Precision of Fungal Resistance Test Method for Cereal Husk-Reinforced Composite Construction Profiles Considering Mycelium Removal Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Exposition to Fungi
2.3. Microstructure Analysis
2.4. Flexural Properties Test
2.5. Statistical Analysis Methods
- The repeatability variance, sr2, is calculated for all properties Y according to Equation (4).
- The between-researcher variance, sL2, is calculated for all properties Y according to Equation (5).
- The within-laboratory reproducibility variance, sR2, is calculated for all properties Y according to Equation (9).
3. Results and Discussion
3.1. Surface Assessment
3.2. Flexural Properties
3.3. Statistical Analyses
3.3.1. Metrological Properties of the Test Method
3.3.2. Differences Between the Water- and Brush-Cleaned Samples
Oat Husk-Reinforced Composite | Millet Husk-Reinforced Composite | ||||
---|---|---|---|---|---|
Initial Test Results | Cleaning with Water Jet | Initial Test Results | Cleaning with Water Jet | ||
Cleaning with water jet | Difference between values of flexural strength, % | −8 | −14 | ||
Difference between values of modulus, % | −34 | −45 | |||
Fcrit | 4.26 | 4.26 | |||
Fstr | 12 | 4.73 | |||
F mod | 153 | 64 | |||
Cleaning with soft brush | Mean difference between values of flexural strength, % | −9 | −1.3 | −28 | −16 |
Mean difference between values of modulus, % | −36 | −3.6 | −57 | −21 | |
Fcrit | 4.26 | 4.10 | 4.26 | 4.10 | |
Fstr | 14 | 0.45 | 21 | 7.7 | |
F mod | 181 | 1.85 | 151 | 9.4 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. International Vocabulary of Metrology—Basic and General Concepts and Associated Terms (VIM). Joint Committee for Guides in Metrology, JCGM 200:2012. (3rd edition). Available online: https://www.bipm.org/en/doi/10.59161/jcgm200-2012 (accessed on 15 December 2024). [CrossRef]
- The European Co-Operation for Accreditation (EA). EA-4/16 G: 2003 EA Guidelines on the Expression of Uncertainty in Quantitative Testing; The European Co-Operation for Accreditation (EA): Paris, France, 2003. [Google Scholar]
- Simonet, B.M.; Lendl, B.; Valcárcel, M. Method-Defined Parameters: Measurands Sometimes Forgotten. TrAC Trends Anal. Chem. 2006, 25, 520–527. [Google Scholar] [CrossRef]
- Szewczak, E.; Winkler-Skalna, A.; Czarnecki, L. Sustainable Test Methods for Construction Materials and Elements. Materials 2020, 13, 606. [Google Scholar] [CrossRef] [PubMed]
- Szewczak, E. Does Standardisation Ensure a Reliable Assessment of the Performance of Construction Products? Standards 2022, 2, 260–275. [Google Scholar] [CrossRef]
- Stancu, C.; Michalak, J. Interlaboratory Comparison as a Source of Information for the Product Evaluation Process. Case Study of Ceramic Tiles Adhesives. Materials 2022, 15, 253. [Google Scholar] [CrossRef]
- Michalak, J. Standards and Assessment of Construction Products: Case Study of Ceramic Tile Adhesives. Standards 2022, 2, 184–193. [Google Scholar] [CrossRef]
- BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. Evaluation of Measurement Data—The Role of Measurement Uncertainty in Conformity Assessment. Joint Committee for Guides in Metrology, JCGM 106:2012. Available online: https://www.bipm.org/en/doi/10.59161/JCGM106-2012 (accessed on 15 December 2024). [CrossRef]
- Schabowicz, K. Testing of Materials and Elements in Civil Engineering. Materials 2021, 14, 3412. [Google Scholar] [CrossRef] [PubMed]
- Walker, W.E.; Harremoës, P.; Rotmans, J.; van der Sluijs, J.P.; van Asselt, M.B.A.; Janssen, P.; Krayer von Krauss, M.P. Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support. Integr. Assess. 2003, 4, 5–17. [Google Scholar] [CrossRef]
- Vercher, J.; Fombuena, V.; Diaz, A.; Soriano, M. Influence of fibre and matrix characteristics on properties and durability of wood–plastic composites in outdoor applications. J. Thermoplast. Compos. Mater. 2020, 33, 477–500. [Google Scholar] [CrossRef]
- Friedrich, D.; Luible, A. Investigations on ageing of wood-plastic composites for outdoor applications: A meta-analysis using empiric data derived from diverse weathering trials. Constr. Build. Mater. 2016, 124, 1142–1152. [Google Scholar] [CrossRef]
- Stark, N.M.; Matuana, L.M. Ultraviolet weathering of photostabilised wood-flour-filled high-density polyethylene composites. J. Appl. Polym. Sci. 2003, 90, 2609–2617. [Google Scholar] [CrossRef]
- Sudoł, E.; Kozikowska, E.; Choińska, E. The Utility of Recycled Rice Husk-Reinforced PVC Composite Profiles for Façade Cladding. Materials 2022, 15, 3418. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Jiang, J.; Tao, Y.; Zhao, S.; Zeng, W.; Shi, Y.; Xiao, M. Sunlight tracking and concentrating accelerated weathering test applied in weatherability evaluation and service life prediction of polymeric materials: A review. Polym. Test. 2021, 93, 106940. [Google Scholar] [CrossRef]
- Pilarski, J.M.; Matuana, L.M. Durability of wood flour-plastic composites exposed to accelerated freeze-thaw cycling. Part I. Rigid PVC Matrix. J. Vinyl Addit. Technol. 2005, 11, 1–8. [Google Scholar] [CrossRef]
- Sethi, S.; Ray, B.C. Environmental effects on fibre reinforced polymeric composites: Evolving reasons and remarks on interfacial strength and stability. Adv. Colloid Interface Sci. 2015, 217, 43–67. [Google Scholar] [CrossRef]
- Ladaci, N.; Saadia, A.; Belaadi, A.; Boumaaza, M.; Chai, B.X.; Abdullah MM, S.; Al-Khawlanif, A.; Ghernaout, D. ANN and RSM Prediction of Water Uptake of Recycled HDPE Biocomposite Reinforced with Treated Palm Waste W. filifera. J. Nat. Fibers 2024, 21, 2356697. [Google Scholar] [CrossRef]
- Barton-Pudlik, J.; Czaja, K.; Grzymek, M.; Lipok, J. Evaluation of wood-polyethylene composites biodegradability caused by filamentous fungi. Int. Biodeterior. Biodegrad. 2017, 118, 10–18. [Google Scholar] [CrossRef]
- Altuntas, E.; Yilmaz, E.; Salan, T.; Alma, M.H. Biodegradation properties of wood-plastic composites containing high content of lignocellulosic filler and zinc borate exposed to two different brown-rot fungi. BioResources 2017, 12, 7161–7177. [Google Scholar] [CrossRef]
- Xu, K.; Feng, J.; Zhong, T.; Zheng, Z.; Chen, T. Effects of volatile chemical components of wood species on mould growth susceptibility and termite attack resistance of wood plastic composites. Int. Biodeterior. Biodegrad. 2015, 100, 106–115. [Google Scholar] [CrossRef]
- Hosseinaei, O.; Wang, S.; Taylor, A.M.; Kim, J.W. Effect of hemicellulose extraction on water absorption and mold susceptibility of wood-plastic composites. Int. Biodeterior. Biodegrad. 2012, 71, 29–35. [Google Scholar] [CrossRef]
- Yap, S.Y.; Sreekantan, S.; Hassan, M.; Sudesh, K.; Ong, M.T. Characterization and Biodegradability of Rice Husk-Filled Polymer Composites. Polymers 2021, 13, 104. [Google Scholar] [CrossRef]
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef] [PubMed]
- Fabiyi, J.S.; McDonald, A.G.; Morrell, J.J.; Freitag, C. Effects of wood species on durability and chemical changes of fungal decayed wood plastic composites. Compos. Part A Appl. Sci. Manuf. 2011, 42, 501–510. [Google Scholar] [CrossRef]
- Catto, A.L.; Rosseto, E.S.; Reck, M.A.; Rossini, K.; da Silveira RM, B.; Santana RM, C. Growth of white rot fungi in composites produced from urban plastic waste and wood. Macromol. Symp. 2014, 344, 33–38. [Google Scholar] [CrossRef]
- Camarero, S.; Martínez, M.J.; Martínez, A.T. Understanding lignin biodegradation for the improved utilization of plant biomass in modern biorefineries. Biofuels Bioprod. Biorefining 2014, 8, 615–625. [Google Scholar] [CrossRef]
- Catto, A.L.; Montagna, L.S.; Almeida, S.H.; Silveira, R.M.; Santana, R.M. Wood plastic composites weathering: Effects of compatibilization on biodegradation in soil and fungal decay. Int. Biodeterior. Biodegrad. 2016, 109, 11–22. [Google Scholar] [CrossRef]
- Mankowski, M.; Morrell, J.J. Patterns of fungal attack in wood-plastic composites following exposure in a soil block test. Wood Fiber Sci. 2000, 32, 340–345. Available online: https://ir.library.oregonstate.edu/concern/articles/fn106z43g (accessed on 8 November 2024).
- Ashori, A.; Behzad, H.M.; Tatmain, A. Effects of chemical preservative treatments on durability of wood flour/HDPE composites. Compos. Part B 2013, 47, 308–313. [Google Scholar] [CrossRef]
- Naumann, A.; Seefeldt, H.; Stephan, I.; Braun, U.; Noll, M. Material resistance of flame retarded wood-plastic composites against fire and fungal decay. Polym. Degrad. Stab. 2012, 97, 1189–1196. [Google Scholar] [CrossRef]
- ENV 12038:2022; Durability of Wood and Wood-Based Products. Wood based panels. Method of Test for Determining the Resistance Against Wood-Destroying Basidiomycetes. European Committee for Standardization (CEN): Brussels, Belgium, 2002.
- EN 15534-1:2017; Composites Made from Cellulose-Based Materials and Thermoplastics (Usually Called Wood-Polymer Composites (WPC) or Natural Fibre Composites (NFC)). Part 1: Test Methods for Characterisation of Compounds and Products. European Committee for Standardization (CEN): Brussels, Belgium, 2017.
- ISO 178:2019; Plastics. Determination of Flexural Properties. International Organization for Standardization ISO: Geneva, Switzerland, 2019.
- Sudoł, E.; Kozikowska, E.; Szewczak, E. Artificial Weathering Resistance Test Methods for Building Performance Assessment of Profiles Made of Natural Fibre-Reinforced Polymer Composites. Materials 2022, 15, 296. [Google Scholar] [CrossRef]
- ISO 5725-2:2019; Accuracy (Trueness and Precision) of Measurement Methods and Results. Part 2: Basic Method for the Determination of Repeatability and Reproducibility of a Standard Measurement Method. International Organization for Standardization ISO: Geneva, Switzerland, 2019.
- Prasad, A.; Rao, K. Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo. Mater. Design 2011, 32, 4658–4663. [Google Scholar] [CrossRef]
- Stark, N.M.; Matuana, L.M.; Clemons, C.M. Effect of processing method on surface and weathering characteristics of wood-flour/HDPE composites. J. Appl. Polym. Sci. 2004, 93, 1021–1030. [Google Scholar] [CrossRef]
Series Name | Matrix | Mineral Filler | Cereal Husk Filler | Other |
---|---|---|---|---|
M | PVC (100 phr) | CaCO3 (50 phr) | pulverised millet husks (30 phr) | impact modifiers (4.5 phr) flow modifiers (1 phr) stabiliser (4.5 phr) wax (2 phr) |
O | pulverised oat husks (30 phr) |
Properties | State of samples | ||||
Initial | After exposure to fungi | ||||
mycelium removal method | |||||
soft brush | water jet | ||||
researcher | |||||
I | II | I | II | ||
Flexural strength | σi | σbI | σbII | σwI | σwII |
Modulus of elasticity | Ei | EbI | EbII | EwI | EwII |
Composite | Water Jet Cleaning | Soft Brush Cleaning | Water Jet Cleaning | Soft Brush Cleaning |
---|---|---|---|---|
, % | , % | , % | , % | |
Oat husk-reinforced | 5.4 | 1.8 | 9.5 | 1.2 |
Millet husk-reinforced | 5.1 | 6.6 | 8.0 | 14.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sudoł, E.; Szewczak, E.; Goron, M.; Kozikowska, E. Precision of Fungal Resistance Test Method for Cereal Husk-Reinforced Composite Construction Profiles Considering Mycelium Removal Techniques. Materials 2025, 18, 411. https://doi.org/10.3390/ma18020411
Sudoł E, Szewczak E, Goron M, Kozikowska E. Precision of Fungal Resistance Test Method for Cereal Husk-Reinforced Composite Construction Profiles Considering Mycelium Removal Techniques. Materials. 2025; 18(2):411. https://doi.org/10.3390/ma18020411
Chicago/Turabian StyleSudoł, Ewa, Ewa Szewczak, Mariia Goron, and Ewelina Kozikowska. 2025. "Precision of Fungal Resistance Test Method for Cereal Husk-Reinforced Composite Construction Profiles Considering Mycelium Removal Techniques" Materials 18, no. 2: 411. https://doi.org/10.3390/ma18020411
APA StyleSudoł, E., Szewczak, E., Goron, M., & Kozikowska, E. (2025). Precision of Fungal Resistance Test Method for Cereal Husk-Reinforced Composite Construction Profiles Considering Mycelium Removal Techniques. Materials, 18(2), 411. https://doi.org/10.3390/ma18020411