Effect of SiO2 and MoS2 Particles as Lubricant Additives on Lubrication Performance in Sheet Metal Forming
Abstract
1. Introduction
1.1. Friction in Sheet Metal Forming
1.2. Why Is It Good to Use Solid Lubricant Additives
1.3. Motivation and Structure of the Paper
2. Materials and Methods
2.1. Test Material
2.2. Friction Testing Method
3. Results and Discussion
3.1. Characteristics of Test Materials
3.2. Coefficient of Friction
3.3. Surface Roughness
4. Conclusions
- the expected relationship was observed, i.e., lubrication with pure and modified S100 Plus oil reduced the CoF value compared to dry friction conditions;
- in the case of the UM countersamples, the CoF value depended on the SiO2 and MoS2 additive content in the oil and ranged between 0.223 (SiO2-10) and 0.271 (SiO2-1);
- for the countersample modified by electron beam melting, considering all friction conditions, the CoF decreased between 31.9% (MoS2-1 and MoS2-10) and 37.5% (S100 Plus oil lubrication);
- increasing the SiO2 and MoS2 content when testing DC01/UM and DC01/IPb contacts under base oil lubrication conditions resulted in a decrease in the CoF value;
- in relation to the as-received surface, the value of the Sa parameter, in conditions of dry friction and lubrication with pure oil, varied in the range of 11–20%, depending on the friction conditions; for DC01/EBM and DC01/IPb contacts, the average roughness value decreased as a result of the friction process;
- SEM analysis of the countersamples surfaces identified adhesion, flattening, and ploughing as the main friction mechanisms.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luiz, V.D.; de Matos Rodrigues, P.C. Design of a Tribo-Simulator for Investigation of the Tribological Behavior of Stainless-Steel Sheets Under Different Contact Conditions. Mater. Res. 2022, 25, e20210220. [Google Scholar] [CrossRef]
- Trzepieciński, T.; Szwajka, K.; Szewczyk, M.; Zielińska-Szwajka, J.; Barlak, M.; Nowakowska-Langier, K.; Okrasa, S. Analysis of Influence of Coating Type on Friction Behaviour and Surface Topography of DC04/1.0338 Steel Sheet in Bending Under Tension Friction Test. Materials 2024, 17, 5650. [Google Scholar] [CrossRef] [PubMed]
- Balyts’kyi, O.I.; Kolesnikov, V.O. Investigation of wear products of high-nitrogen manganese steels. Mater. Sci. 2009, 45, 576–581. [Google Scholar] [CrossRef]
- Balyts’kyi, O.I.; Kolesnikov, V.O.; Kawiak, P. Triboengineering properties of austenitic manganese steels and cast irons under the conditions of sliding friction. Mater. Sci. 2005, 41, 624–630. [Google Scholar] [CrossRef]
- Folle, L.F.; Schaeffer, L. Effect of surface roughness and lubrication on the friction coefficient in deep drawing processes of aluminum alloy aa1100 with fem analysis. Rev. Matéria 2019, 24, e-12298. [Google Scholar] [CrossRef]
- Adamus, J.; Więckowski, W.; Lacki, P. Analysis of the Effectiveness of Technological Lubricants with the Addition of Boric Acid in Sheet Metal Forming. Materials 2023, 16, 5125. [Google Scholar] [CrossRef]
- Antonicelli, M.; Piccininni, A.; Palumbo, G. Eco-friendly lubricants for improving performance and environmental impact in cold rolling. Procedia CIRP 2024, 125, 196–200. [Google Scholar] [CrossRef]
- Trzepieciński, T.; Szewczyk, M.; Szwajka, K. The Use of Non-Edible Green Oils to Lubricate DC04 Steel Sheets in Sheet Metal Forming Process. Lubricants 2022, 10, 210. [Google Scholar] [CrossRef]
- Bay, N.; Olsson, D.D.; Andreasen, J.L. Lubricant test methods for sheet metal forming. Tribol. Int. 2008, 41, 844–853. [Google Scholar] [CrossRef]
- Andreasen, J.L.; Olsson, D.D.; Chodnikiewicz, K.; Bay, N. Bending Under Tension Test with Direct Friction Measurement. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2006, 220, 73–80. [Google Scholar] [CrossRef]
- Wiklund, D.; Rosén, B.G.; Wihlborg, A. A friction model evaluated with results from a bending-under-tension test. Tribol. Int. 2009, 42, 1448–1452. [Google Scholar] [CrossRef]
- Folle, L.; Schaeffer, L. New Proposal to Calculate the Friction in Sheet Metal Forming Through Bending Under Tension Test. Mater. Res. 2019, 22, e20190523. [Google Scholar] [CrossRef]
- Trzepiecinski, T.; Lemu, H.G. Determination of Frictional Resistances of Deep Drawing Quality Steel Sheets in Bending Under Tension Test. Acta Metall. Slovaca 2018, 22, 12–17. [Google Scholar] [CrossRef]
- Oliveira, E.S.; Damasceno, J.R.; Neto, A.S.; Amaral, E.C.; Gonçalves, K.A.M.B.; Luiz, V.D. The Effect of the Drawing Die Radius in the Bending Under Tension Test on the Frictional Behaviour of AISI 430 Steel and AW-1100 Aluminium Alloy Sheets. Adv. Mech. Mater. Eng. 2024, 41, 183–193. [Google Scholar] [CrossRef]
- Chang, H.; Lan, C.W.; Chen, C.H.; Kao, M.J.; Guo, J.B. Anti-wear and friction properties of nanoparticles as additives in the lithium grease. Int. J. Precis. Eng. Manuf. 2014, 15, 2059–2063. [Google Scholar] [CrossRef]
- Ma, F.; Pham, S.T.; Wan, S.; Guo, L.; Yi, G.; Xia, Y.; Qi, S.; Zhu, H.; Ta, T.D. Evaluation of tribological performance of oxide nanoparticles in fully formulated engine oil and possible interacting mechanism at sliding contacts. Surf. Interfaces 2021, 24, 101127. [Google Scholar] [CrossRef]
- Hao, L.; Wang, Z.; Zhang, G.; Zhao, Y.; Duan, Q.; Wang, Z.; Chen, Y.; Li, T. Tribological evaluation and lubrication mechanisms of nanoparticles en-hanced lubricants in cold rolling. Mech. Ind. 2020, 21, 108. [Google Scholar] [CrossRef]
- Singh, A.; Chauhan, P.; Mamatha, T.G. A review on tribological performance of lubricants with nanoparticles additives. Mater. Today Proc. 2020, 25, 586–591. [Google Scholar] [CrossRef]
- Trzepieciński, T. Tarcie i Smarowanie w Procesach Kształtowania Blach; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2023. [Google Scholar]
- Taşkin, A.; Şahin, F.; Dengiz, C.G.; Demirbaş, T.C. Numerical and Experimental Investigation of Nano-Particle-Added Waste Oils on Lubrication Performance. OMU J. Eng. Sci. Technol. 2023, 3, 29–45. [Google Scholar]
- Liu, C.; Yin, Y.; Tong, B.; Zhang, G. Tribological properties of MoS2 powder-lubricated interface. Ind. Lubr. Technol. 2021, 73, 839–845. [Google Scholar] [CrossRef]
- Lovell, M.; Higgs, C.F.; Deshmukh, P.; Mobley, A. Increasing formability in sheet metal stamping operations using environmentally friendly lubricants. J. Mater. Process. Technol. 2006, 177, 87–90. [Google Scholar] [CrossRef]
- Mezher, M.T.; Saad, M.L.; Barrak, O.S.; Shakir, R.A. Finite Element Simulation and Experimental Analysis of Nano Powder Additives Effect in the Deep Drawing Process. Int. J. Mech. Mechatron. Eng. IJMME-IJENS 2020, 20, 166–180. [Google Scholar]
- Xie, H.; Jiang, B.; He, J.; Xia, X.; Pan, F. Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribol. Int. 2016, 93, 63–70. [Google Scholar] [CrossRef]
- Xie, H.; Jiang, B.; Hu, X.; Peng, C.; Guo, H.; Pan, F. Synergistic Effect of MoS2 and SiO2 Nanoparticles as Lubricant Additives for Magnesium Alloy–Steel Contacts. Nanomaterials 2017, 7, 154. [Google Scholar] [CrossRef]
- Mosleh, M.; Atnafu, N.D.; Belk, J.H.; Nables, O.M. Modification of sheet metal forming fluids with dispersed nanoparticles for improved lubrication. Wear 2009, 267, 1220–1225. [Google Scholar] [CrossRef]
- Trzepieciński, T.; Szwajka, K.; Szewczyk, M.; Zielińska-Szwajka, J.; Slota, J.; Kaščák, Ľ. The Effect of the Addition of Silicon Dioxide Particles on the Tribological Performance of Vegetable Oils in HCT600X+Z/145Cr46 Steel Contacts in the Deep-Drawing Process. Materials 2025, 18, 73. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Ngaile, G. Formulation of SiO2/oil nanolubricant for metal forming using hydrodynamic cavitation. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2020, 234, 1549–1558. [Google Scholar] [CrossRef]
- EN 10130:2009; Cold Rolled Low Carbon Steel Flat Products for Cold Forming. Technical Delivery Conditions. European Committee for Standardization: Brussels, Belgium, 2009.
- EN ISO 6892-1:2020; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. International Organization for Standardization: Geneva, Switzerland, 2020.
- Trzepieciński, T.; Szwajka, K.; Szewczyk, M.; Barlak, M.; Zielińska-Szwajka, J. Effect of Countersample Coatings on the Friction Behaviour of DC01 Steel Sheets in Bending-under-Tension Friction Tests. Materials 2024, 17, 3631. [Google Scholar] [CrossRef]
- Duncan, J.L.; Shabel, B.S.; Filho, J.G. A tensile strip test for evaluating friction in sheet metal forming. SAE Tech. Pap. 1978, 780391, 1–12. [Google Scholar] [CrossRef]
- Szwajka, K.; Trzepieciński, T.; Szewczyk, M.; Zielińska-Szwajka, J.; Barlak, M. Investigating Resulting Surface Topography and Residual Stresses in Bending DC01 Sheet Under Tension Friction Test. Lubricants 2025, 13, 255. [Google Scholar] [CrossRef]
- ISO 25178-2:2012; Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters. International Organization for Standardization: Geneva, Switzerland, 2012.
- Rahaman, M.L.; Zhang, L.; Liu, M.; Liu, W. Surface roughness effect on the friction and wear of bulk metallic glasses. Wear 2015, 332–333, 1231–1237. [Google Scholar] [CrossRef]
- Kong, L.; Zhang, L.; Bao, Y.; Liu, D.; Liu, S. Effect of Surface Roughness and Particle Size on Lubrication Mechanisms of SiO2 Nanoparticles. Adv. Mater. Sci. Eng. 2022, 2022, 7051650. [Google Scholar] [CrossRef]
- Reeves, C.J.; Menezes, P.L.; Lovell, M.R.; Jen, T.C. The influence of surface roughness and particulate size on the tribological performance of bio-based multi-functional hybrid lubricants. Tribol. Int. 2015, 88, 40–55. [Google Scholar] [CrossRef]
- Zakani, B.; Salem, H.; Entezami, S.; Sedaghat, A.; Grecov, D. Effect of particle concentration on lubrication performance of cellulose nanocrystalline (CNC) water-based lubricants: Mixed lubrication regime. Cellulose 2022, 29, 3963–3984. [Google Scholar] [CrossRef]
- Todhunter, L.D.; Leach, R.K.; Lawes, S.D.A.; Blateyron, F. Industrial survey of ISO surface texture parameters. CIRP J. Manuf. Sci. Technol. 2017, 19, 84–92. [Google Scholar] [CrossRef]
- Zabala, A.; Sáenz-De-Argandoña, E.; Cañizares, D.; Llavori, I.; Otegi, N.; Mendiguren, J. Numerical study of advanced friction modelling for sheet metal forming: Influence of the die local roughness. Tribol. Int. 2022, 165, 107259. [Google Scholar] [CrossRef]
- Kuo, M.C.; Tsai, C.M.; Huang, J.C.; Chen, M. PEEK composites reinforced by nano-sized SiO2 and Al2O3 particulates. Mater. Chem. Phys. 2005, 90, 185–195. [Google Scholar] [CrossRef]
Test No. | Countersample Type | Friction Conditions (Denotation) |
---|---|---|
1 | EBM | dry |
2 | S100 Plus | |
3 | S100 Plus + 1% SiO2 (SiO2-1) | |
4 | S100 Plus + 5% SiO2 (SiO2-5) | |
5 | S100 Plus + 10% SiO2 (SiO2-10) | |
6 | S100 Plus + 1% MoS2 (MoS2-1) | |
7 | S100 Plus + 5% MoS2 (MoS2-5) | |
8 | S100 Plus + 10% MoS2 (MoS2-10) | |
9 | UM | dry |
10 | S100 Plus | |
11 | S100 Plus + 1% SiO2 (SiO2-1) | |
12 | S100 Plus + 5% SiO2 (SiO2-5) | |
13 | S100 Plus + 10% SiO2 (SiO2-10) | |
14 | S100 Plus + 1% MoS2 (MoS2-1) | |
15 | S100 Plus + 5% MoS2 (MoS2-5) | |
16 | S100 Plus + 10% MoS2 (MoS2-10) | |
17 | IPb + EBM | dry |
18 | S100 Plus | |
19 | S100 Plus + 1% SiO2 (SiO2-1) | |
20 | S100 Plus + 5% SiO2 (SiO2-5) | |
21 | S100 Plus + 10% SiO2 (SiO2-10) | |
22 | S100 Plus + 1% MoS2 (MoS2-1) | |
23 | S100 Plus + 5% MoS2 (MoS2-5) | |
24 | S100 Plus + 10% MoS2 (MoS2-10) | |
25 | IPb | dry |
26 | S100 Plus | |
27 | S100 Plus + 1% SiO2 (SiO2-1) | |
28 | S100 Plus + 5% SiO2 (SiO2-5) | |
29 | S100 Plus + 10% SiO2 (SiO2-10) | |
30 | S100 Plus + 1% MoS2 (MoS2-1) | |
31 | S100 Plus + 5% MoS2 (MoS2-5) | |
32 | S100 Plus + 10% MoS2 (MoS2-10) |
Yield Stress, MPa | Ultimate Tensile Strength, MPa | Elongation, % |
---|---|---|
160.5 ± 2.76 | 284.5 ± 1.05 | 36.7 ± 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szwajka, K.; Trzepieciński, T.; Szewczyk, M.; Zielińska-Szwajka, J. Effect of SiO2 and MoS2 Particles as Lubricant Additives on Lubrication Performance in Sheet Metal Forming. Materials 2025, 18, 4605. https://doi.org/10.3390/ma18194605
Szwajka K, Trzepieciński T, Szewczyk M, Zielińska-Szwajka J. Effect of SiO2 and MoS2 Particles as Lubricant Additives on Lubrication Performance in Sheet Metal Forming. Materials. 2025; 18(19):4605. https://doi.org/10.3390/ma18194605
Chicago/Turabian StyleSzwajka, Krzysztof, Tomasz Trzepieciński, Marek Szewczyk, and Joanna Zielińska-Szwajka. 2025. "Effect of SiO2 and MoS2 Particles as Lubricant Additives on Lubrication Performance in Sheet Metal Forming" Materials 18, no. 19: 4605. https://doi.org/10.3390/ma18194605
APA StyleSzwajka, K., Trzepieciński, T., Szewczyk, M., & Zielińska-Szwajka, J. (2025). Effect of SiO2 and MoS2 Particles as Lubricant Additives on Lubrication Performance in Sheet Metal Forming. Materials, 18(19), 4605. https://doi.org/10.3390/ma18194605