390/ma18204700
APA StyleXia, Y., Ren, Z., Wei, G., & Yao, Y. (2025). Role of Crushable Biochar in the Micro and Macro Mechanical Behaviour of Biochar-Amended Soil: A DEM Study. Materials, 18(20), 4700. https://doi.org/10.3390/ma18204700