Shrinkage Characteristics of Geopolymer Concrete: A Comprehensive Review
Abstract
1. Introduction
2. Geopolymer and Reaction Mechanism
2.1. Geopolymers
2.2. Precursors
2.2.1. Fly Ash
2.2.2. Ground Granulated Blast-Furnace Slag
2.2.3. Metakaolin
2.2.4. Bauxite Residue
2.2.5. Alkali Activator
3. Shrinkage in Geopolymer Concrete
3.1. Plastic Shrinkage
3.2. Thermal Shrinkage
3.3. Autogenous Shrinkage
3.4. Drying Shrinkage
4. Factors Influencing Shrinkage in Geopolymer Concrete
4.1. Alkali Activator
4.1.1. Alkali Concentration
4.1.2. Liquid-to-Solid Ratio
4.1.3. Sodium Silicate to Sodium Hydroxide Ratio
4.2. Binder Materials
4.2.1. Precursor Particle Size
4.2.2. Precursor Porosity
4.2.3. Precursor Composition
4.3. Water-to-Binder Ratio
4.4. Curing Conditions
5. Mitigation Strategies for Shrinkage in Geopolymer Concrete
5.1. Chemical Additives
5.1.1. Expansive Agent
5.1.2. Shrinkage-Reducing Admixture
5.1.3. Superabsorbent Polymers
5.2. Material Optimization
5.3. Curing Conditions
6. Emerging Strategies
7. Conclusions
- (1)
- The activator concentration and the liquid-to-solid ratio are dominant factors, with greater values leading to increased shrinkage due to higher gel volume, denser capillary networks, and intensified drying stresses.
- (2)
- Reducing the water-to-binder ratio generally reduces drying shrinkage by minimizing pore formation and limiting water evaporation. A lower w/b ratio results in a denser matrix with reduced capillary stresses, while higher ratios increase porosity and moisture loss, leading to greater drying shrinkage.
- (3)
- Precursor composition, particularly calcium content, plays a crucial role; calcium-rich systems can form C-A-S-H phases that may partially mitigate shrinkage in low calcium binders.
- (4)
- High-temperature curing (oven and steam, at approximately 60 to 80 °C) typically reduces shrinkage due to accelerated reaction kinetics and early matrix stiffening, while ambient curing prolongs the shrinkage-active period due to slower polymerization and, thus, greater exposure to drying and shrinkage. Nonetheless, some studies reported that excessive thermal curing may increase shrinkage in GGBFS-based systems, underscoring the need for optimized curing protocols.
- (5)
- Chemical additives show great potential for mitigating shrinkage when used in appropriate dosages. These additives reduce the internal surface tensile stress and refine the pore structure of the geopolymer matrix.
- (6)
- Bio additives show promising mitigation potential in balancing shrinkage behaviour and the mechanical performance of geopolymer composites.
- (7)
- Most studies found that geopolymer composites generally shrink more than OPC composites. However, the mitigation strategies presented can reduce shrinkage in geopolymer composites below the values typically observed for OPC.
8. Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Not Just Another Brick in the Wall: The Solutions Exist—Scaling Them will Build on Progress and Cut Emissions Fast. Global Status Report for Buildings and Construction 2024/2025. Available online: https://wedocs.unep.org/handle/20.500.11822/47214 (accessed on 15 August 2025).
- Dean, B.; Dulac, J.; Petrichenko, K.; Graham, P. Towards zero-emission efficient and resilient buildings. In Global Status Report; Global Alliance for Buildings and Construction (GABC): Baku, Azerbaijan, 2016. [Google Scholar]
- Cheng, D.; Reiner, D.M.; Yang, F.; Cui, C.; Meng, J.; Shan, Y.; Liu, Y.; Tao, S.; Guan, D. Projecting future carbon emissions from cement production in developing countries. Nat. Commun. 2023, 14, 8213. [Google Scholar] [CrossRef]
- Wong, L.S. Durability Performance of Geopolymer Concrete: A Review. Polymers 2022, 14, 868. [Google Scholar] [CrossRef]
- Matsimbe, J.; Dinka, M.; Olukanni, D.; Musonda, I. Geopolymer: A Systematic Review of Methodologies. Materials 2022, 15, 6852. [Google Scholar] [CrossRef]
- Rodrigue, A.; Bissonnette, B.; Duchesne, J.; Fournier, B. Shrinkage of Alkali-Activated Combined Slag and Fly Ash Concrete Cured at Ambient Temperature. ACI Mater. J. 2022, 119, 15–23. [Google Scholar] [CrossRef]
- Harmaji, A.; Jafari, R.; Simard, G. Durable bauxite-residue geopolymers: Enhancing scaling resistance with fly ash and waste glass powder. Constr. Build. Mater. 2025, 491, 142661. [Google Scholar] [CrossRef]
- ASTM C1948/C1948M−24; Standard Specification for Alkali-Activated Cementitious Materials. ASTM International: West Conshohocken, PA, USA, 2024.
- Skariah Thomas, B.; Yang, J.; Bahurudeen, A.; Chinnu, S.N.; Abdalla, J.A.; Hawileh, R.A.; Hamada, H.M. Geopolymer concrete incorporating recycled aggregates: A comprehensive review. Clean. Mater. 2022, 3, 100056. [Google Scholar] [CrossRef]
- Parathi, S.; Nagarajan, P.; Pallikkara, S.A. Ecofriendly geopolymer concrete: A comprehensive review. Clean Technol. Environ. Policy 2021, 23, 1701–1713. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mohapatra, S.; Gaur, A.; Dwivedi, G.; Soni, A. Study of various properties of geopolymer concrete—A review. Mater. Today Proc. 2021, 46, 5687–5695. [Google Scholar] [CrossRef]
- Aleem, M.I.A.; Arumairaj, P.D. Geopolymer Concrete—A Review. Int. J. Eng. Sci. Emerg. Technol. 2012, 1, 118–122. [Google Scholar] [CrossRef]
- Amran, Y.H.M.; Alyousef, R.; Alabduljabbar, H.; El-Zeadani, M. Clean production and properties of geopolymer concrete: A review. J. Clean. Prod. 2020, 251, 119679. [Google Scholar] [CrossRef]
- Abbas, R.; Khereby, M.A.; Ghorab, H.Y.; Elkhoshkhany, N. Preparation of geopolymer concrete using Egyptian kaolin clay and the study of its environmental effects and economic cost. Clean Technol. Environ. Policy 2020, 22, 669–687. [Google Scholar] [CrossRef]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Sarker, P.K.; Haque, R.; Ramgolam, K.V. Fracture behaviour of heat cured fly ash based geopolymer concrete. Mater. Des. 2013, 44, 580–586. [Google Scholar] [CrossRef]
- Singh, B.; Ishwarya, G.; Gupta, M.; Bhattacharyya, S.K. Geopolymer concrete: A review of some recent developments. Constr. Build. Mater. 2015, 85, 78–90. [Google Scholar] [CrossRef]
- Lloyd, N.A.; Rangan, B.V. Geopolymer Concrete: A Review of Development and Opportunities. 2010. Available online: https://www.semanticscholar.org/paper/Geopolymer-Concrete%3A-A-Review-of-Development-and-Lloyd-Rangan/10495b9901443d533445ddd6e5adcab449597742 (accessed on 15 August 2025).
- Lee, N.K.; Jang, J.G.; Lee, H.K. Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages. Cem. Concr. Compos. 2014, 53, 239–248. [Google Scholar] [CrossRef]
- Imtiaz, L.; Rehman, S.K.U.; Ali Memon, S.; Khizar Khan, M.; Faisal Javed, M. A Review of Recent Developments and Advances in Eco-Friendly Geopolymer Concrete. Appl. Sci. 2020, 10, 7838. [Google Scholar] [CrossRef]
- Barr, B.; Hoseinian, S.B.; Beygi, M.A. Shrinkage of concrete stored in natural environments. Cem. Concr. Compos. 2003, 25, 19–29. [Google Scholar] [CrossRef]
- Mohamed, O.; Zuaiter, H. Fresh Properties, Strength, and Durability of Fiber-Reinforced Geopolymer and Conventional Concrete: A Review. Polymers 2024, 16, 141. [Google Scholar] [CrossRef]
- Allena, S.; Newtson, C.M. State-of-the-Art Review on Early-Age Shrinkage of Concrete. Indian Concr. J. 2011, 85, 14–20. [Google Scholar]
- Drying Shrinkage. Available online: https://www.engr.psu.edu/ce/courses/ce584/concrete/library/cracking/dryshrinkage/dryingshrinkage.html (accessed on 15 August 2025).
- Yuan, X.; Chen, W.; Lu, Z.; Chen, H. Shrinkage compensation of alkali-activated slag concrete and microstructural analysis. Constr. Build. Mater. 2014, 66, 422–428. [Google Scholar] [CrossRef]
- Majidi, B. Geopolymer technology, from fundamentals to advanced applications: A review. Mater. Technol. 2009, 24, 79–87. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer Chemistry and Application, 5th ed.; Institut Geopolymere: Saint-Quentin, France, 2020. [Google Scholar]
- Jwaida, Z.; Dulaimi, A.; Mashaan, N.; Othuman Mydin, M.A. Geopolymers: The Green Alternative to Traditional Materials for Engineering Applications. Infrastructures 2023, 8, 98. [Google Scholar] [CrossRef]
- Duxson, P.; Lukey, G.C.; Separovic, F.; van Deventer, J.S.J. Effect of Alkali Cations on Aluminum Incorporation in Geopolymeric Gels. Ind. Eng. Chem. Res. 2005, 44, 832–839. [Google Scholar] [CrossRef]
- Kenne Diffo, B.B.; Elimbi, A.; Cyr, M.; Dika Manga, J.; Tchakoute Kouamo, H. Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers. J. Asian Ceram. Soc. 2015, 3, 130–138. [Google Scholar] [CrossRef]
- Provis, J.L.; Duxson, P.; Van Deventer, J.S.J.; Lukey, G.C. The Role of Mathematical Modelling and Gel Chemistry in Advancing Geopolymer Technology. Chem. Eng. Res. Des. 2005, 83, 853–860. [Google Scholar] [CrossRef]
- Kim, B.; Lee, S. Review on characteristics of metakaolin-based geopolymer and fast setting. J. Korean Ceram. Soc. 2020, 57, 368–377. [Google Scholar] [CrossRef]
- Yusuf, M.O.; Megat Johari, M.A.; Ahmad, Z.A.; Maslehuddin, M. Shrinkage and strength of alkaline activated ground steel slag/ultrafine palm oil fuel ash pastes and mortars. Mater. Des. 2014, 63, 710–718. [Google Scholar] [CrossRef]
- Gong, K.; White, C.E. Predicting CaO-(MgO)-Al2O3-SiO2 glass reactivity in alkaline environments from force field molecular dynamics simulations. Cem. Concr. Res. 2021, 150, 106588. [Google Scholar] [CrossRef]
- Swathi, B.; Vidjeapriya, R. Influence of precursor materials and molar ratios on normal, high, and ultra-high performance geopolymer concrete—A state of art review. Constr. Build. Mater. 2023, 392, 132006. [Google Scholar] [CrossRef]
- Assi, L.N.; Carter, K.; Deaver, E.; Ziehl, P. Review of availability of source materials for geopolymer/sustainable concrete. J. Clean. Prod. 2020, 263, 121477. [Google Scholar] [CrossRef]
- Cong, P.; Cheng, Y. Advances in geopolymer materials: A comprehensive review. J. Traffic Transp. Eng. (Engl. Ed.) 2021, 8, 283–314. [Google Scholar] [CrossRef]
- Aziz, I.H.; Abdullah, M.M.A.B.; Mohd Salleh, M.A.A.; Azimi, E.A.; Chaiprapa, J.; Sandu, A.V. Strength development of solely ground granulated blast furnace slag geopolymers. Constr. Build. Mater. 2020, 250, 118720. [Google Scholar] [CrossRef]
- Gupta, A. Investigation of the strength of ground granulated blast furnace slag based geopolymer composite with silica fume. Mater. Today Proc. 2021, 44, 23–28. [Google Scholar] [CrossRef]
- Kosmidi, D.; Panagiotopoulou, C.; Angelopoulos, P.; Taxiarchou, M. Thermal Activation of Kaolin: Effect of Kaolin Mineralogy on the Activation Process. In Proceedings of the International Conference on Raw Materials and Circular Economy, Athens, Greece, 5–9 September 2021. [Google Scholar]
- Ramezanianpour, A.A. Springer Geochemistry/Mineralogy Cement Replacement Materials; Springer: Berlin/Heidelberg, Germany, 2013; pp. 225–255. [Google Scholar]
- Ahmad, M.R.; Fernàndez-Jimenez, A.; Chen, B.; Leng, Z.; Dai, J.-G. Low-carbon cementitious materials: Scale-up potential, environmental impact and barriers. Constr. Build. Mater. 2024, 455, 139087. [Google Scholar] [CrossRef]
- Vasić, M.V.; Gencel, O.; Velasco, P.M. From raw clay to ceramics: Evaluating the suitability of raw materials through compositional analysis. Boletín Soc. Española Cerámica Vidr. 2025, 64, 100455. [Google Scholar] [CrossRef]
- Sabir, B.B.; Wild, S.; Bai, J. Metakaolin and calcined clays as pozzolans for concrete: A review. Cem. Concr. Compos. 2001, 23, 441–454. [Google Scholar] [CrossRef]
- Liang, X.; Ji, Y. Mechanical properties and permeability of red mud-blast furnace slag-based geopolymer concrete. SN Appl. Sci. 2021, 3, 23. [Google Scholar] [CrossRef]
- Wang, Q.; Han, S.; Yang, J.; Lin, X.; An, M. Preparation of geopolymer concrete with Bayer red mud and its reaction mechanism. Constr. Build. Mater. 2023, 409, 133730. [Google Scholar] [CrossRef]
- Harmaji, A.; Jafari, R.; Simard, G. Valorization of Residue from Aluminum Industries: A Review. Materials 2024, 17, 5152. [Google Scholar] [CrossRef]
- Bai, B.; Bai, F.; Nie, Q.; Jia, X. A high-strength red mud–fly ash geopolymer and the implications of curing temperature. Powder Technol. 2023, 416, 118242. [Google Scholar] [CrossRef]
- Raza, M.H.; Zhong, R.Y.; Khan, M. Recent advances and productivity analysis of 3D printed geopolymers. Addit. Manuf. 2022, 52, 102685. [Google Scholar] [CrossRef]
- Khale, D.; Chaudhary, R. Mechanism of geopolymerization and factors influencing its development: A review. J. Mater. Sci. 2007, 42, 729–746. [Google Scholar] [CrossRef]
- Deb, P.S.; Nath, P.; Sarker, P.K. Drying Shrinkage of Slag Blended Fly Ash Geopolymer Concrete Cured at Room Temperature. Procedia Eng. 2015, 125, 594–600. [Google Scholar] [CrossRef]
- Marsh, A.T.M.; Yang, T.; Adu-Amankwah, S.; Bernal, S.A. Utilization of metallurgical wastes as raw materials for manufacturing alkali-activated cements. In Waste and Byproducts in Cement-Based Materials; Woodhead Publishing: Cambridge, UK, 2021; pp. 335–383. [Google Scholar]
- Zhang, B.; Zhu, H.; Feng, P.; Zhang, P. A review on shrinkage-reducing methods and mechanisms of alkali-activated/geopolymer systems: Effects of chemical additives. J. Build. Eng. 2022, 49, 104056. [Google Scholar] [CrossRef]
- Amran, M.; Onaizi, A.M.; Makul, N.; Abdelgader, H.S.; Tang, W.C.; Alsulami, B.T.; Alluqmani, A.E.; Gamil, Y. Shrinkage mitigation in alkali-activated composites: A comprehensive insight into the potential applications for sustainable construction. Results Eng. 2023, 20, 101452. [Google Scholar] [CrossRef]
- Ling, Y.; Wang, K.; Fu, C. Shrinkage behavior of fly ash based geopolymer pastes with and without shrinkage reducing admixture. Cem. Concr. Compos. 2019, 98, 74–82. [Google Scholar] [CrossRef]
- Gao, X.; Yu, Q.L.; Brouwers, H.J.H. Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model. Constr. Build. Mater. 2016, 119, 175–184. [Google Scholar] [CrossRef]
- Collins, F.; Sanjayan, J.G. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cem. Concr. Res. 2000, 30, 1401–1406. [Google Scholar] [CrossRef]
- Mastali, M.; Kinnunen, P.; Dalvand, A.; Mohammadi Firouz, R.; Illikainen, M. Drying shrinkage in alkali-activated binders—A critical review. Constr. Build. Mater. 2018, 190, 533–550. [Google Scholar] [CrossRef]
- Builders Solutions by Basf, M. Concrete Technology in Focus Overview. Available online: https://assets.ctfassets.net/ctspkgm1yw3s/AmUYRyszqwWV9VsCEGps4/3151dac1e62e9362e41713cafb579498/Concrete_Technology_in_Focus_Shrinkage_of_Concrete1.pdf (accessed on 15 August 2025).
- Fang, Y.; Wang, C.; Yang, H.; Chen, J.; Dong, Z.; Li, L. Development of a ternary high-temperature resistant geopolymer and the deterioration mechanism of its concrete after heat exposure. Constr. Build. Mater. 2024, 449, 138291. [Google Scholar] [CrossRef]
- Luhar, S.; Nicolaides, D.; Luhar, I. Fire Resistance Behaviour of Geopolymer Concrete: An Overview. Buildings 2021, 11, 82. [Google Scholar] [CrossRef]
- Lingyu, T.; Dongpo, H.; Jianing, Z.; Hongguang, W. Durability of geopolymers and geopolymer concretes: A review. Rev. Adv. Mater. Sci. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Provis, J.L.; Cizer, Ö.; Ye, G. Autogenous shrinkage of alkali-activated slag: A critical review. Cem. Concr. Res. 2023, 172, 107244. [Google Scholar] [CrossRef]
- Archez, J.; Farges, R.; Gharzouni, A.; Rossignol, S. Influence of the geopolymer formulation on the endogeneous shrinkage. Constr. Build. Mater. 2021, 298, 123813. [Google Scholar] [CrossRef]
- Sagoe-Crentsil, K.; Brown, T.; Taylor, A. Drying shrinkage and creep performance of geopolymer concrete. J. Sustain. Cem.-Based Mater. 2013, 2, 35–42. [Google Scholar] [CrossRef]
- Thokchom, S.; Ghosh, P.; Ghosh, S. Effect of Water Absorption, Porosity and Sorptivity on Durability of Geopolymer Mortars. ARPN J. Eng. Appl. Sci. 2009, 4, 28–32. [Google Scholar]
- Chen, S.; Ruan, S.; Zeng, Q.; Liu, Y.; Zhang, M.; Tian, Y.; Yan, D. Pore structure of geopolymer materials and its correlations to engineering properties: A review. Constr. Build. Mater. 2022, 328, 127064. [Google Scholar] [CrossRef]
- Xu, Z.; Yue, J.; Pang, G.; Li, R.; Zhang, P.; Xu, S.; Ren, J. Influence of the Activator Concentration and Solid/Liquid Ratio on the Strength and Shrinkage Characteristics of Alkali-Activated Slag Geopolymer Pastes. Adv. Civ. Eng. 2021, 2021. [Google Scholar] [CrossRef]
- Nematollahi, B.; Sanjayan, J.; Shaikh, F.U.A. Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate. Ceram. Int. 2015, 41, 5696–5704. [Google Scholar] [CrossRef]
- Huang, D.; Yuan, Q.; Chen, P.; Tian, X.; Peng, H. Effect of activator properties on drying shrinkage of alkali-activated fly ash and slag. J. Build. Eng. 2022, 62, 105341. [Google Scholar] [CrossRef]
- Duran Atiş, C.; Bilim, C.; Çelik, Ö.; Karahan, O. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr. Build. Mater. 2009, 23, 548–555. [Google Scholar] [CrossRef]
- Uppalapati, S.; Vandewalle, L.; Cizer, Ö. Autogenous shrinkage of slag-fly ash blends activated with hybrid sodium silicate and sodium sulfate at different curing temperatures. Constr. Build. Mater. 2020, 265, 121276. [Google Scholar] [CrossRef]
- Melo Neto, A.A.; Cincotto, M.A.; Repette, W. Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem. Concr. Res. 2008, 38, 565–574. [Google Scholar] [CrossRef]
- Mermerdaş, K.; Algın, Z.; Ekmen, Ş. Experimental assessment and optimization of mix parameters of fly ash-based lightweight geopolymer mortar with respect to shrinkage and strength. J. Build. Eng. 2020, 31, 101351. [Google Scholar] [CrossRef]
- Neville, A.M. Properties of Concrete, 5th ed.; Pearson Education Limited: Harlow, UK, 2011. [Google Scholar]
- Huang, W.; Wang, H. Formulation development of metakaolin geopolymer with good workability for strength improvement and shrinkage reduction. J. Clean. Prod. 2024, 434, 140431. [Google Scholar] [CrossRef]
- Kheradmand, M.; Abdollahnejad, Z.; Pacheco-Torgal, F. Shrinkage Performance of Fly Ash Alkali-activated Cement Based Binder Mortars. KSCE J. Civ. Eng. 2018, 22, 1854–1864. [Google Scholar] [CrossRef]
- Steenie Edward, W. Drying Shrinkage of Heat-Cured Fly Ash-Based Geopolymer Concrete. In Modern Applied Science; CCSE: Richmond Hill, ON, Canada, 2009; p. 3. [Google Scholar]
- Baskar, P.; Annadurai, S.; Sekar, K.; Prabakaran, M. A Review on Fresh, Hardened, and Microstructural Properties of Fibre-Reinforced Geopolymer Concrete. Polymers 2023, 15, 1484. [Google Scholar] [CrossRef]
- Bernal, S.A.; Provis, J.L.; Walkley, B.; San Nicolas, R.; Gehman, J.D.; Brice, D.G.; Kilcullen, A.R.; Duxson, P.; Van Deventer, J.S. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem. Concr. Res. 2013, 53, 127–144. [Google Scholar] [CrossRef]
- Rodrigue, A.; Duchesne, J.; Fournier, B.; Bissonnette, B. Influence of added water and fly ash content on the characteristics, properties and early-age cracking sensitivity of alkali-activated slag/fly ash concrete cured at ambient temperature. Constr. Build. Mater. 2018, 171, 929–941. [Google Scholar] [CrossRef]
- Puertas, F.; Palacios, M.; Manzano, H.; Dolado, J.; Rico, A.; Rodríguez, J. A model for the CASH gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 2011, 31, 2043–2056. [Google Scholar] [CrossRef]
- ASTM C1437–20; Standard Test Method for Flow of Hydraulic Cement Mortar1. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM. Standard Test Method for Amount of Water Required for Normal Consistency of Hydraulic Cement Paste1; ASTM: West Conshohocken, PA, USA, 2023. [Google Scholar]
- Shi, Y.; Zhao, Q.; Xue, C.; Jia, Y.; Guo, W.; Zhang, Y.; Qiu, Y. Preparation and curing method of red mud-calcium carbide slag synergistically activated fly ash-ground granulated blast furnace slag based eco-friendly geopolymer. Cem. Concr. Compos. 2023, 139, 104999. [Google Scholar] [CrossRef]
- Liu, R.-X.; Poon, C.-S. Utilization of red mud derived from bauxite in self-compacting concrete. J. Clean. Prod. 2016, 112, 384–391. [Google Scholar] [CrossRef]
- Puertas, F.; Amat, T.; Fernández-Jiménez, A.; Vázquez, T. Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cem. Concr. Res. 2003, 33, 2031–2036. [Google Scholar] [CrossRef]
- Qu, Z.Y.; Yu, Q.; Ji, Y.D.; Gauvin, F.; Voets, I.K. Mitigating shrinkage of alkali activated slag with biofilm. Cem. Concr. Res. 2020, 138, 106234. [Google Scholar] [CrossRef]
- Arachchige, R.M.; Olek, J.; Rajabipour, F.; Peethamparan, S. Phase identification and micromechanical properties of non-traditional and natural pozzolan based alkali-activated materials. Constr. Build. Mater. 2024, 441, 137478. [Google Scholar] [CrossRef]
- Guo, T.; Zhang, G.; Ma, F.; Shen, P.; Wang, R.; Song, W.; Wang, L.; Han, P.; Bai, X. Mechanical properties and microstructure of red mud-coal metakaolin geopolymer concrete based on orthogonal tests. J. Build. Eng. 2023, 79, 107789. [Google Scholar] [CrossRef]
- Huang, D.; Liu, Z.; Lin, C.; Lu, Y.; Li, S. Effects and mechanisms of component ratio and cross-scale fibers on drying shrinkage of geopolymer mortar. Constr. Build. Mater. 2024, 411, 134299. [Google Scholar] [CrossRef]
- Shalaby, D.; Garneau, É.; Fiset, M.; Seixas, J.A.L.A.; Rahem, A. Development of Bauxite Residue and Class F Fly Ash Based Geopolymer Concrete. ACI Symposium Publication 362. Available online: https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&i=51741013 (accessed on 15 August 2025).
- Chen, W.; Liu, X.; Shen, X.; Liu, S.; Li, H.; Li, B. Insights into autogenous shrinkage of alkali-activated slag under elevated curing temperature. Cem. Concr. Res. 2025, 190, 107803. [Google Scholar] [CrossRef]
- Castel, A.; Foster, S.J.; Ng, T.; Sanjayan, J.G.; Gilbert, R.I. Creep and drying shrinkage of a blended slag and low calcium fly ash geopolymer Concrete. Mater. Struct. 2016, 49, 1619–1628. [Google Scholar] [CrossRef]
- Wu, H.; He, M.; Wu, S.; Cheng, J.; Wang, T.; Che, Y.; Du, Y.; Deng, Q. Effects of binder component and curing regime on compressive strength, capillary water absorption, shrinkage and pore structure of geopolymer mortars. Constr. Build. Mater. 2024, 442, 137707. [Google Scholar] [CrossRef]
- Seixas, J.A.L.A.; Rahem, A.; Fiset, M.; Volat, C.; Simard, G. Estimation of Compressive Strength of Bauxite Residue and Fly Ash Based Geopolymer Binder Using Taguchi Method. 2024. Available online: https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&id=51742032 (accessed on 15 August 2025).
- Noushini, A.; Castel, A.; Aldred, J.; Rawal, A. Chloride diffusion resistance and chloride binding capacity of fly ash-based geopolymer concrete. Cem. Concr. Compos. 2020, 105, 103290. [Google Scholar] [CrossRef]
- Al Makhadmeh, W.; Soliman, A. On the mechanisms of shrinkage reducing admixture in alkali activated slag binders. J. Build. Eng. 2022, 56, 104812. [Google Scholar] [CrossRef]
- Hu, X.; Shi, C.; Zhang, Z.; Hu, Z. Autogenous and drying shrinkage of alkali-activated slag mortars. J. Am. Ceram. Soc. 2019, 102, 4963–4975. [Google Scholar] [CrossRef]
- Palacios, M.; Puertas, F. Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cem. Concr. Res. 2007, 37, 691–702. [Google Scholar] [CrossRef]
- Tu, W.; Zhu, Y.; Fang, G.; Wang, X.; Zhang, M. Internal curing of alkali-activated fly ash-slag pastes using superabsorbent polymer. Cem. Concr. Res. 2019, 116, 179–190. [Google Scholar] [CrossRef]
- Jiang, D.; Li, X.; Lv, Y.; Li, C.; Jiang, W.; Liu, Z.; Xu, J.; Zhou, Y.; Dan, J. Autogenous shrinkage and hydration property of alkali activated slag pastes containing superabsorbent polymer. Cem. Concr. Res. 2021, 149, 106581. [Google Scholar] [CrossRef]
- Liu, B.; Yang, J.; Li, D.; Xing, F.; Fang, Y. Effect of a Synthetic Nano-CaO-Al2O3-SiO2-H2O Gel on the Early-Stage Shrinkage Performance of Alkali-Activated Slag Mortars. Materials 2018, 11, 1128. [Google Scholar] [CrossRef]
- Duan, P.; Yan, C.; Luo, W.; Zhou, W. Effects of adding nano-TiO2 on compressive strength, drying shrinkage, carbonation and microstructure of fluidized bed fly ash based geopolymer paste. Constr. Build. Mater. 2016, 106, 115–125. [Google Scholar] [CrossRef]
- Ma, Y.; Ye, G. The shrinkage of alkali activated fly ash. Cem. Concr. Res. 2015, 68, 75–82. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Wei, K.; Gao, H.; Liu, Z.; She, Y.; Chen, F.; Gao, H.; Yu, Q. Rheology control and shrinkage mitigation of 3D printed geopolymer concrete using nanocellulose and magnesium oxide. Constr. Build. Mater. 2024, 429, 136421. [Google Scholar] [CrossRef]
- Kuo, W.T.; Juang, C.U.; Shiu, Y.W. Research on Reducing Shrinkage Behavior of Ground Granulated Blast Furnace Slag Geopolymers Using Polymer Materials. Minerals 2023, 13, 475. [Google Scholar] [CrossRef]
- Liu, J.; Farzadnia, N.; Shi, C. Microstructural and micromechanical characteristics of ultra-high performance concrete with superabsorbent polymer (SAP). Cem. Concr. Res. 2021, 149, 106560. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, S.; Liang, X.; Granja, J.; Azenha, M.; Ye, G. Internal curing of alkali-activated slag-fly ash paste with superabsorbent polymers. Constr. Build. Mater. 2020, 263, 120985. [Google Scholar] [CrossRef]
- Yang, J.; Snoeck, D.; De Belie, N.; Sun, Z. Comparison of liquid absorption-release of superabsorbent polymers in alkali-activated slag and Portland cement systems: An NMR study combined with additional methods. Cem. Concr. Res. 2021, 142, 106369. [Google Scholar] [CrossRef]
- Memon, F.A.; Nuruddin, M.F.; Shafiq, N. Effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete. Int. J. Miner. Metall. Mater. 2013, 20, 205–213. [Google Scholar] [CrossRef]
- Khater, H.M. Effect of silica fume on the characterization of the geopolymer materials. Int. J. Adv. Struct. Eng. 2013, 5, 12. [Google Scholar] [CrossRef]
- Meskhi, B.; Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Shilov, A.A.; El’shaeva, D.; Shilova, K.; Karalar, M.; Aksoylu, C.; et al. Analytical Review of Geopolymer Concrete: Retrospective and Current Issues. Materials 2023, 16, 3792. [Google Scholar] [CrossRef]
- Chen, K.; Wu, D.; Fei, S.; Pan, C.; Shen, X.; Zhang, C.; Hu, J. Resistance of blended alkali-activated fly ash-OPC mortar to mild-concentration sulfuric and acetic acid attack. Environ. Sci. Pollut. Res. 2022, 29, 25694–25708. [Google Scholar] [CrossRef]
- Saloni; Parveen; Pham, T.M.; Lim, Y.Y.; Pradhan, S.S.; Jatin; Kumar, J. Performance of rice husk Ash-Based sustainable geopolymer concrete with Ultra-Fine slag and Corn cob ash. Constr. Build. Mater. 2021, 279, 122526. [Google Scholar] [CrossRef]
- Cui, P.; Wan, Y.; Shao, X.; Ling, X.; Zhao, L.; Gong, Y.; Zhu, C. Study on Shrinkage in Alkali-Activated Slag–Fly Ash Cementitious Materials. Materials 2023, 16, 3958. [Google Scholar] [CrossRef] [PubMed]
- Nedeljković, M.; Li, Z.; Ye, G. Setting, Strength, and Autogenous Shrinkage of Alkali-Activated Fly Ash and Slag Pastes: Effect of Slag Content. Materials 2018, 11, 2121. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Yang, T.; Zhang, Z. Compressive strength development and shrinkage of alkali-activated fly ash–slag blends associated with efflorescence. Mater. Struct. 2016, 49, 2907–2918. [Google Scholar] [CrossRef]
- Zhan, J.; Li, H.; Pan, Q.; Cheng, Z.; Li, H.; Fu, B. Effect of Slag on the Strength and Shrinkage Properties of Metakaolin-Based Geopolymers. Materials 2022, 15, 2944. [Google Scholar] [CrossRef]
- Wang, J.; Wu, D.; Chen, K.; Mao, N.; Zhang, Z. Effect of Ca content on the synthesis and properties of FA-GGBFS geopolymer: Combining experiments and molecular dynamics simulation. J. Build. Eng. 2024, 94, 109908. [Google Scholar] [CrossRef]
- Ma, Y.; Gong, J.; Ye, G.; Fu, J. Effect of Activator and Mineral Admixtures on the Autogenous Shrinkage of Alkali-Activated Slag/Fly Ash. Sustainability 2023, 15, 16101. [Google Scholar] [CrossRef]
- Aydın, S. A ternary optimisation of mineral additives of alkali activated cement mortars. Constr. Build. Mater. 2013, 43, 131–138. [Google Scholar] [CrossRef]
- Yang, C.; Liu, J.; Liu, L.; Kuang, L.; Zhang, S.; Chen, Z.; Li, J.; Shi, C. Effects of different activators on autogenous shrinkage of alkali-activated slag cement. Constr. Build. Mater. 2024, 446, 138018. [Google Scholar] [CrossRef]
- Verma, M.; Dev, N. Effect of Liquid to Binder Ratio and Curing Temperature on the Engineering Properties of the Geopolymer Concrete. Silicon 2021, 14, 1743–1757. [Google Scholar] [CrossRef]
- Ridzuan, A.R.M.; Al Bakri Abdullah, M.M.; Arshad, M.F.; Mohd Tahir, M.F.; Khairulniza, A.A. The Effect of NaOH Concentration and Curing Condition to the Strength and Shrinkage Performance of Recycled Geopolymer Concrete. Mater. Sci. Forum 2014, 803, 194–200. [Google Scholar] [CrossRef]
- Chouksey, A.; Verma, M.; Dev, N.; Rahman, I.; Upreti, K. An investigation on the effect of curing conditions on the mechanical and microstructural properties of the geopolymer concrete. Mater. Res. Express 2022, 9, 055003. [Google Scholar] [CrossRef]
- Wallah, S.E. Drying Shrinkage of Heat-Cured Fly Ash-Based Geopolymer Concrete. Mod. Appl. Sci. 2009, 3, 12. [Google Scholar] [CrossRef]
- AS 3972—2010; General Purpose and Blended Cements. Australian-Standard: Canberra, Australia, 2010.
- Wallah, S.E.; Rangan, B.V. Low Calcium Fly-Ash-Based Geopolymer Concrete: Long Term Properties; Curtin University of Technology: Perth, Australia, 2006. [Google Scholar]
- EN 1992-1-1; Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization: Brussels, Belgium, 2004.
- Khan, I.; Xu, T.; Castel, A.; Gilbert, R.I.; Babaee, M. Risk of early age cracking in geopolymer concrete due to restrained shrinkage. Constr. Build. Mater. 2019, 229, 116840. [Google Scholar] [CrossRef]
- Panchmatia, P.; Olvera, R.; Genedy, M.; Juenger, M.C.G.; van Oort, E. Shrinkage behavior of Portland and geopolymer cements at elevated temperature and pressure. J. Pet. Sci. Eng. 2020, 195, 107884. [Google Scholar] [CrossRef]
- Alnkaa, A.; Yaprak, H.; MEMİŞ, S.; Kaplan, G. Effect of Different Cure Conditions on the Shrinkage of Geopolymer Mortar. Int. J. Eng. Res. Dev. 2019, 14, 51–55. [Google Scholar]
- Humad, A.M.; Provis, J.L.; Cwirzen, A. Effects of Curing Conditions on Shrinkage of Alkali-Activated High-MgO Swedish Slag Concrete. Front. Mater. 2019, 6, 287. [Google Scholar] [CrossRef]
- Aiken, T.A.; Kwasny, J.; Zhou, Z.; McPolin, D.; Sha, W. Factors affecting the drying shrinkage of alkali-activated slag/fly ash mortars. MRS Adv. 2023, 8, 1266–1272. [Google Scholar] [CrossRef]
- Kioumarsi, M.; Azarhomayun, F.; Haji, M.; Shekarchi, M. Effect of Shrinkage Reducing Admixture on Drying Shrinkage of Concrete with Different w/c Ratios. Materials 2020, 13, 5721. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Gorges, M.; Schroefl, C.; Assmann, A.; Brameshuber, W.; Ribeiro, A.B.; Cusson, D.; Custódio, J.; da Silva, E.F.; Ichimiya, K.; et al. Effect of internal curing by using superabsorbent polymers (SAP) on autogenous shrinkage and other properties of a high-performance fine-grained concrete: Results of a RILEM round-robin test. Mater. Struct. 2014, 47, 541–562. [Google Scholar] [CrossRef]
- Bílek, V.; Kalina, L.; Novotný, R.; Tkacz, J.; Pařízek, L. Some Issues of Shrinkage-Reducing Admixtures Application in Alkali-Activated Slag Systems. Materials 2016, 9, 462. [Google Scholar] [CrossRef]
- Nguyen, C.V.; Mangat, P.S.; Jones, G. Effect of Shrinkage Reducing Admixture on the Strength and Shrinkage of Alkali Activated Cementitious Mortar. IOP Conf. Ser. Mater. Sci. Eng. 2018, 371, 012022. [Google Scholar] [CrossRef]
- Zhang, W.; Duan, X.; Su, F.; Zhu, J.; Hama, Y. Drying shrinkage inhibition effect and mechanism of polyol shrinkagex reducing admixture on the metakaolin-based geopolymer. J. Mater. Res. Technol. 2024, 28, 2021–2032. [Google Scholar] [CrossRef]
- Ma, H.; Li, S.; Lei, Z.; Wu, J.; Yuan, X.; Niu, X. Effect of Active MgO on Compensated Drying Shrinkage and Mechanical Properties of Alkali-Activated Fly Ash–Slag Materials. Buildings 2025, 15, 256. [Google Scholar] [CrossRef]
- Seyrek, Y.; Rudić, O.; Juhart, J.; Grengg, C.; Charry, E.M.; Freytag, B.; Mittermayr, F. On drying shrinkage of geopolymer and how to mitigate it with vegetable oil. Constr. Build. Mater. 2024, 436, 137013. [Google Scholar] [CrossRef]
- Tutal, A.; Partschefeld, S.; Schneider, J.; Osburg, A. Effects of Bio-Based Plasticizers, Made from Starch, on the Properties of Fresh and Hardened Metakaolin-Geopolymer Mortar: Basic Investigations. Clays Clay Miner. 2020, 68, 413–427. [Google Scholar] [CrossRef]
- Karthik, A.; Sudalaimani, K.; Vijayakumar, C.T.; Saravanakumar, S.S. Effect of bio-additives on physico-chemical properties of fly ash-ground granulated blast furnace slag based self cured geopolymer mortars. J. Hazard. Mater. 2019, 361, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.B.; Pachla, E.C.; Bolina, F.L.; Graeff, Â.G.; Lorenzi, L.S.; da Silva Filho, L.C.P. Mechanical and chemical properties of cementitious composites with rice husk after natural polymer degradation at high temperatures. J. Build. Eng. 2024, 85, 108716. [Google Scholar] [CrossRef]
Matrix Type | Additive Type | Dosage by Mass of Binder | Precursor 1. FA 2. GGBFS 3. OPC | Activator 1. NaOH 2. Na2SiO3 | Modulus | Alkali Concentration | Activator/ Binder Ratio | Curing Condition | Age | Type | Shrinkage Value (με) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Concrete | EA (Anhydrite and quick lime) | 0% 2% 4% 6% 8% | 2 | 1 + 2 | 1.5 | 10% | 0.58 | 20 ± 3 °C, 60 ± 5% RH | 28 d | Drying | 430 320 290 170 90 | [25] |
Mortar | EA (MgO powder) | 0% 3% | 2 | 1 + 2 | 0 0.5 1.0 1.5 | 4% | - | Cured at: 20 ± 1 °C 95 ± 3% RH Dried at: 20 ± 1 °C 50 ± 3% RH | 56 d | Drying | Dosages 0% 3% 1700 2100 2500 2300 4100 3150 5200 3300 | [99] |
Mortar | SRA (Tetraguard AS21, BASF) | 0% 3% | 2 | 1 + 2 | 0 0.5 1.0 1.5 | 4% | - | Cured at: 20 ± 1 °C 95 ± 3% RH Dried at: 20 ± 1 °C 50 ± 3% RH | 56 d | Drying | Dosages 0% 3% 1700 900 2500 1300 4100 1500 5200 3400 | [99] |
Paste | SRA (Hexylene glycol) | 0% 2% | 1-class C | 1 + 2 | 1 1.5 | 20% 25% 20% 25% | 0.33 | Sealed (7 days) at: 50 ± 2 °C 55% RH Dried at: 23 ± 2 °C 50 ± 4% RH | 56 d | Drying | Dosages 0% 3% 0.46% 0.29% 0.62% 0.39% 0.43% 0.24% 0.54% 0.37% | [55] |
Mortar | SRA (Ether glycol) | 0% 3% 6% 9% | 2 | 1 + 2 | 1 | 8 M | 0.4 | Sealed with plastic foil | 70 d | Auto | 4200 3700 2400 1800 | [98] |
Mortar | SRA (Polypropylene glycol) | 0% 1% 2% | 3 2 2 2 | 1 + 2 | 1–1.2 | 4% Na2O | 0.42 0.58 0.55 0.5 | 20 ± 2 °C, 99% and 50% RH | 180 d | Auto and Drying | RH 99% 50% 0.02% 0.12% 0.11% 0.44% 0.06% 0.40% 0.03% 0.28% | [100] |
Paste | SAP (copolymer of acrylamide and potassium acrylate) | 0% 0.2% 0.3% 0.4% 0.5% | 1-class F (75%) + 2 (25%) | 1 + 2 | 2.58 | 10 M | 0.4 | Sealed Dried at: 20 °C, 40% RH | 48 h | Auto | 7200 3600 2000 1300 1200 | [101] |
Paste | SAP (sodium polyacrylate) | 0%, 0.3% | 2 | 1 + 2 | 0.8 1 1.4 | 4% Na2O | - | - | 168 h | Auto | Dosages 0% 0.3% 4400 750 5000 1300 4700 1200 | [102] |
Mortar | NP (nano-C-A-S-H gel) | 0% 1% 3% 5% | 2 | 2 | 1.8 | - | - | Cured at: 20 ± 1 °C 90% RH Dried at: 20 ± 1 °C 50 ± 3% RH | 60 d | Auto and Drying | Auto. Drying 2350 2900 1700 2000 1600 1900 1800 2500 | [103] |
Paste | NP (nano-TiO2) | 0% 1% 3% 5% | 1 | 1 + 2 | 1.5 | 10 M | 0.5 | Dried at: 20 ± 3 °C 90 ± 5% RH | 28 d | Drying | 1050 950 670 550 | [104] |
EA—Expansive agent, SRA—Shrinkage reducing admixture, SAP—Super absorbent polymer, NP—Nano particle |
Matrix type | Main Precursor 1. FA 2. GGBFS 3. MK 4. Rice husk ash 5. OPC | Additional Precursor 1. FA 2. GGBFS 3. BR 4. OPC 5. Silica fume | Activator 1. NaOH 2. Na2SiO3 | Alkali Concentration/Molarity | Activator/ Binder ratio | SS/SH ratio | Modulus | Age | Type | Remark | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Concrete | 4 | 2 (ultra fine) | 1 + 2 | 8 M | 0.35 | 2.5 | 1.48 | 90 d | Drying | Negative Increased shrinkage, although with an insignificant value | [115] |
Concrete | 1 + 5 | 3 | - | - | 0.5 | - | - | 110 d | Drying | Positive Reduced shrinkage, possibly due to the internal curing effect of BR | [86] |
Concrete | 1 | 2 (20%, 25%) | 1 + 2 | 14 M | 0.4 | 1.5 2.5 | 2.61 | 180 d | Drying | Positive Shrinkage reduced with increasing slag content, irrespective of SS/SH ratio | [51] |
Paste | 3 | 2 and 4 | 1 + 2 | - | 1.2 | - | 1–2.5 | 200 d | Drying | Positive Shrinkage improved with additional precursor material blend, with a 16% and 20% shrinkage reduction for 10% slag and 33% OPC, respectively | [76] |
Mortar | 2 | 1 and 5 | 1 + 2 | 5% Na2O | 0.35–0.425 | - | 1.2 | 120 d | Drying | Positive Shrinkage improved with each additional precursor. Although the mix blend with silica fume has a more pronounced shrinkage reduction compared to that of fly ash. | [122] |
Matrix Type | Precursor 1. FA 2. GGBFS 3. OPC | Activator 1. NaOH 2. Na2SiO3 3. Na2CO3 4. Na2SO4 | Influencing Factor 1. Liquid to Binder Ratio 2. Activator Concentration 3. SS/SH Ratio 4. Activator Type | Concentration | Activator/ Binder Ratio | SS/SH Ratio | Mod-Ulus | Curing Condition | Age | Shrink-Age Type | Shrinkage Value (με) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mortar | 3 2 | - 1 2 3 | 4 | 8% Na2O | 0.5 | - | 0.75 | 20 ± 2 °C, 65 ± 5% RH | 6 M | Drying | 0.1004% 0.2968% 0.3642% 0.1053% | [71] |
Paste | 2 | 1 + 2 | 1 | 40% | 1 0.8 0.67 | - | 1.5 | Cured: 20 °C, 95% RH Dried at ambient conditions | 56 d | Drying | 1510 1600 1710 | [68] |
Paste | 2 | 1 2 4 1 + 2 + 4 1 + 2 1 + 4 2 + 4 | 4 | 6% Na2O | 0.4 | - | 1.5 | 20 ± 2 °C, 95 ± 5% RH | 14 d | Auto | 2300 6500 1500 2000 5200 1750 2800 | [123] |
Mortar | 1 | 1 + 2 | 2 | 6 M 8 M 10 M | 0.5 | 2.5 | - | Sealed, oven cured (24 h at 60 °C) Dried at: 25 °C, 50% RH | 90 d | Drying | 1000 850 800 | [74] |
Concrete | 1 + 2 | 1 + 2 | 1 | 10% Na2O | 0.4 0.45 0.5 0.55 0.6 0.65 0.7 | - | - | Ambient and oven-cured for 24 h at 60 °C | 28 d | Drying | Ambient Oven 354 415 365 430 380 465 392 485 405 495 420 523 435 533 | [124] |
Paste | 1 + 2 | 1 + 2 | 2 | Na2O 4% 5% 6% 7% 8% | 0.38 | - | 1.2 | Cured (3 d) at: 20 °C, 95% RH Dried at: 20 ± 2 °C, 55 ± 5% RH | 90 d | Drying | 15,000 12,400 12,000 9300 9500 | [70] |
Mortar | 1 | 1 + 2 | 3 | 10 M | 0.5 | 0.5 1.5 2.5 | - | Sealed, oven cured at 24 h-60 °C Dried at: 25 °C, 50% RH | 90 d | Drying | 800 950 990 | [74] |
Paste | 2 | 1 + 2 | 2 | NaOH 30% 40% 50% 60% 70% | 1.5 | - | 1.5 | Cured at: 20 °C, 95% RH Dried at ambient conditions | 28 d | Plastic | Block per piece 7 5 22 50 85 | [68] |
Concrete | 1 + 2 (10%) 1 + 2 (20%) | 1 + 2 | 3 | 14 M | 0.4 | 1.5 2.5 | 2.61 | Sealed: 7 days Dried at: 20 ± 2 °C, 70 ± 10% RH | 180 d | Drying | 10% 20% 680 510 720 700 | [51] |
Concrete | 4 | 1 + 2 | 2 | 8 M 14 M | - | - | - | Ambient | 28 d | Drying | 8 M 14 M 42 41 | [125] |
Matrix Type | Curing Type | Precursor 1. FA 2. GGBFS 3. OPC 4. Kaolinite Ash 5. Glass Powder 6. Silica Fume | Activator 1. NaOH 2. Na2SiO3 3. K2SiO3 | Concentration | Activator/ Binder Ratio | Modulus | Curing Condition | Age | Shrinkage Type | Shrinkage Value (με) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Mortar | Ambient (20 °C) and Heat 60 °C) | 2 | 1 + 2 | 8% Na2O | 0.4 | 1.5 | Sealed Heat: 60 °C Ambient drying: 20 ± 0.5 °C, 60 ± 2% RH | 14 d | Auto | 20 °C-2890 60 °C-3430 | [93] |
Mortar | Dry heat | 1 + 2 + 4 | 1 + 2 | 12 M | - | 2 | Sealed and oven-dried (40 °C and 80 °C) | 90 d | Drying | 1D 40 °C-1950 3D 40 °C-550 1D 80 °C-420 7D 80 °C-400 | [94] |
Concrete | Ambient, Dry heat, and Steam | 1 | 1 + 2 | 8 M | - | 2 | Sealed 72 h-ambient 24 h-heat cured: 60 °C Dried: 23 °C, 40–60% RH | 90 d | Drying | Ambien t- 1250 Heat 60 °C-100 Steam 60 °C-95 | [129] |
Concrete | Ambient and Dry heat | 1 + 2 | 1 + 2 | 14 M | 0.6 | - | Sealed 24 h-ambient 24 h-heat cured: 80 °C | 84 d | Drying | Ambient-729 Dry heat-538 | [126] |
Concrete | Dry heat | 1 + 2 | 1 + 2 | 13 M | 0.4 | - | 60 °C 80 °C 100 °C 120 °C | 28 d | Drying | 2453 2458 2487 2494 | [124] |
Concrete | Ambient and Oven | 1 + 2 | 1 + 2 | 13 M | 0.4 0.5 0.6 0.7 | - | 24 h ambient, 24 h heat, cured: 80 °C | 28 d | Drying | Ambient Oven 350 420 375 460 420 500 445 540 | [124] |
Mortar | Water bath and Steam | 1 + 2 + 5 | 1 + 2 | 16 M | 0.4 | - | Sealed Water bath, ambient, and 12 h-heat cured: 85 °C | 180 d | Drying | Ambient-0.99% Steam-0.58% | [133] |
Paste | Dry heat | 1 | 1 + 2 + 3 | 8 M | 0.36 | - | 40 °C 80 °C | 120 h | Auto | 40 °C-2.63% 80 °C-2.21% | [132] |
Mortar | Ambient, Steam, and Carbonation | 1 + 3 + 6 | 1 + 2 | - | 0.4 | 1.3 | Ambient, Steam: 12 h, Carbonation (20 °C, 90% RH, 20% CO2 concentration) | 120 d | Drying | Ambient-4460 Steam (80 °C)-4250 Steam (60 °C)-3850 Carbonation-3785.71 | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olayinka, R.; Jafari, R.; Fiset, M. Shrinkage Characteristics of Geopolymer Concrete: A Comprehensive Review. Materials 2025, 18, 4528. https://doi.org/10.3390/ma18194528
Olayinka R, Jafari R, Fiset M. Shrinkage Characteristics of Geopolymer Concrete: A Comprehensive Review. Materials. 2025; 18(19):4528. https://doi.org/10.3390/ma18194528
Chicago/Turabian StyleOlayinka, Rukayat, Reza Jafari, and Mathieu Fiset. 2025. "Shrinkage Characteristics of Geopolymer Concrete: A Comprehensive Review" Materials 18, no. 19: 4528. https://doi.org/10.3390/ma18194528
APA StyleOlayinka, R., Jafari, R., & Fiset, M. (2025). Shrinkage Characteristics of Geopolymer Concrete: A Comprehensive Review. Materials, 18(19), 4528. https://doi.org/10.3390/ma18194528