Feasibility Evaluation of Partially Replacing Ordinary Portland Cement with Ferro-Nickel Slag in Ready-Mixed Concrete for Precast Applications
Abstract
1. Introduction
2. Mix Proportion and Specimen Details
2.1. FNS Mixing and Curing Proportions
2.2. Substrate Materials
3. Hydration and Microstructural Characterization
3.1. Hydration Heat Under Various FNS Replacement Ratios
3.2. Comparison of SEM Under Various FNS Replacement Ratios and Curing Methods
3.3. Comparison of XRD Under Various FNS Replacement Ratios and Curing Methods
4. Mechanical Property and Durability
4.1. Comparison of Compressive Strength Under Various FNS Replacement Ratios and Curing Methods
4.2. Comparison of the Split Tensile Strength Under Various FNS Replacement Ratios and Curing Methods
4.3. Comparison of Chloride Penetration Resistance Under the Curing Methods
4.4. Comparison of Freeze–Thaw Resistance Under Curing Methods
5. Conclusions
- (1)
- All specimens reached peak adiabatic temperatures within 1–2 days, but higher FNS replacement ratios delayed hydration and early-age strength development. This effect is attributed to the elevated MgO content in FNS, as confirmed by SEM–EDS, which inhibits early hydration reactions and lowers heat release.
- (2)
- XRD diffraction analysis showed that the CS-based phase and calcium hydroxide were generally higher under SC for the control, FNS 10%, and FNS 20%, indicating that SC can produce hydration effects comparable to 28-day NC, suggesting that SC can promote hydration and compensate for early-age strength reduction in FNS concrete, making it suitable for precast applications.
- (3)
- Compressive and split tensile strength decreased with increasing FNS under NC. Under SC, FNS 10% achieved the highest strength, and FNS 20% performed similarly to the control. The results confirm that a 20% FNS replacement ratio provides the best balance between performance and sustainability, ensuring mechanical reliability while reducing clinker use.
- (4)
- The FNS 20% revealed chloride penetration resistance (≈11% improvement under SC compared to NC) and adequate freeze–thaw durability, maintaining >80% of dynamic modulus after 300 cycles, surpassing the ASTM C666 requirement. Thus, FNS 20% combined with SC is considered an effective mix design for precast concrete applications.
6. Further Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Chloride Penetration Resistance Method
Appendix A.2. Freeze–Thaw Resistance Method
References
- Khankhaje, E.; Kim, T.; Jang, H.; Kim, C.S.; Kim, J.; Rafieizonooz, M. A review of utilization of industrial waste materials as cement replacement in pervious concrete: An alternative approach to sustainable pervious concrete production. Heliyon 2024, 10, e26188. [Google Scholar] [CrossRef]
- Hansted, F.A.S.; Mantegazini, D.Z.; Ribeiro, T.M.; Gonçalves, C.E.C.; Balestieri, J.A.P. A mini-review on the use of waste in the production of sustainable Portland cement composites. Waste Manag. Res. 2023, 41, 828–838. [Google Scholar] [CrossRef]
- Mohamad, N.; Muthusamy, K.; Embong, R.; Kusbiantoro, A.; Hashim, M.H. Environmental impact of cement production and Solutions: A review. Mater. Today Proc. 2022, 48, 741–746. [Google Scholar] [CrossRef]
- Amran, M.; Murali, G.; Khalid, N.H.A.; Fediuk, R.; Ozbakkaloglu, T.; Lee, Y.H.; Haruna, S.; Lee, Y.Y. Slag uses in making an ecofriendly and sustainable concrete: A review. Constr. Build. Mater. 2021, 272, 121942. [Google Scholar] [CrossRef]
- Ahmad, J.; Kontoleon, K.J.; Majdi, A.; Naqash, M.T.; Deifalla, A.F.; Ben Kahla, N.; Isleem, H.F.; Qaidi, S.M. A comprehensive review on the ground granulated blast furnace slag (GGBS) in concrete production. Sustainability 2022, 14, 8783. [Google Scholar] [CrossRef]
- Han, F.; Zhang, H.; Li, Y.; Zhang, Z. Recycling and comprehensive utilization of ferronickel slag in concrete. J. Clean. Prod. 2023, 414, 137633. [Google Scholar] [CrossRef]
- Crossin, E. The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute. J. Clean. Prod. 2015, 95, 101–108. [Google Scholar] [CrossRef]
- Kumar, A.; Bheel, N.; Ahmed, I.; Rizvi, S.H.; Kumar, R.; Jhatial, A.A. Effect of silica fume and fly ash as cementitious material on hardened properties and embodied carbon of roller compacted concrete. Environ. Sci. Pollut. Res. 2022, 29, 1210–1222. [Google Scholar] [CrossRef]
- Orozco, C.R. Environmental Sustainability Assessment of Cement Replacing Materials for Concrete Applications in Selected Southeast Asian Countries. Ph.D. Dissertation, Hokkaido University, Sapporo, Japan, 2024. [Google Scholar]
- Arce, A.; Komkova, A.; Papanicolaou, C.G.; Triantafillou, T.C. Performance-Based Design of Ferronickel Slag Alkali-Activated Concrete for High Thermal Load Applications. Materials 2024, 17, 4939. [Google Scholar] [CrossRef]
- Kim, Y.U.; Lee, K.S.; Oh, T.G.; Jeong, S.B.; Choi, S.J. A Fluidity and Compressive Strength Properties of Blast Furnace Slag Based Non-Cement Paste Containing Ferronickel Slag Powder. In Proceedings of the Korean Institute of Building Construction Conference; The Korean Institute of Building Construction: Seoul, Republic of Korea, 2019; pp. 205–206. [Google Scholar]
- Cho, B.S.; Kim, Y.U.; Kim, D.B.; Choi, S.J. Effect of ferronickel slag powder on microhydration heat, flow, compressive strength, and drying shrinkage of mortar. Adv. Civ. Eng. 2018, 2018, 6420238. [Google Scholar] [CrossRef]
- Xu, G.; Tian, Q.; Miao, J.; Liu, J. Early-age hydration and mechanical properties of high volume slag and fly ash concrete at different curing temperatures. Constr. Build. Mater. 2017, 149, 367–377. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, Z.; Liu, X.; Zhu, L.; Han, C.; Li, S.; Du, W. Comprehensive utilization of industry by-products in precast concrete: A critical review from the perspective of physicochemical characteristics of solid waste and steam curing conditions. Materials 2024, 17, 4702. [Google Scholar] [CrossRef]
- Chi, L.; Lu, S.; Li, Z.; Huang, C.; Jiang, H.; Peng, B. Recycling of ferronickel slag tailing in cementitious materials: Activation and performance. Sci. Total Environ. 2023, 861, 160706. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A.; Khazali, M.H.; Vosoughi, P. Effect of steam curing cycles on strength and durability of SCC: A case study in precast concrete. Constr. Build. Mater. 2013, 49, 807–813. [Google Scholar] [CrossRef]
- Edwin, R.S.; Kimsan, M.; Pramono, B.; Masud, F. Effect of heat curing on early strength of high-performance mortar containing ferronickel slag as cement replacement. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 622, p. 012034. [Google Scholar]
- Rostami, V.; Shao, Y.; Boyd, A.J. Carbonation curing versus steam curing for precast concrete production. J. Mater. Civ. Eng. 2012, 24, 1221–1229. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Z.; Chen, Z. Hydration mechanism of composite binders containing blast furnace ferronickel slag at different curing temperatures. J. Therm. Anal. Calorim. 2018, 131, 2291–2301. [Google Scholar] [CrossRef]
- Li, B.; Huo, B.; Cao, R.; Wang, S.; Zhang, Y. Sulfate resistance of steam cured ferronickel slag blended cement mortar. Cem. Concr. Compos. 2019, 96, 204–211. [Google Scholar] [CrossRef]
- ASTM C 192/C 192M; Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International: West Conshehawken, PA, USA, 2010; pp. 1–8.
- Lee, N.; Pae, J.; Kang, S.H.; Kim, H.K.; Moon, J. Development of high strength & lightweight cementitious composites using hollow glass microsphere in a low water-to-cement matrix. Cem. Concr. Compos. 2022, 130, 104541. [Google Scholar]
- Kang, S.H.; Lee, J.H.; Hong, S.G.; Moon, J. Microstructural investigation of heat-treated ultra-high performance concrete for optimum production. Materials 2017, 10, 1106. [Google Scholar] [CrossRef]
- Kang, H.; Moon, J. Secondary curing effect on the hydration of ultra-high performance concrete. Constr. Build. Mater. 2021, 298, 123874. [Google Scholar] [CrossRef]
- ASTM C186-17; Standard Test Method for Heat of Hydration of Hydraulic Cement. ASTM International: West Conshohocken, PA, USA, 2013.
- Huang, Y.; Wang, Q.; Shi, M. Characteristics and reactivity of ferronickel slag powder. Constr. Build. Mater. 2017, 156, 773–789. [Google Scholar] [CrossRef]
- Han, F.; Zhang, H.; Pu, S.; Zhang, Z. Hydration heat and kinetics of composite binder containing blast furnace ferronickel slag at different temperatures. Thermochim. Acta 2021, 702, 178985. [Google Scholar] [CrossRef]
- Gutierrez, R.M.P.; Mendez, J.V.M.; Vazquez, I.A. Chapter 2—A novel approach to the oral delivery of bionanostructures for systemic disease. In Nanostructures for Oral Medicine; Elsevier: Amsterdam, The Netherlands, 2017; pp. 27–59. [Google Scholar]
- Diksha; Dev, N.; Goyal, P.K. Use of XRD Technique in Characterising Different Types of Concrete. Innov. Smart Sustain. Infrastruct. 2024, 364, 295–321. [Google Scholar]
- ASTM International. Committee C09 on Concrete and Concrete Aggregates. In Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens; ASTM International: West Conshehawken, PA, USA, 2014. [Google Scholar]
- ASTM C 496; Committee C-9 on Concrete and Concrete Aggregates. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International: West Conshehawken, PA, USA, 2011.
- NT-BUILD 492; Chloride Migration Coefficient from Non-Steady-State Migration Experiments. Nordic Brand and Institution: Helsinki, Finland, 1999.
- ASTM C666; Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing. Annual Book of ASTM Standards. ASTM: West Conshehawken, PA, USA, 2003.
Materials | Replacement Ratio (%) | CO2 Reduction Rate (%) | Reference Paper |
---|---|---|---|
GGBFS | 70% | 47 | E. Crossin [7] |
Silica fume | 10–15 | 8–12 | Aneel Kumar et al. [8] |
Fly ash | 25% | 22–30 | Orozco et al. [9] |
FNS | 25–45 | 77 | Andres Arce et al. [10] |
Specimens | W | C | FNS | S | G | SP | W/B | Slump | Air Content | fck |
---|---|---|---|---|---|---|---|---|---|---|
kg/m3 | % | mm | % | MPa | ||||||
Control | 175.00 | 437.50 | - | 700.10 | 978.00 | 1.60 | 40 | 100 | 5 | 35 |
FNS 10% | 393.75 | 43.75 | ||||||||
FNS 20% | 350.00 | 87.50 | ||||||||
FNS 30% | 306.25 | 131.25 |
Element | CaO | SiO2 | Al2O3 | Fe2O3 | SO3 | MgO | K2O | Na2O | LOI | |
---|---|---|---|---|---|---|---|---|---|---|
Specimen | Unit (%) | |||||||||
OPC | 60.99 | 20.47 | 4.95 | 3.27 | 2.53 | 3.14 | 1.07 | 0.33 | 2.43 | |
FNS | 6.60 | 40.70 | 2.70 | 7.90 | 0.70 | 43.40 | - | - | 0.01 |
Element | CaO | SiO2 | Al2O3 | Fe2O3 | SO3 | MgO | K2O | Na2O | |
---|---|---|---|---|---|---|---|---|---|
Specimen | Unit (kg/m3) | ||||||||
Control | 223.3 | 74.95 | 18.12 | 11.97 | 9.26 | 11.50 | 3.92 | 1.21 | |
FNS 10% | 200.66 | 59.96 | 14.50 | 12.58 | 7.41 | 35.22 | 3.13 | 0.97 | |
FNS 20% | 183.49 | 89.77 | 16.48 | 15.36 | 7.92 | 40.98 | 3.13 | 0.97 | |
FNS 30% | 163.57 | 97.18 | 15.65 | 17.16 | 7.25 | 55.72 | 2.74 | 0.85 |
Specimen | Time (Days) | Adiabatic Temperature (K) | Fastest Reaction (α) |
---|---|---|---|
Control | 14 | 47.3 | 1.3220 |
FNS 10% | 43.4 | 1.2050 | |
FNS 20% | 39.4 | 1.1370 | |
FNS 30% | 37.0 | 1.0980 |
Specimens | wt% at NC (28 Days) | ||||
---|---|---|---|---|---|
Element | Control | FNS 10% | FNS 20% | FNS 30% | |
Ca | 3.60 | 4.46 | 2.01 | 8.20 | |
O | 52.71 | 45.14 | 41.53 | 47.50 | |
Si | 16.05 | 10.09 | 14.23 | 14.89 | |
Mg | 0.59 | 2.38 | 13.13 | 14.44 | |
Fe | 3.64 | 10.52 | 8.48 | 4.16 | |
Specimens | wt% at SC | ||||
Element | Control | FNS 10% | FNS 20% | FNS 30% | |
Ca | 16.42 | 5.07 | 17.02 | 7.46 | |
O | 46.37 | 42.12 | 44.70 | 46.62 | |
Si | 7.39 | 8.34 | 6.75 | 15.82 | |
Mg | 1.45 | 2.60 | 2.45 | 9.13 | |
Fe | 0.97 | 7.30 | 2.33 | 3.95 |
NC (28 Days) | ||||
---|---|---|---|---|
Specimens | Ettringite | CS-Based Phase | C-F-S-H Phase | Calcium Hydroxide |
20.80° | 26.60° | 27.96° | 27.42° | |
Control | 9564 | 56,869 | 4647 | 4218 |
FNS 10% | 10,925 | 56,860 | 7115 | 6930 |
FNS 20% | 10,458 | 65,675 | 5255 | 3233 |
FNS 30% | 10,274 | 73,276 | 3822 | 7760 |
SC (28 Days) | ||||
Specimens | Ettringite | CS-based phase | C-F-S-H phase | Calcium Hydroxide |
20.80° | 26.60° | 27.96° | 27.42° | |
Control | 8144 | 57,503 | 3908 | 6025 |
FNS 10% | 9410 | 58,053 | 3863 | 9232 |
FNS 20% | 10,270 | 57,578 | 2169 | 4607 |
FNS 30% | 9869 | 70,155 | 7602 | 4880 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-S.; Hwang, J.-P.; Lee, C.-H.; Kim, J.-H.J. Feasibility Evaluation of Partially Replacing Ordinary Portland Cement with Ferro-Nickel Slag in Ready-Mixed Concrete for Precast Applications. Materials 2025, 18, 4315. https://doi.org/10.3390/ma18184315
Kim J-S, Hwang J-P, Lee C-H, Kim J-HJ. Feasibility Evaluation of Partially Replacing Ordinary Portland Cement with Ferro-Nickel Slag in Ready-Mixed Concrete for Precast Applications. Materials. 2025; 18(18):4315. https://doi.org/10.3390/ma18184315
Chicago/Turabian StyleKim, Jin-Su, Jun-Pil Hwang, Chang-Hong Lee, and Jang-Ho Jay Kim. 2025. "Feasibility Evaluation of Partially Replacing Ordinary Portland Cement with Ferro-Nickel Slag in Ready-Mixed Concrete for Precast Applications" Materials 18, no. 18: 4315. https://doi.org/10.3390/ma18184315
APA StyleKim, J.-S., Hwang, J.-P., Lee, C.-H., & Kim, J.-H. J. (2025). Feasibility Evaluation of Partially Replacing Ordinary Portland Cement with Ferro-Nickel Slag in Ready-Mixed Concrete for Precast Applications. Materials, 18(18), 4315. https://doi.org/10.3390/ma18184315