Advances in Measurement and Simulation Methods of Thin Liquid Film Corrosion
Abstract
1. Introduction
2. Measurement of Thin Liquid Film Thickness
2.1. Electrical Measurement Method
2.2. Microwave Resonance Method
2.3. Ultrasonic Method
2.4. Optical Method
2.4.1. Polarization Method
2.4.2. Interferometry
2.4.3. Total Internal Reflection Method
2.5. Fluorescence Intensity Method
2.6. Current Challenges and Opportunities
3. Measurement of Thin Liquid Film Composition and Electrochemical Parameters
3.1. Chloride Ion Concentration
3.1.1. Mohr Titration Method
3.1.2. Ion-Selective Electrode (ISE) Method
3.1.3. Microwave Detection Method
3.1.4. X-Ray Fluorescence
3.2. PH Value
3.2.1. Electrochemical Measurement Method Using Glass Electrode pH Meters
3.2.2. Optical Measurement Method Based on Surface-Enhanced Raman Spectroscopy (SERS)
3.3. Conductivity
3.4. Current Challenges and Opportunities
4. Corrosion Simulation Methods
4.1. Method Based on Finite Element Method (FEM)
4.1.1. Principle
4.1.2. Application of Finite Element Method to Corrosion
4.2. Method Based on Cellular Automaton (CA)
4.2.1. Principle
4.2.2. Application of Cellular Automaton to Corrosion
4.3. Method Based on Molecular Dynamics (MD)
4.3.1. Principle
4.3.2. Application of Molecular Dynamics to Corrosion
4.4. Current Challenges and Opportunities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leygraf, C.; Graedel, T.E.; Tidblad, J.; Wallinder, I.O. Atmospheric Corrosion; Wiley-Interscience: New York, NY, USA, 2000. [Google Scholar]
- Simillion, H.; Dolgikh, O.; Terryn, H.; Deconinck, J. Atmospheric corrosion modeling. Corros. Rev. 2014, 32, 73–100. [Google Scholar] [CrossRef]
- Saeedikhani, M.; Van den Steen, N.; Wijesinghe, S.; Vafakhah, S.; Terryn, H.; Blackwood, D.J. Moving boundary simulation of iron-zinc sacrificial corrosion under dynamic electrolyte thickness based on real-time monitoring data. J. Electrochem. Soc. 2020, 167, 041503. [Google Scholar] [CrossRef]
- Tomashov, N. Development of the electrochemical theory of metallic corrosion. Corrosion 1964, 20, 7t–14t. [Google Scholar] [CrossRef]
- Coney, M. The theory and application of conductance probes for the measurement of liquid film thickness in two-phase flow. J. Phys. E Sci. Instrum. 1973, 6, 903. [Google Scholar] [CrossRef]
- Li, J. Research on the Measurement System for Liquid Film Thickness on the Surface of Material Samples in Environmental Testing. Master’s Thesis, Chongqing University, Chongqing, China, 2022. Available online: https://link.cnki.net/doi/10.27670/d.cnki.gcqdu.2022.001844 (accessed on 20 August 2025).
- Kang, J.H.; Lee, S.H.; Ruh, H.; Yu, K.M. Development of a Thickness Meter for Conductive Thin Films Using Four-Point Probe Method. J. Electr. Eng. Technol. 2021, 16, 2265–2273. [Google Scholar] [CrossRef]
- Marshall, B.W.; Tiederman, W.G. A capacitance depth gauge for thin liquid films. Rev. Sci. Instrum. 1972, 43, 544–547. [Google Scholar] [CrossRef]
- Canbolat, H. A Novel Level Measurement Technique Using Three Capacitive Sensors for Liquids. IEEE Trans. Instrum. Meas. 2009, 58, 3762–3768. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, N.; Chen, C.; Sun, H.J. A method for direct thickness measurement of wavy liquid film in gas-liquid two-phase annular flow using conductance probes. Flow Meas. Instrum. 2018, 62, 66–75. [Google Scholar] [CrossRef]
- Zoughi, R.; Gallion, J.R.; Ghasr, M.T. Accurate Microwave Measurement of Coating Thickness on Carbon Composite Substrates. IEEE Trans. Instrum. Meas. 2016, 65, 951–953. [Google Scholar] [CrossRef]
- Galindo-Romera, G.; Herraiz-Martínez, F.J.; Gil, M.; Martínez-Martínez, J.J.; Segovia-Vargas, D. Submers-ible Printed Split-Ring Resonator-Based Sensor for Thin-Film Detection and Permittivity Characterization. IEEE Sens. J. 2016, 16, 3587–3596. [Google Scholar] [CrossRef]
- Al-Aufi, Y.A.; Hewak amby, B.N.; Dimitrakis, G.; Holmes, M.; Hasan, A.; Watson, N.J. Thin film thickness measurements in two phase annular flows using ultrasonic pulse echo techniques. Flow Meas. Instrum. 2019, 66, 67–78. [Google Scholar] [CrossRef]
- Yuan, Y.C.; Yao, C.Y.; Shen, W.F.; Hu, X.D.; Hu, C.G. Polarization Measurement Method Based on Liquid Crystal Variable Retarder (LCVR) for Atomic Thin-Film Thickness. Nanomanuf. Metrol. 2022, 5, 159–166. [Google Scholar] [CrossRef]
- Bai, Q.H.; Guo, F.; Wong, P.L.; Jiang, P.G. Online Measurement of Lubricating Film Thickness in Slid-er-on-Disc Contact Based on Dichromatic Optical Interferometry. Tribol. Lett. 2017, 65, 145. [Google Scholar] [CrossRef]
- Miguet, J.; Bussonnière, A. Absolute thickness field measurement on curved axisymmetric thin free films with monochromatic light. Rev. Sci. Instrum. 2024, 95, 075101. [Google Scholar] [CrossRef]
- Gatapova, E.Y.; Peschenyuk, Y.A. Optical methods for measuring the thickness of thin evaporating liquid films. J. Opt. Technol. 2024, 91, 285–291. [Google Scholar] [CrossRef]
- Ajami, A.; Ovsianikov, A.; Liska, R.; Baudis, S. Z-scan technique: A review from conventional Z-scan to white light Z-scan. Appl. Phys. B 2024, 130, 138. [Google Scholar] [CrossRef]
- Guo, T.; Wu, J.H.; Ni, L.F.; Fu, X.; Hu, X.T. Initial estimation of thin film thickness measurement based on white light spectral interferometry. Thin Solid Films 2016, 612, 267–273. [Google Scholar] [CrossRef]
- Grasso, M.; Petrov, V.; Manera, A. Accuracy and error analysis of optical liquid film thickness measurement with total internal reflection method (TIRM). Exp. Fluids 2024, 65, 83. [Google Scholar] [CrossRef]
- Cherdantsev, A.; Bobylev, A.; Guzanov, V.; Kvon, A.; Kharlamov, S. Measuring liquid film thickness based on the brightness level of the fluorescence: Methodical overview. Int. J. Multiph. Flow 2023, 168, 104570. [Google Scholar] [CrossRef]
- Wu, P. Global Thickness Measurement and Friction Measurement Error Analysis of Fluorescent Oil Film. Master’s Thesis, Southwest University of Science and Technology, Mianyang, China, 2022. Available online: https://link.cnki.net/doi/10.27415/d.cnki.gxngc.2022.000033 (accessed on 20 August 2025).
- Yokoi, K. Colorimetric determination of chloride in biological samples by using mercuric nitrate and diphe-nylcarbazone. Biol. Trace Elem. Res. 2002, 85, 87–94. [Google Scholar] [CrossRef]
- Labhade, S.R.; Labhade, K.R. Mono-thiocyanato mercury (II) chloride: A novel reagent for spectrophotometric determination of chloride in beers. Rasayan J. Chem. 2021, 14, 1446539. [Google Scholar] [CrossRef]
- Xiao, K.P.; Bühlmann, P.; Nishizawa, S.; Amemiya, S.; Umezawa, Y. A chloride ion-selective solvent pol-ymeric membrane electrode based on a hydrogen bond forming ionophore. Anal. Chem. 1997, 69, 1038–1044. [Google Scholar] [CrossRef]
- Pietrzak, K.; Morawska, K.; Malinowski, S.; Wardak, C. Chloride Ion-Selective Electrode with Solid-Contact Based on Polyaniline Nanofibers and Multiwalled Carbon Nanotubes Nanocomposite. Membranes 2022, 12, 1150. [Google Scholar] [CrossRef]
- Liu, Y.; Crespo, G.A.; Cuartero, M. Voltammetric ion-selective electrodes in thin-layer samples: Absolute detection of ions using ultrathin membranes. Anal. Chem. 2024, 96, 1147–1155. [Google Scholar] [CrossRef]
- Takenaka, M.; Kozuka, S.; Hayashi, M.; Endo, H. Determination of ultratrace amounts of metallic and chloride ion impurities in organic materials for microelectronics devices after a microwave digestion method. Analyst 1997, 122, 129–132. [Google Scholar] [CrossRef]
- Tripathi, S.R.; Inoue, H.; Hasegawa, T.; Kawase, K. Non-destructive Inspection of Chloride Ion in Concrete Structures Using Attenuated Total Reflection of Millimeter Waves. J. Infrared Millim. Terahertz Waves 2013, 34, 181–186. [Google Scholar] [CrossRef]
- Jaworska, A.; Malek, K.; Kudelski, A. Intracellular pH—Advantages and pitfalls of surface-enhanced Raman scattering and fluorescence microscopy—A review. Spectrochim. Acta A 2021, 251, 119410. [Google Scholar] [CrossRef]
- Beckhoff, B.; Kanngießer, B.; Langhoff, N.; Wedell, R.; Wolff, H. Handbook of Practical X-Ray Fluorescence Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Krishna, D.N.G.; Philip, J. Review on surface-characterization applications of X-ray photoelectron spec-troscopy (XPS): Recent developments and challenges. Appl. Surf. Sci. Adv. 2022, 12, 100332. [Google Scholar] [CrossRef]
- Thomas, R. Intracellular pH of snail neurones measured with a new pH-sensitive glass micro-electrode. J. Physiol. 1974, 238, 159–180. [Google Scholar] [CrossRef]
- Salis, A.; Cristina Pinna, M.; Bilanicova, D.; Monduzzi, M.; Nostro, P.L.; Ninham, B.W. Specific anion effects on glass electrode pH measurements of buffer solutions: Bulk and surface phenomena. J. Phys. Chem. B 2006, 110, 2949–2956. [Google Scholar] [CrossRef]
- Hatfield, K.O.; Gole, M.T.; Schorr, N.B.; Murphy, C.J.; Rodríguez-López, J. Surface-enhanced Raman spectroscopy-scanning electrochemical microscopy: Observation of real-time surface pH perturbations. Anal. Chem. 2021, 93, 7792–7796. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Sun, Y.; Gu, R. Investigations of chemisorption and reaction at non-aqueous electrochemical inter-faces by in situ surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 2005, 36, 725–735. [Google Scholar] [CrossRef]
- Mancio, M.; Monteiro, P.; Kusinski, G.; Devine, T. Electrochemical and in-situ SERS study of passive film characteristics and corrosion performance of 9% Cr microcomposite steel in highly alkaline environments. J. ASTM Int. 2009, 6, JAI101903. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, J.; Li, D.; Ding, Q. Design of intelligent conductivity meter based on MSP430F149. In Proceedings of the Third IFIP TC 12 International Conference, CCTA 2009, Beijing, China, 14–17 October 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 240–247. [Google Scholar] [CrossRef]
- Polgar, K.; Kovacs, L.; Foldvari, I.; Cravero, I. Spectroscopic and Electrical-Conductivity Investigation of Mg Doped Linbo3 Single-Crystals. Solid State Commun. 1986, 59, 375–379. [Google Scholar] [CrossRef]
- Liu, S. Design and Development of High-Precision Electrode-Type Seawater Conductivity and Salinity Meter. Master’s Thesis, Ocean University of China, Qingdao, China, 2015. Available online: https://kns.cnki.net/kcms2/article/abstract?v=oWJgMrFo8ufLcT2jL5wggAR-tj4c_SkSEvhN4ucHg36ACVN0e5FszVpntqtthp0c1ZvejB18BCD2Cn2FOyt1F9NhNg6Agf-NCXZZTKtL8L_qUMsIZUPk6ARmR0_h1LyG6BIrJfIUMNS2VBSre53kW8-8XW5xckmc6VSKeRqM-1PhHOnVVn5vD6Q-lFiCAMBCP93YZT54BoA=&uniplatform=NZKPT&language=CHS (accessed on 20 August 2025).
- Radjabov, A.; Ibragimov, M.; Eshpulatov, N. The Study of the Electrical Conductivity of Apples and Grapes as an Object of Electrical Processing. E3S Web Conf. 2021, 226, 00002. [Google Scholar] [CrossRef]
- Zhao, X.L.; Chen, Y.; Wei, G.H.; Liu, J.F. A simple control and high accuracy measurement method of open-cell four-electrode conductivity electrode. Rev. Sci. Instrum. 2023, 94, 085113. [Google Scholar] [CrossRef]
- Thirstrup, C.; Deleebeeck, L. Review on Electrolytic Conductivity Sensors. IEEE Trans. Instrum. Meas. 2021, 70, 1008222. [Google Scholar] [CrossRef]
- Multiphysics, C. Introduction to Comsol Multiphysics; COMSOL Multiphysics: Burlington, MA, USA, 1998; Volume 9, p. 32. [Google Scholar]
- Wu, J.H.; Xing, S.H.; Liang, C.H.; Lu, L.; Yan, Y.G. The influence of electrode position and output current on the corrosion related electro-magnetic field of ship. Adv. Eng. Softw. 2011, 42, 902–909. [Google Scholar] [CrossRef]
- Ruiz-Garcia, A.; Esquivel-Peña, V.; Godínez, F.A.; Montoya, R. Corrosion Modeling of Aluminum Alloys: A Brief Review. ChemElectroChem 2024, 11, e202300712. [Google Scholar] [CrossRef]
- Cai, Y.K.; Xu, Y.M.; Zhao, Y.; Ma, X.B. Atmospheric corrosion prediction: A review. Corros. Rev. 2020, 38, 299–321. [Google Scholar] [CrossRef]
- Chen, Y.L.; Huang, H.L.; Zhang, Y.; Wang, C.G.; Fan, W.J. A method of atmospheric corrosion prediction for aircraft structure. Mater. Corros. 2019, 70, 79–90. [Google Scholar] [CrossRef]
- Cai, S.; Ji, H.C.; Li, M.M.; Zhao, Z.L.; Gao, Z.Y.; Zhu, F.Y. Corrosion Mechanism and Simulation of Q235 Steel in Typical Marine Atmospheric Environment. Mater. Corros. 2025, 76, 1199–1217. [Google Scholar] [CrossRef]
- Mollapour, Y.; Poursaeidi, E. Experimental and numerical analysis of Pitting Corrosion in CUSTOM 450 Stainless Steel. Eng. Fail. Anal. 2021, 128, 105589. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, X.H.; Li, D.; Li, J.H.; Wang, Z.; Tian, R.Z. An experimental and numerical study on the corrosion characteristics of weathering steel-concrete composite beams. Constr. Build. Mater. 2025, 462, 139893. [Google Scholar] [CrossRef]
- Ding, Q.; Qin, Y.; Cui, Y. Galvanic Corrosion of Aircraft Components in Atmospheric Environment. J. Chin. Soc. Corros. Prot. 2020, 40, 455–462. [Google Scholar] [CrossRef]
- Palani, S.; Hack, T.; Deconinck, J.; Lohner, H. Validation of predictive model for galvanic corrosion under thin electrolyte layers: An application to aluminium 2024-CFRP material combination. Corros. Sci. 2014, 78, 89–100. [Google Scholar] [CrossRef]
- Presuel-Moreno, F.J.; Wang, H.; Jakab, M.A.; Kelly, R.G.; Scully, J.R. Computational modeling of active corrosion inhibitor release from an Al-Co-Ce metallic coating—Protection of exposed AA2024-T3. J. Electrochem. Soc. 2006, 153, B486–B498. [Google Scholar] [CrossRef]
- Moraes, C.V.; Santucci, R.J.; Scully, J.R.; Kelly, R.G. Finite Element Modeling of Chemical and Electrochemical Protection Mechanisms Offered by Mg-Based Organic Coatings to AA2024-T351. J. Electrochem. Soc. 2021, 168, 051505. [Google Scholar] [CrossRef]
- Liu, C.; Rafla, V.; Scully, J.; Kelly, R. Mathematical modeling of potential and current distributions for atmospheric corrosion of galvanic coupling in airframe components. In Proceedings of the NACE CORROSION, Dallas, TX, USA, 15–19 March 2015; NACE-2015-5579. NACE: Houston, TX, USA, 2015. [Google Scholar] [CrossRef]
- Haydar, S.A.; Hammoud, A.; Yurievna, K.M. Predicting mechanical and electrochemical behavior of atmospheric corrosion in excavator arm. AIP Conf. Proc. 2023, 2549, 210016. [Google Scholar] [CrossRef]
- Alsit, A.; Hamdan, H.; Al Tahhan, A.B.; Mughieda, O.; Mourad, A.H.I.; Shehadeh, M.A.; Alkhedher, M. Experimental and numerical investigation of stress corrosion cracking in AISI 4340 steel under near neutral solution conditions. Results Eng. 2024, 21, 101833. [Google Scholar] [CrossRef]
- Ding, Y.; Ye, X.W.; Zhang, H.; Zhang, X.S. Fatigue life evolution of steel wire considering corrosion-fatigue coupling effect: Analytical model and application. Steel Compos. Struct. 2024, 50. [Google Scholar] [CrossRef]
- Lishchuk, S.V.; Akid, R.; Worden, K.; Michalski, J. A cellular automaton model for predicting intergranular corrosion. Corros. Sci. 2011, 53, 2518–2526. [Google Scholar] [CrossRef]
- Sarkar, P. A brief history of cellular automata. ACM Comput. Surv. (CSUR) 2000, 32, 80–107. [Google Scholar] [CrossRef]
- Stafiej, J.; di Caprio, D.; Bartosik, L. Corrosion-passivation processes in a cellular automata based simulation study. J. Supercomput. 2013, 65, 697–709. [Google Scholar] [CrossRef]
- Zenkri, M.; di Caprio, D.; Pérez-Brokate, C.; Féron, D.; de lamare, J.; Chaussé, A.; Larbi, F.B.; Raouafi, F. Contribution of cellular automata to the understanding of corrosion phenomena. Condens. Matter Phys. 2017, 20. [Google Scholar] [CrossRef]
- di Caprio, D.; Stafiej, J.; Luciano, G.; Arurault, L. 3D cellular automata simulations of intra and intergranular corrosion. Corros. Sci. 2016, 112, 438–450. [Google Scholar] [CrossRef]
- Vautrin-Ul, C.; Taleb, A.; Stafiej, J.; Chaussé, A.; Badiali, J.P. Mesoscopic modelling of corrosion phenomena: Coupling between electrochemical and mechanical processes, analysis of the deviation from the Faraday law. Electrochim. Acta 2007, 52, 5368–5376. [Google Scholar] [CrossRef]
- Vautrin-Ul, C.; Chaussé, A.; Stafiej, J.; Badiali, J. Numerical simulations of corrosion processes. Properties of the corrosion front and formation of islands. Condens. Matter Phys. 2004, 7, 813–828. Available online: https://nasplib.isofts.kiev.ua/handle/123456789/119014 (accessed on 20 August 2025). [CrossRef]
- Taleb, A.; Stafiej, J.; Chausse, A.; Messina, R.; Badiali, J. Simulations of film growth and diffusion during the corrosion process. J. Electroanal. Chem. 2001, 500, 554–561. [Google Scholar] [CrossRef]
- Di Caprio, D.; Vautrin-Ul, C.; Stafiej, J.; Saunier, J.; Chaussé, A.; Féron, D.; Badiali, J. Morphology of corroded surfaces: Contribution of cellular automaton modelling. Corros. Sci. 2011, 53, 418–425. [Google Scholar] [CrossRef]
- Saunier, J.; Dymitrowska, M.; Chaussé, A.; Stafiej, J.; Badiali, J. Diffusion, interactions and universal behavior in a corrosion growth model. J. Electroanal. Chem. 2005, 582, 267–273. [Google Scholar] [CrossRef]
- Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Derets, H.; Nehaniv, C.L. Survival and Evolutionary Adaptation of Populations Under Disruptive Habitat Change: A Study With Darwinian Cellular Automata. Artif. Life 2024, 31, 106–123. [Google Scholar] [CrossRef] [PubMed]
- Chopard, B. Cellular automata modeling of physical systems. In Cellular Automata; Springer: Berlin/Heidelberg, Germany, 2009; pp. 657–689. [Google Scholar] [CrossRef]
- Eosina, P.; Arymurthy, A.M.; Krisnadhi, A.A. A non-uniform continuous cellular automata for analyzing and predicting the spreading patterns of COVID-19. Big Data Cogn. Comput. 2022, 6, 46. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; Veld, P.J.I.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Carter, W.C. Structure predictions. The genetics of grain boundaries. Nat. Mater. 2010, 9, 383–385. [Google Scholar] [CrossRef]
- Andersen, H.C. Molecular-Dynamics Simulations at Constant Pressure and-or Temperature. J. Chem. Phys. 1980, 72, 2384–2393. [Google Scholar] [CrossRef]
- Arkundato, A.; Su’ud, Z.; Abdullah, M.; Widayani. Computational Study: Reduction of Iron Corrosion in Lead Coolant of Fast Nuclear Reactor. AIP Conf. Proc. 2012, 1454, 65–68. [Google Scholar] [CrossRef]
- Gao, Y.; Takahashi, M.; Cavallotti, C.; Raos, G. Molecular dynamics simulation of metallic impurity diffusion in liquid lead-bismuth eutectic (LBE). J. Nucl. Mater. 2018, 501, 253–260. [Google Scholar] [CrossRef]
- DorMohammadi, H.; Pang, Q.; Arnadóttir, L.; Isgor, O.B. Atomistic simulation of initial stages of iron corrosion in pure water using reactive molecular dynamics. Comput. Mater. Sci. 2018, 145, 126–133. [Google Scholar] [CrossRef]
- Farzi, N.; Hydarifard, M.H.; Izadi, M.E.; Sabzyan, H. Investigation of iron carbide (Fe3C) corrosion in water and acidic solution using ReaxFF molecular dynamics. J. Mol. Liq. 2020, 318, 114006. [Google Scholar] [CrossRef]
- Farzi, N.; Hydarifar, M.H.; Izadi, M.E. The investigation of surface corrosion of Fe3C in H2SO4 solution and the role of thiophene as an inhibitor by ReaxFF molecular dynamics. Mater. Chem. Phys. 2022, 283, 125984. [Google Scholar] [CrossRef]
- Qiu, Y.A.; Yang, Y.; Yang, N.; Tong, L.G.; Yin, S.W.; Yu, L.; Wang, L. Corrosion of Iron Covered with Iron Oxide Film by Chlorine and Hydrogen Chloride Gases: A Molecular Dynamics Simulation Study Using the ReaxFF. Energies 2022, 15, 4237. [Google Scholar] [CrossRef]
- Du, L.C.; Chen, J.H.; Hu, E.L.; Zeng, F.L. A reactive molecular dynamics simulation study on corrosion behaviors of carbon steel in salt spray. Comput. Mater. Sci. 2022, 203, 111142. [Google Scholar] [CrossRef]
- Thijs, L.C.; Kritikos, E.M.; Giusti, A.; van Ende, M.A.; van Duin, A.C.T.; Mi, X.C. Effect of Fe-O ReaxFF on Liquid Iron Oxide Properties Derived from Reactive Molecular Dynamics. J. Phys. Chem. A 2023, 127, 10339–10355. [Google Scholar] [CrossRef]
- Kim, S.Y.; Taylor, C.D. Molecular dynamics of the early stages of high-temperature corrosion. Phys. Rev. Mater. 2021, 5. [Google Scholar] [CrossRef]
- Kumar, D.; Jain, V.; Rai, B. Capturing the synergistic effects between corrosion inhibitor molecules using density functional theory and ReaxFF simulations- A case for benzyl azide and butyn-1-ol on Cu surface. Corros. Sci. 2022, 195. [Google Scholar] [CrossRef]
- Ait Mansour, A.; Allah, A.E.A.; Lgaz, H.; Messali, M.; Lee, H.-S.; Bazzi, L.; Salghi, R.; Ramli, Y.; Hammouti, B. Evaluation of N80 carbon steel corrosion in 15 wt.% HCl using isatin-hydrazones: A comprehensive ap-proach with chemical, electrochemical techniques, and DFTB calculations. J. Mol. Struct. 2025, 1321, 139910. [Google Scholar] [CrossRef]
- Sheetal; Singh, A.K.; Mansour, A.A.; Thakur, S.; Pani, B.; Singh, M.; Salghi, R. Aromaticity of heterocyclic compounds and their corrosion inhibition property: Experimental and theoretical analysis. Langmuir 2024, 40, 21675–21692. [Google Scholar] [CrossRef]
- Ait Mansour, A.; Subbiah, K.; Lgaz, H.; Al-Hadeethi, M.R.; Messali, M.; Park, T.; Bazzi, L.; Lee, H.-S.; Salghi, R. Investigating corrosion failure in N80 carbon Steel: Experimental and theoretical insights into isonico-tinohydrazide derivatives as inhibitors in acidic conditions. Inorg. Chem. Commun. 2024, 161, 112007. [Google Scholar] [CrossRef]
- Ait Mansour, A.; Al-hadeethi, M.R.; Lgaz, H.; Subbiah, K.; Messali, M.; Lee, H.-S.; Bazzi, L.; Salghi, R. Exploring the potential of isonicotinohydrazide derivatives in N80 steel corrosion control: An integrated approach through synthesis, modeling, and experimentation in acidic environments. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 679, 132542. [Google Scholar] [CrossRef]
- Kadhim, A.; Al-Amiery, A.; Alazawi, R.; Al-Ghezi, M.; Abass, R. Corrosion inhibitors. A review. Int. J. Corros. Scale Inhib. 2021, 10, 54–67. [Google Scholar] [CrossRef]
- Samuel, H.S.; Nweke-Maraizu, U.; Johnson, G.; Etim, E.E. A review of theoretical techniques in corrosion inhibition studies. Commun. Phys. Sci. 2023, 9, 394–403. [Google Scholar]
- Gong, K.; Wu, M.; Liu, X.Y.; Liu, G.X. Nucleation and propagation of stress corrosion cracks: Modeling by cellular automata and finite element analysis. Mater. Today Commun. 2022, 33, 104886. [Google Scholar] [CrossRef]
Methods | Advantages | Limitations |
---|---|---|
Electrical measurement method | High time resolution, simple to operate, and convenient for data processing. | Destroying the shape of liquid film, poor effect on non-conductive liquid film, and low spatial resolution (>100 μm). The accuracy depends on the equipment of measuring displacement. |
Microwave method | Non-contact measurement, high reliability, and suitable for dynamic monitoring. | The precision is low (about 100 μm), which is limited by wavelength of microwave. |
Ultrasonic method | Sensitive to multi-layer media and can measure the thickness of liquid film with rigid boundary. | The signal-to-noise ratio of air-liquid interface is low and the measurement is complex. The precision is about 10 μm. |
Optical method | High precision (such as nanometer interference method), non-contact, and strong stability. | The measurement range of polarization method is narrow, and the white light interferometry needs complex calibration. The precision is about 0.1 μm. |
Fluorescence intensity method | High signal-to-noise ratio and convenient for global brightness analysis. | Fluorescent agents need to be added so it will interfere with the original components of the liquid film. The precision is about 100 μm. |
Experimental Parameter | Intracellular pH | Membrane Potential | Intracellular Concentration | ||
---|---|---|---|---|---|
Mean Value | mV | nM | unit | unit | |
Standard Error |
Parameters | Methods | Advantages | Limitations |
---|---|---|---|
Chloride ion concentration | Mohr Titration Method | Operate easily rapidly | Low accuracy with interfering ions |
Ion-Selective Electrode (ISE) Method | Fast and efficient, suitable for strong acid/alkaline solutions | The electrode may interfere with the pH value | |
X-ray Fluorescence (XRF) Analysis Method | Non-destructive, high-resolution, supporting multi-element analysis | High cost, weak anti-interference ability, essential laboratory environment | |
Microwave Detection Method | Non-invasive, fast response, suitable for complex solutions | Accuracy is easily affected by solution properties, resulting in high equipment cost | |
pH value | Glass Electrodes | Mature technology, stable response | Susceptible to ion interference, requiring regular calibration |
Surface-Enhanced Raman Spectroscopy (SERS) | Unlabeled, high sensitivity, and capable of real-time monitoring | Complex preparation in substrate surface and high cost | |
Conductivity | AC Bridge Method | Good stability and high accuracy | Complex operation and long measurement time |
Three-Electrode Method | Precise control of potential, separation of interface and bulk response | Unable to directly measure the conductivity of the body, the system is complex, and there is interference from solution resistance | |
Four-Electrode Method | It can directly measure the conductivity of the body, completely eliminate polarization errors, and has simple and fast operation | Unable to analyze interface characteristics, requires precise geometric constants, and has limitations in high-frequency measurements |
Principle | FEM | Discretize complex systems into small units and solve partial differential equations. |
CA | Simulates the dynamic behavior of corrosion processes based on discrete space-time and local evolution rules. | |
MD | Simulates atomic movement by solving Newton’s equations of motion using interatomic forces. | |
Advantages | FEM | High accuracy: Captures details such as local stress concentration and material performance degradation.
Wide applicability: Can handle complex geometric structures and nonlinear problems. Multi-field coordination: Coupled fields simulation represents actual working conditions. |
CA | Wide time range: Suitable for corrosion evolution simulations over long time ranges.
Highly visualizable: Dynamic changes in corrosion morphology are visually presented. Probabilistic simulation: Reflects the non-uniformity and uncertainty of the corrosion process through probabilistic rules. | |
MD | Reproducing mechanisms: Deep exploration into the microscopic mechanisms of corrosion.
Multi-environment applicability: Supports corrosion research under extreme conditions (such as high temperature, high pressure, and supercritical media). | |
Limitations | FEM | Insufficient microscopic mechanism: Unable to investigate the corrosion mechanism at the atomic/molecular level. |
CA | Parameter sensitivity: The evolution rules and neighbor models have significant impacts on the results. | |
MD | Small spatial and temporal coverage: Suitable for short time (nanosecond to microsecond) and microscopic (atomic scale) processes. | |
Input and output | FEM | Input: Geometric model of metal and liquid film, liquid film thickness, ion concentrations, conductivity, diffusion coefficient, temperature, etc.
Output: Corrosion rate, corrosion current density, etc. |
CA | Input: Cell state set of metal and liquid film, cell state transition rules.
Output: Corrosion morphology, probability distribution of corrosion parameters (corrosion loss, rate, etc.). | |
MD | Input: Particle model of metal and liquid film, potential function.
Output: Corrosion rate, product type and content. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Y.; Gao, Y.; Zhuang, Y.; Wu, S.; Chen, F.; Jin, Y.; Zhu, P.; Qin, L.; Su, Y. Advances in Measurement and Simulation Methods of Thin Liquid Film Corrosion. Materials 2025, 18, 4479. https://doi.org/10.3390/ma18194479
Cai Y, Gao Y, Zhuang Y, Wu S, Chen F, Jin Y, Zhu P, Qin L, Su Y. Advances in Measurement and Simulation Methods of Thin Liquid Film Corrosion. Materials. 2025; 18(19):4479. https://doi.org/10.3390/ma18194479
Chicago/Turabian StyleCai, Yikun, Yuan Gao, Yixuan Zhuang, Shuai Wu, Fangyu Chen, Yiming Jin, Pengrui Zhu, Li Qin, and Yan Su. 2025. "Advances in Measurement and Simulation Methods of Thin Liquid Film Corrosion" Materials 18, no. 19: 4479. https://doi.org/10.3390/ma18194479
APA StyleCai, Y., Gao, Y., Zhuang, Y., Wu, S., Chen, F., Jin, Y., Zhu, P., Qin, L., & Su, Y. (2025). Advances in Measurement and Simulation Methods of Thin Liquid Film Corrosion. Materials, 18(19), 4479. https://doi.org/10.3390/ma18194479