Compressive-Shear Behavior and Cracking Characteristics of Composite Pavement Asphalt Layers Under Thermo-Mechanical Coupling
Abstract
1. Introduction
2. Theory and Methodology
2.1. Boundary Condition of Pavement Temperature Field
2.2. Modified Paris’ Law
3. FE Modeling and Validation
3.1. Pavement Structure Parameters
3.2. Ambient Temperature
3.3. Material Properties
3.3.1. Dynamic Modulus
3.3.2. Fracture Energy
3.4. Validation
4. Results and Discussion
4.1. Temperature–Modulus Gradient
4.1.1. Temperature Gradient
4.1.2. Dynamic Modulus Gradient
4.2. Thermal Stress
4.3. Load Stress
4.3.1. Flexural–Tensile Stress
4.3.2. Shear Stress
4.4. Cracking Analysis
4.4.1. Cracking Characteristics
4.4.2. Fatigue Life
- (1)
- Effect of temperature field
- (2)
- Effect of thermal stress
5. Conclusions
- (1)
- The asphalt layer exhibits significant modulus gradients induced by thermal gradients of −1.96 °C·cm−1 (summer) and −0.87 °C·cm−1 (winter). The daily modulus variations reach 329 MPa·cm−1 during summer and 1005 MPa·cm−1 in winter, with most pronounced fluctuations occurring at the surface. Using constant-temperature material parameters for pavement analysis and design leads to substantial deviations from actual service conditions, compromising analytical accuracy.
- (2)
- Under thermo-mechanical coupling conditions, the asphalt layer develops predominantly compressive-shear stress states. The analysis reveals critical shear stress concentrations at both tire centerlines and edges, with nighttime (01:00) surface stress magnitudes being 18% higher than corresponding daytime (14:00) values. The stress distribution shows significant dependence on base layer stiffness. Increasing the modulus from 10,000 MPa to 30,000 MPa results in maximum shear stress reductions of 22.8% at centerline locations and 8.6% at edge positions.
- (3)
- Asphalt layer cracking initiation predominantly occurs at the surface, exhibiting three distinct failure modes: (a) transverse cracking from thermal stress, (b) longitudinal cracking along traffic direction under loading, and (c) mixed-mode I–II fracture under thermo-mechanical coupling. Thermal stress governs crack initiation, while load stress controls propagation paths. Field validation via core sampling confirmed the inclined top-down cracking paths under coupled thermo-mechanical conditions.
- (4)
- The fracture energy release rate Gf at the crack tip exhibits significant temperature dependence. Under the 14:00 temperature field, Gf reaches its minimum value (155 J·m−2), corresponding to the maximum fatigue life of 32,625 cycles. Conversely, at 01:00 conditions, Gf attains its peak value (350 J·m−2), resulting in a reduced fatigue life of 29,933 cycles. This temperature-induced variation accounts for a 9.0% difference in fatigue performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Glossary
| XFEM | extended finite element method |
| RIOHTrack | full-scale pavement test track |
| STR5 | rigid base asphalt pavement structure in RIOHTrack |
| FWD | falling weight deflectometer |
| G | energy release rate |
| K | stress intensity factor |
| material parameters in the modified Paris’ law | |
| material parameters in the modified Paris’ law | |
| Gthresh | threshold value of the fracture energy release rate |
| Gpl | upper limit of the fracture energy release rate |
| Gequivc | critical energy release rate |
| Gf | fracture energy release rate |
| Wf | fracture work |
| SPT | simple performance tester |
| J3 | the third invariant of the deviatoric stress |
| Ebase | modulus of base |
| hAC | thickness of asphalt layer |
| SCB | semicircular bending tests |
References
- Li, S.; Sun, Y.; Xu, L.; Yu, S.; Liang, X.; Ye, J. Asphalt layer cracking behavior and thickness control of continuously reinforced concrete and asphalt concrete composite pavement. Buildings 2022, 12, 1138. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, S.; Huang, Y.; Liu, L.; Pan, Y. A systematic review of rigid-flexible composite pavement. J. Road Eng. 2024, 4, 203–223. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Y.; Yu, S.; Liu, J.; Li, S.; Liu, L.; Pan, Y. Structure and material of rigid-flexible composite pavements and development. J. China Foreign Highw. 2024, 44, 27–53. [Google Scholar]
- Li, S.; Yu, S.; Sun, Y.; Wang, Y. A new method for evaluating load transfer capacity of transverse crack of continuously reinforced concrete pavement in service. J. Cent. South Univ. (Sci. Technol.) 2024, 55, 742–754. [Google Scholar]
- He, Y.; Lv, S.; Xie, N.; Meng, H.; Lei, W.; Pu, C.; Ma, H.; Wang, Z.; Zheng, G.; Peng, X. Comparative study on the dynamic response of asphalt pavement structures: Analysis using the classic kelvin, maxwell, and three-parameter solid models. Buildings 2024, 14, 295. [Google Scholar] [CrossRef]
- Zheng, G.; Zhang, N.; Lv, S. Experimental study on dynamic modulus of high content rubber asphalt mixture. Buildings 2024, 14, 434. [Google Scholar] [CrossRef]
- Baradaran, S.; Aliha, M.R. Mode I and Mode II fracture assessment of green asphalt pavements containing plastic waste and RAP at low and intermediate temperature. Results Eng. 2025, 25, 103734. [Google Scholar] [CrossRef]
- Wei, H.; Xu, B.; Li, J.; Zheng, J.; Liu, Y.; Lu, R. Effect of temperature on fatigue damage evolution of asphalt mixture based on cluster analysis and acoustic emission parameters. Eng. Fract. Mech. 2025, 317, 110954. [Google Scholar] [CrossRef]
- Zhang, J.; Qu, H.; Huang, W.; Cheng, Z.; Liu, S.; Li, B. Evaluation of phase change thermoregulated asphalt on low temperature cracking performance of asphalt pavements. Case Stud. Constr. Mater. 2025, 22, e04612. [Google Scholar] [CrossRef]
- Ma, R.; Li, Y.; Cheng, P.; Chen, X.; Cheng, A. Low-temperature cracking and improvement methods for asphalt pavement in cold regions: A review. Buildings 2024, 14, 3802. [Google Scholar] [CrossRef]
- Dong, Z.; Quan, W.; Ma, X.; Wang, H.; Leng, Z. Analytical solution and effect analysis of asphalt pavement considering the spatial difference of material parameters. China J. Highw. Transp. 2020, 33, 91–101. [Google Scholar]
- Hu, Z.; Zhang, W.; Peng, T. Transverse crack patterns of long-term field asphalt pavement constructed with semi-rigid base. Int. J. Pavement Res. Technol. 2024, 17, 353–365. [Google Scholar] [CrossRef]
- Xie, P.; Wang, H. Comparative evaluation of mitigation methods for traffic-induced reflective cracking in airport composite pavement. Constr. Build. Mater. 2023, 390, 131787. [Google Scholar] [CrossRef]
- Sok, T.; Chhay, L.; Lee, S.W.; Kim, Y.K. Insulation effects of asphalt concrete overlay on concrete pavement temperature. Iran. J. Sci. Technol. Trans. Civ. Eng. 2023, 47, 2521–2531. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Zhou, X. Bidirectional fatigue damage analysis of asphalt pavement. China J. Highw. Transp. 2023, 36, 21–37. [Google Scholar]
- Lou, L.; Xiao, X.; Li, J.; Xiao, F. Thermal-mechanical coupled XFEM simulation of low temperature cracking behavior in asphalt concrete waterproofing layer. Cold Reg. Sci. Technol. 2023, 213, 103910. [Google Scholar] [CrossRef]
- Tao, X.; Zhan, A.; Huang, X.; Bai, T. Analysis of top-down cracking in asphalt pavements based on energy principles. Materials 2025, 18, 1586. [Google Scholar] [CrossRef]
- Cao, Z.; Cao, D.; Chang, H.; Fu, Y.; Shen, X.; Huang, W.; Wang, H.; Bao, W.; Feng, C.; Tong, Z.; et al. Evaluation of highway pavement structural conditions based on measured crack morphology by 3d gpr and finite element modeling. Materials 2025, 18, 3336. [Google Scholar] [CrossRef]
- Ban, H.; Im, S.; Kim, Y.R. Mixed-mode fracture characterization of fine aggregate mixtures using semicircular bend fracture test and extended finite element modeling. Constr. Build. Mater. 2015, 101, 721–729. [Google Scholar] [CrossRef]
- Gao, L.; Yang, Y.; Jiang, J.; Zhou, Y.; Kong, H. Investigation of the top-down cracking propagation behavior of flexible asphalt pavement based on numerical modeling and full-scale accelerated pavement tests. J. Transp. Eng. Part B Pavements 2025, 151, 04025026. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, N.; Zhao, Y.; Chen, Z. Determination and conversion of relaxation and retardation time spectrum of asphalt mixtures. J. Beijing Univ. Technol. 2019, 45, 168–176. [Google Scholar]
- Wang, X.; Geng, L.; Li, K.; Xu, Q.; Ding, Y.; Tao, Y. Cracking propagation of asphalt pavement of stabilized base with inorganic binder under coupling of overloaded traffic and temperature. J. Transp. Eng. Part B Pavements 2024, 150, 04024013. [Google Scholar] [CrossRef]
- Wang, M.; Yu, X.; Chen, C. Mechanical response analysis of asphalt pavement considering top-down crack based on FDM-DEM coupling simulation. J. Road Eng. 2025, 5, 92–105. [Google Scholar] [CrossRef]
- Umberto, D.M.; Daniele, G.; Fabrizio, G.; Paolo, L.; Andrea, P. An adaptive cohesive interface model for fracture propagation analysis in heterogeneous media. Eng. Fract. Mech. 2025, 325, 111330. [Google Scholar] [CrossRef]
- Liu, P.; Chen, J.; Lu, G.; Wang, D.; Oeser, M.; Leischner, S. Numerical simulation of crack propagation in flexible asphalt pavements based on cohesive zone model developed from asphalt mixtures. Materials 2019, 12, 1278. [Google Scholar] [CrossRef]
- Mohsen, R.; Neda, K.; Mahmoud, A. Dynamic response and sound radiation of cracked asphalt pavements under moving loads and variable thermal profiles. Int. J. Pavement Eng. 2024, 25, 2383963. [Google Scholar] [CrossRef]
- Hassan, Z.; Mohammad, R.M.; Barat, M.; Majid, J.S. Investigating the effects of loading, mechanical properties and layers geometry on fatigue life of asphalt pavements. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1563–1577. [Google Scholar] [CrossRef]
- Zhao, Z.; Ma, F.; Fu, Z.; Dong, W.; Hou, Y.; Dai, J. Investigation of low-temperature fracture characteristics of asphalt concrete under the coupled erosion of sea salt dry-wet cycles. Theor. Appl. Fract. Mech. 2025, 138, 104946. [Google Scholar] [CrossRef]
- Xu, Y.; Fan, W.; Shan, L.; Chang, P. Mechanical characterisation of interface shear strain of multi-layer composite pavement. Int. J. Pavement Eng. 2018, 22, 1116–1122. [Google Scholar] [CrossRef]
- Alae, M.; Ling, M.; Haghshenas, H.F.; Zhao, Y. Three-dimensional finite element analysis of top-down crack propagation in asphalt pavements. Eng. Fract. Mech. 2021, 248, 107736. [Google Scholar] [CrossRef]
- Darabi, M.K.; Rahmani, E.; Masad, E.A.; Little, D.N. A coupled aging–viscoelastic–viscodamage model for predicting fatigue behavior in aged asphalt pavements. Mech. Time-Depend. Mater. 2025, 29, 50. [Google Scholar] [CrossRef]
- Fu, Q.; Chen, X.; Qiu, X. Spatial distribution characterization of the Temperature-induced gradient viscoelasticity inside asphalt pavement. Constr. Build. Mater. 2022, 346, 128454. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Carsten, K. Fatigue life analysis of cruciform specimens under biaxial loading using the paris equation. Metals 2025, 15, 579. [Google Scholar] [CrossRef]
- Sajith, S.; Murthy, K.; Robi, P.S. Experimental and numerical investigation of mixed mode fatigue crack growth models in aluminum 6061-T6. Int. J. Fatigue 2020, 130, 105285. [Google Scholar] [CrossRef]
- Luo, R.; Chen, H. An improved method of characterizing fracture resistance of asphalt mixtures using modified Paris’ law: Part II—Establishment of index for fracture resistance. Mech. Mater. 2019, 138, 103168. [Google Scholar] [CrossRef]
- Guo, X.; Sun, M.; Dai, W.; Zhu, K.; Li, J. Research on the fatigue whole life of asphalt mixture based on the nonlinear damage theory. Constr. Build. Mater. 2017, 156, 546–554. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Sun, Y.; Wei, W. Top-Down crack analysis of continuously reinforced concrete and asphalt concrete composite pavement. J. Cent. South Univ. (Sci. Technol.) 2022, 53, 2300–2310. [Google Scholar]
- Jia, M.; Wu, Z.; Jiang, X.; Wang, Y. Modified Paris law for mode I fatigue fracture of concrete based on crack propagation resistance. Theor. Appl. Fract. Mech. 2024, 131, 104383. [Google Scholar] [CrossRef]
- Li, S.; Yu, S.; Zhang, H.; Yu, R.C.; Zhang, X.; Wang, Y. Research on fatigue propagation of Top-Down cracks on continuously reinforced concrete composite asphalt pavement. J. Cent. South Univ. (Sci. Technol.) 2022, 53, 4473–4484. [Google Scholar]
- AASHTO TP62-03; Standard Method of Test for Determining Dynamic Modulus of Hot-Mix Asphalt Concrete Mixtures. American Association of State Highway and Transportation Officials: Washington, DC, USA, 2003.
- Mekdim, T.W.; Rafiqul, A.T. Laboratory investigation of asphalt concrete dynamic modulus testing on the criteria of meeting linear viscoelastic requirements. Road Mater. Pavement Des. 2014, 3, 554–573. [Google Scholar] [CrossRef]
- Zheng, G.; Zhang, N.; Wang, P.; Lv, S. Study on the characterization method of dynamic modulus for asphalt mixture under multi-factor coupling conditions. Constr. Build. Mater. 2024, 421, 135758. [Google Scholar] [CrossRef]
- Gu, L.; Chen, L.; Zhang, W.; Ma, H.; Ma, T. Mesostructural modeling of dynamic modulus and phase angle master curves of rubber modified asphalt mixture. Materials 2019, 12, 1667. [Google Scholar] [CrossRef]
- Ma, L.; Wang, H.; Ma, Y. Viscoelasticity of asphalt mixture based on the dynamic modulus test. J. Mater. Civ. Eng. 2024, 36, 04023624. [Google Scholar] [CrossRef]
- Song, W.; Xu, Z.; Xu, F.; Wu, H.; Yin, J. Fracture investigation of asphalt mixtures containing reclaimed asphalt pavement using an equivalent energy approach. Eng. Fract. Mech. 2021, 253, 107892. [Google Scholar] [CrossRef]
- Song, W.; Fan, Y.; Wu, H.; Zhou, L. I-II mixed fracture characterization of hot mix asphalt under tensile test using notched semi-circular specimens. Theor. Appl. Fract. Mech. 2024, 129, 104200. [Google Scholar] [CrossRef]
- Maglad, A.M.; Mansour, W.; Tayeh, B.A.; Elmasry, M.; Yosri, A.M.; Fayed, S. Experimental and analytical investigation of fracture characteristics of steel fiber-reinforced recycled aggregate concrete. Int. J. Concr. Struct. Mater. 2023, 17, 74. [Google Scholar] [CrossRef]
- Mousavinejad, S.H.; Sammak, M. An assessment of the fracture parameters of ultra-high-performance fiber-reinforced geopolymer concrete (UHPFRGC): The application of work of fracture and size effect methods. Theor. Appl. Fract. Mech. 2022, 117, 103157. [Google Scholar] [CrossRef]
- Pirmohammad, S.; Momeni, R.; Khanghahi, S.H. Effect of SCB specimen size on mode I fracture parameters of asphalt concrete at low and intermediate temperatures. Theor. Appl. Fract. Mech. 2024, 130, 104314. [Google Scholar] [CrossRef]
- Modarres, A.; Shabani, H. Investigating the effect of aircraft impact loading on the longitudinal top-down crack propagation parameters in asphalt runway pavement using fracture mechanics. Eng. Fract. Mech. 2015, 150, 28–46. [Google Scholar] [CrossRef]
- Amini, A.; Parvizi, H. Combined effect of gilsonite, sasobit, and soft binder on performance characterization of high RAP binder. Constr. Build. Mater. 2024, 451, 138714. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, S.; Wang, J. Research on pavement longitudinal crack propagation under non-uniform vehicle loading. Eng. Fail. Anal. 2014, 42, 22–31. [Google Scholar] [CrossRef]
- Wu, Z.; Hu, S.; Zhou, F. Prediction of stress intensity factors in pavement cracking with neural networks based on semi-analytical FEA. Expert Syst. Appl. 2014, 41 Pt 1, 1021–1030. [Google Scholar] [CrossRef]
- Silva, M.V.; Antão, A.N. A new Hoek-Brown-Matsuoka-Nakai failure criterion for rocks. Int. J. Rock Mech. Min. Sci. 2023, 172, 105602. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Hoseini, S.H.; Farrahi, G.H. A plasticity model for metals with dependency on all the stress invariants. J. Eng. Mater. Technol. 2013, 135, 011002. [Google Scholar] [CrossRef]
- Nian, T.; Li, S.; Li, P.; Li, J.; Han, Z.; Xue, S. Mechanical response of interlayer structural shear performance of asphalt pavement with functional layer considering interlayer contact state. Case Stud. Constr. Mater. 2023, 18, e01934. [Google Scholar] [CrossRef]
- Fan, Y.; Yu, Y.; Shi, C.; Wu, Y.; Huang, S.; Zhou, Y.; Wang, H.; Yang, J.; Huang, W. Failure modes of asphalt pavement with top-down cracks based on measured aging gradients in field cores. Constr. Build. Mater. 2024, 438, 137050. [Google Scholar] [CrossRef]































| Summer | Winter | ||||||
|---|---|---|---|---|---|---|---|
| Time | Temperature/°C | Time | Temperature/°C | Time | Temperature/°C | Time | Temperature/°C |
| 1:00 | 31.3 | 13:00 | 35.2 | 1:00 | −2.5 | 13:00 | 3.6 |
| 2:00 | 31.0 | 14:00 | 35.6 | 2:00 | −3.6 | 14:00 | 4.6 |
| 3:00 | 30.5 | 15:00 | 36.3 | 3:00 | −5.1 | 15:00 | 5.4 |
| 4:00 | 30.3 | 16:00 | 37.2 | 4:00 | −6.5 | 16:00 | 5.6 |
| 5:00 | 30.1 | 17:00 | 36.6 | 5:00 | −7.1 | 17:00 | 5.3 |
| 6:00 | 28.4 | 18:00 | 36.6 | 6:00 | −3.7 | 18:00 | 4.2 |
| 7:00 | 28.3 | 19:00 | 34.9 | 7:00 | −2.3 | 19:00 | 3.2 |
| 8:00 | 30.4 | 20:00 | 33.7 | 8:00 | −1.9 | 20:00 | 2.0 |
| 9:00 | 32.0 | 21:00 | 33.4 | 9:00 | −1.0 | 21:00 | 1.7 |
| 10:00 | 31.4 | 22:00 | 32.4 | 10:00 | 0.4 | 22:00 | 1.2 |
| 11:00 | 32.5 | 23:00 | 32.0 | 11:00 | 2.1 | 23:00 | 0.7 |
| 12:00 | 33.7 | 24:00 | 31.0 | 12:00 | 2.8 | 24:00 | 0.2 |
| Month | Daily Solar Radiation Q/(J·m−2) | Sunshine Duration c/h | Daily Average Wind Speed v/(m·s−1) |
|---|---|---|---|
| December | 9.14 × 106 | 6.5 | 2.9 |
| July | 18.7 × 106 | 11.7 | 2.5 |
| Properties | AC | Cement Concrete | CSM | Soil |
|---|---|---|---|---|
| Thermal conductivity k (J/m·h·°C) | 4670 | 6200 | 5620 | 5620 |
| Density ρ (kg·m−3) | 2300 | 2400 | 2200 | 1800 |
| Thermal capacity C (J/kg·°C) | 924 | 780 | 911 | 1040 |
| Absorption factor of solar radiation as (%) | 0.9 | |||
| Road surface emissivity ε (%) | 0.81 | |||
| Absolute zero value (°C) | −273 | |||
| Stefan–Boltzmann constant (J/h·m2·K4) | 2.041 × 10−4 | |||
| Testing Temperature/°C | Testing Frequency/Hz | Strain Level/με | Number of Parallel Tests |
|---|---|---|---|
| −25, −15, 0, 15, 25 | 0.1, 0.5, 1,5, 10, 25 | 85–95 | 4 |
| Temperature/°C | Dynamic Modules/MPa | |||||
|---|---|---|---|---|---|---|
| 25 Hz | 10 Hz | 5 Hz | 1 Hz | 0.5 Hz | 0.1 Hz | |
| −25 | 32,359 | 31,623 | 30,903 | 30,200 | 28,184 | 25,704 |
| −15 | 26,915 | 25,704 | 24,547 | 22,387 | 20,893 | 18,197 |
| 0 | 21,380 | 19,953 | 18,621 | 15,136 | 13,183 | 10,471 |
| 15 | 12,882 | 10,000 | 8128 | 5495 | 4467 | 3890 |
| 25 | 8128 | 6310 | 5495 | 4169 | 3802 | 3236 |
| Frequency/Hz | 25 | 10 | 5 | 1 | 0.5 | 0.1 |
|---|---|---|---|---|---|---|
| Shift Factor lg(af) | −4.4926 | 0 | 3.4950 | 9.9493 | 12.3931 | 16.8551 |
| lg|E*max| | lg|E*min| | TE0 | dx |
|---|---|---|---|
| 4.431 | 3.258 | 21.5 | 10.08 |
| ρi | Time/s | Ei | Modulus/MPa |
|---|---|---|---|
| ρ1 | 0.000001 | E1 | 5538 |
| ρ2 | 0.00001 | E2 | 6188 |
| ρ3 | 0.0001 | E3 | 6475 |
| ρ4 | 0.001 | E4 | 2712 |
| ρ5 | 0.01 | E5 | 1216 |
| ρ6 | 0.1 | E6 | 713 |
| ρ7 | 1 | E7 | 404.3 |
| ∞ | E∞ | 391.4 |
| Temperature/°C | Tensile Strength S/MPa | Critical Energy Release Rate Gequivc/(J·m−2) |
|---|---|---|
| 5 | 5.16 | 2246 |
| 0 | 10.38 | 1792 |
| −5 | 11.92 | 452 |
| Materials | Density/(kg·m−3) | Young’s Modulus/MPa | Poisson’s Ratio |
|---|---|---|---|
| Asphalt concrete | 2400 | Using dynamic modulus master curve | 0.20 |
| Portland cement concrete | 2300 | 30,000 | 0.15 |
| Cement-stabilized graded crushed stone | 2300 | 1200 | 0.25 |
| Cement-stabilized soil | 2200 | 1000 | 0.30 |
| Subgrade | 1800 | 60 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.; Huang, Y.; Liu, Z.; Long, Y. Compressive-Shear Behavior and Cracking Characteristics of Composite Pavement Asphalt Layers Under Thermo-Mechanical Coupling. Materials 2025, 18, 4543. https://doi.org/10.3390/ma18194543
Yu S, Huang Y, Liu Z, Long Y. Compressive-Shear Behavior and Cracking Characteristics of Composite Pavement Asphalt Layers Under Thermo-Mechanical Coupling. Materials. 2025; 18(19):4543. https://doi.org/10.3390/ma18194543
Chicago/Turabian StyleYu, Shiqing, You Huang, Zhaohui Liu, and Yuwei Long. 2025. "Compressive-Shear Behavior and Cracking Characteristics of Composite Pavement Asphalt Layers Under Thermo-Mechanical Coupling" Materials 18, no. 19: 4543. https://doi.org/10.3390/ma18194543
APA StyleYu, S., Huang, Y., Liu, Z., & Long, Y. (2025). Compressive-Shear Behavior and Cracking Characteristics of Composite Pavement Asphalt Layers Under Thermo-Mechanical Coupling. Materials, 18(19), 4543. https://doi.org/10.3390/ma18194543

