Temperature-Dependent Effects of Hydroxyethyl Methyl Cellulose on Rheological Properties and Microstructural Evolution of Robotic Plastering Mortars
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Sample Preparation
2.2.2. Rheological Tests
2.2.3. UPV Test
2.2.4. XRD Characterization
2.2.5. FTIR Characterization
2.2.6. SEM–EDS Characterization
3. Results and Discussion
3.1. Static Rheological Properties
3.2. Dynamic Rheological Properties
3.3. Microstructural Evolution by UPV
3.4. XRD Analysis
3.5. FTIR Analysis
3.6. SEM-EDS Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Xie, L.; Chen, J.; Chen, M.; Hu, T.; Liao, H.; Sun, S.; Chen, J. Mortar Spraying and Plastering Integrated Robot for Wall Construction. Autom. Constr. 2024, 165, 105533. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, D.; Eldosoky, M.A.; Ye, Z.; Jiang, X.; Liu, Y.; Ge, S.S. Puttybot: A Sensorized Robot for Autonomous Putty Plastering. J. Field Robot. 2024, 41, 1744–1764. [Google Scholar] [CrossRef]
- Mitterberger, D.; Ercan Jenny, S.; Vasey, L.; Lloret-Fritschi, E.; Aejmelaeus-Lindström, P.; Gramazio, F.; Kohler, M. Interactive Robotic Plastering: Augmented Interactive Design and Fabrication for on-Site Robotic Plastering. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 29 April–5 May 2022; pp. 1–18. [Google Scholar]
- Petit, J.-Y.; Khayat, K.H.; Wirquin, E. Coupled Effect of Time and Temperature on Variations of Yield Value of Highly Flowable Mortar. Cem. Concr. Res. 2006, 36, 832–841. [Google Scholar] [CrossRef]
- Ghafoori, N.; Diawara, H. Influence of Temperature on Fresh Performance of Self-Consolidating Concrete. Constr. Build. Mater. 2010, 24, 946–955. [Google Scholar] [CrossRef]
- Petit, J.-Y.; Wirquin, E.; Khayat, K.H. Effect of Temperature on the Rheology of Flowable Mortars. Cem. Concr. Compos. 2010, 32, 43–53. [Google Scholar] [CrossRef]
- Huang, T.; Yuan, Q.; Zuo, S.; Yao, H.; Zhang, K.; Wang, Y.; Xie, Y.; Shi, C. Physio-Chemical Effects on the Temperature-Dependent Elasticity of Cement Paste during Setting. Cem. Concr. Compos. 2022, 134, 104769. [Google Scholar] [CrossRef]
- Feng, K.; Ma, K.; Yang, H.; Long, G.; Xie, Y.; Zeng, X.; Tang, Z.; Usman, I.U. Influence of Cellulose Ethers on Rheological Properties of Cementitious Materials: A Review. J. Build. Eng. 2024, 95, 110347. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Xiao, J.; Shi, J.; Chen, Y.; Pang, B.; Wu, M.; Liu, G.; Yang, Y. Study on Dynamic and Static Structural Build-up of Fresh Cement Paste with Limestone Powder Based on Structural Kinetics Model. Constr. Build. Mater. 2021, 305, 124598. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, Q.; Dai, X.; Tao, Y.; Zhang, Y.; Jiang, Z.; Van Tittelboom, K.; De Schutter, G. A Potential Active Rheology Control Approach for 3D Printable Cement-Based Materials: Coupling of Temperature and Viscosity Modifiers. Cem. Concr. Compos. 2024, 149, 105496. [Google Scholar] [CrossRef]
- Subramaniam, K.V.; Wang, X. An Investigation of Microstructure Evolution in Cement Paste through Setting Using Ultrasonic and Rheological Measurements. Cem. Concr. Res. 2010, 40, 33–44. [Google Scholar] [CrossRef]
- Ojeda-Farías, O.; Lootens, D.; Hébraud, P. Build-up and Consolidation of an Attractive Network of Particles in Cement-Based Pastes. Cem. Concr. Res. 2024, 183, 107573. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, G.; Wang, Z.; Luo, S.; Huang, T.; Wu, M. Long-Term Performance and Hydration of Cement Mortars with Hydroxyethyl Methyl Cellulose Cured at 5 °C Low Temperature. Constr. Build. Mater. 2021, 307, 124963. [Google Scholar] [CrossRef]
- Dada, H.; Belaidi, A.S.E.; Soualhi, H.; Kadri, E.-H.; Benabed, B. Influence of Temperature on the Rheological Behaviour of Eco-Mortar with Binary and Ternary Cementitious Blends of Natural Pozzolana and Marble Powder. Powder Technol. 2021, 384, 223–235. [Google Scholar] [CrossRef]
- Lothenbach, B.; Winnefeld, F.; Alder, C.; Wieland, E.; Lunk, P. Effect of Temperature on the Pore Solution, Microstructure and Hydration Products of Portland Cement Pastes. Cem. Concr. Res. 2007, 37, 483–491. [Google Scholar] [CrossRef]
- Yan, J.; Li, X.; Wang, Z.; Liu, R.; Zhang, C.; Zhu, Z.; Cheng, B.; Ma, C.; Chen, M. Effect of Silica Fume and Hydroxyethyl Methyl Cellulose on the Properties of Cement-Sodium Silicate Grout at High Temperatures. Constr. Build. Mater. 2023, 409, 134130. [Google Scholar] [CrossRef]
- Bessaies-Bey, H.; Khayat, K.H.; Palacios, M.; Schmidt, W.; Roussel, N. Viscosity Modifying Agents: Key Components of Advanced Cement-Based Materials with Adapted Rheology. Cem. Concr. Res. 2022, 152, 106646. [Google Scholar] [CrossRef]
- Faiyas, A.P.A.; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G.; Nijland, T.G. Effect of MHEC on Evaporation and Hydration Characteristics of Glue Mortar. Cem. Concr. Res. 2016, 83, 97–103. [Google Scholar] [CrossRef]
- Patural, L.; Marchal, P.; Govin, A.; Grosseau, P.; Ruot, B.; Devès, O. Cellulose Ethers Influence on Water Retention and Consistency in Cement-Based Mortars. Cem. Concr. Res. 2011, 41, 46–55. [Google Scholar] [CrossRef]
- Brumaud, C.; Bessaies-Bey, H.; Mohler, C.; Baumann, R.; Schmitz, M.; Radler, M.; Roussel, N. Cellulose Ethers and Water Retention. Cem. Concr. Res. 2013, 53, 176–184. [Google Scholar] [CrossRef]
- Marliere, C.; Mabrouk, E.; Lamblet, M.; Coussot, P. How Water Retention in Porous Media with Cellulose Ethers Works. Cem. Concr. Res. 2012, 42, 1501–1512. [Google Scholar] [CrossRef]
- Bülichen, D.; Kainz, J.; Plank, J. Working Mechanism of Methyl Hydroxyethyl Cellulose (MHEC) as Water Retention Agent. Cem. Concr. Res. 2012, 42, 953–959. [Google Scholar] [CrossRef]
- Brumaud, C.; Baumann, R.; Schmitz, M.; Radler, M.; Roussel, N. Cellulose Ethers and Yield Stress of Cement Pastes. Cem. Concr. Res. 2014, 55, 14–21. [Google Scholar] [CrossRef]
- Pourchez, J.; Peschard, A.; Grosseau, P.; Guyonnet, R.; Guilhot, B.; Vallée, F. HPMC and HEMC Influence on Cement Hydration. Cem. Concr. Res. 2006, 36, 288–294. [Google Scholar] [CrossRef]
- Ou, Z.H.; Ma, B.G.; Jian, S.W. Influence of Cellulose Ethers Molecular Parameters on Hydration Kinetics of Portland Cement at Early Ages. Constr. Build. Mater. 2012, 33, 78–83. [Google Scholar] [CrossRef]
- Ma, B.; Peng, Y.; Tan, H.; Jian, S.; Zhi, Z.; Guo, Y.; Qi, H.; Zhang, T.; He, X. Effect of Hydroxypropyl-Methyl Cellulose Ether on Rheology of Cement Paste Plasticized by Polycarboxylate Superplasticizer. Constr. Build. Mater. 2018, 160, 341–350. [Google Scholar] [CrossRef]
- Chen, F.X.; Leng, Y.; Zhang, G.Z.; Wei, K.; Jin, L.; Yin, T.Y.; Yu, R. Revealing the Effect of Hydroxyethyl Methyl Cellulose Ether on Rheological Characteristics and Hydration Kinetics of Ultra-High Performance Concrete with High Thixotropy. Constr. Build. Mater. 2024, 457, 139388. [Google Scholar] [CrossRef]
- Pichniarczyk, P.; Niziurska, M. Properties of Ceramic Tile Adhesives Modified by Different Viscosity Hydroxypropyl Methylcellulose. Constr. Build. Mater. 2015, 77, 227–232. [Google Scholar] [CrossRef]
- Gu, L.; Liu, T.; Wu, K.; Yang, Z.; Wen, Z.; Zhang, Z.; Li, H. Temperature-Dependent Water Retention and Bleeding of Fresh Cement-Based Materials with VEAs. Cem. Concr. Compos. 2022, 130, 104539. [Google Scholar] [CrossRef]
- Lim, C.; Song, Y.H.; Song, Y.; Seo, J.H.; Hwang, D.S.; Lee, D.W. Adaptive Amphiphilic Interaction Mechanism of Hydroxypropyl Methylcellulose in Water. Appl. Surf. Sci. 2021, 565, 150535. [Google Scholar] [CrossRef]
- Yim, H.J.; Bae, Y.H.; Jun, Y. Hydration and Microstructural Characterization of Early-Age Cement Paste with Ultrasonic Wave Velocity and Electrical Resistivity Measurements. Constr. Build. Mater. 2021, 303, 124508. [Google Scholar] [CrossRef]
- Robeyst, N.; Grosse, C.U.; De Belie, N. Measuring the Change in Ultrasonic P-Wave Energy Transmitted in Fresh Mortar with Additives to Monitor the Setting. Cem. Concr. Res. 2009, 39, 868–875. [Google Scholar] [CrossRef]
- Sun, Z.; Voigt, T.; Shah, S.P. Rheometric and Ultrasonic Investigations of Viscoelastic Properties of Fresh Portland Cement Pastes. Cem. Concr. Res. 2006, 36, 278–287. [Google Scholar] [CrossRef]
- Longlong, H.; Yan, H.; Huaicheng, C.; Yuli, C.; Peng, L.; Dongyu, X. Ultrasonic Propagation Characteristics and Microstructure Analysis of Cement Paste Doped with Cellulose Ether. Constr. Build. Mater. 2024, 420, 135653. [Google Scholar] [CrossRef]
- Robeyst, N.; De Schutter, G.; Grosse, C.; De Belie, N. Monitoring the Effect of Admixtures on Early-Age Concrete Behaviour by Ultrasonic, Calorimetric, Strength and Rheometer Measurements. Mag. Concr. Res. 2011, 63, 707–721. [Google Scholar] [CrossRef]
- Ye, G.; Lura, P.; Van Breugel, K.; Fraaij, A.L.A. Study on the Development of the Microstructure in Cement-Based Materials by Means of Numerical Simulation and Ultrasonic Pulse Velocity Measurement. Cem. Concr. Compos. 2004, 26, 491–497. [Google Scholar] [CrossRef]
- GB 175-2023; National Standardization Administration Common Portland Cement. State Administration for Market Regulation: Beijing, China, 2023.
- GB/T 29756-2013; National Standardization Administration Test Methods of Physical Property for Dry-Mix Mortar. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2013.
Binder | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | K2O | SO3 | CO32− | Cl− |
---|---|---|---|---|---|---|---|---|---|---|
Cement | 22.33 | 6.94 | 3.52 | 57.64 | 1.97 | 0.25 | 0.78 | 2.43 | 3.6 | 0.024 |
Fly ash | 44.84 | 40.94 | 3.38 | 0.34 | 2.93 | 0.57 | 0.66 | 0.65 | — | — |
Sieve Size (mm) | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | 0 |
---|---|---|---|---|---|---|---|---|
Individual sieve residue (%) | 0 | 10.48 | 23.75 | 26.20 | 25.15 | 12.07 | 1.87 | 0.28 |
Cumulative sieve residue (%) | 0 | 10.48 | 34.23 | 60.43 | 85.59 | 97.66 | 99.53 | 99.81 |
Maximum Size (mm) | Apparent Density (kg/m3) | Loose Bulk Density (kg/m3) | Loose Bulk Porosity (%) | Fineness Modulus |
---|---|---|---|---|
2.36 | 2830 | 1570 | 45 | 2.88 |
Specimens | Cement (g) | Fly Ash (g) | Sand (g) | Limestone Powder (g) | HEMC (g) | Temperature (°C) |
---|---|---|---|---|---|---|
0% HEMC | 200 | 50 | 675 | 75 | 0 | 5/20/40 |
0.05% HEMC | 200 | 50 | 675 | 75 | 0.125 | |
0.10% HEMC | 200 | 50 | 675 | 75 | 0.250 | |
0.15% HEMC | 200 | 50 | 675 | 75 | 0.375 | |
0.20% HEMC | 200 | 50 | 675 | 75 | 0.500 | |
0.25% HEMC | 200 | 50 | 675 | 75 | 0.625 |
Parameter | Replicate 1 | Replicate 2 | Replicate 3 | Mean | Standard Deviation | Coefficient of Variation (CV) |
---|---|---|---|---|---|---|
Static yield stress (Pa) | 2897 | 2857 | 2826 | 2860 | 36.1 | 1.30% |
Dynamic yield stress (Pa) | 696 | 738 | 776 | 737 | 40 | 5.40% |
Plastic viscosity (Pa·s) | 11.7 | 11.6 | 11.3 | 11.5 | 0.2 | 1.80% |
Phase | O (at%) | Ca (at%) | Si (at%) | Al (at%) | S (at%) | Other (at%) |
---|---|---|---|---|---|---|
AFt | 31.8 | 8.38 | 3.12 | 1.5 | 3.76 | C 49.46; Mg 1.26; K 0.72 |
C–S–H | 47.01 | 20.02 | 21.51 | 6.59 | — | Fe 2.44; K 1.50; Mg 0.93 |
CH | — | 88.07 | 7.32 | 0.71 | — | Fe 3.50; K 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, G.; Yang, H.; Liu, S. Temperature-Dependent Effects of Hydroxyethyl Methyl Cellulose on Rheological Properties and Microstructural Evolution of Robotic Plastering Mortars. Materials 2025, 18, 4664. https://doi.org/10.3390/ma18204664
Ling G, Yang H, Liu S. Temperature-Dependent Effects of Hydroxyethyl Methyl Cellulose on Rheological Properties and Microstructural Evolution of Robotic Plastering Mortars. Materials. 2025; 18(20):4664. https://doi.org/10.3390/ma18204664
Chicago/Turabian StyleLing, Guangjie, Hongbin Yang, and Sifeng Liu. 2025. "Temperature-Dependent Effects of Hydroxyethyl Methyl Cellulose on Rheological Properties and Microstructural Evolution of Robotic Plastering Mortars" Materials 18, no. 20: 4664. https://doi.org/10.3390/ma18204664
APA StyleLing, G., Yang, H., & Liu, S. (2025). Temperature-Dependent Effects of Hydroxyethyl Methyl Cellulose on Rheological Properties and Microstructural Evolution of Robotic Plastering Mortars. Materials, 18(20), 4664. https://doi.org/10.3390/ma18204664