Bio-Based Grease from Agricultural Waste: Modified Cellulose from Corn Stover for Sustainable Lubrication
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cellulose Extraction
2.3. Cellulose Modification
2.4. Grease Preparation
2.5. Characterizations
2.6. Thermal Stability
2.7. Rheological Investigations
2.8. Tribological Tests
2.9. Antioxidation Test
3. Results and Discussion
3.1. Isocyanate Modification of Cellulose
3.2. Rheological Characterization
3.2.1. Small-Amplitude Oscillatory Shear (SAOS)
3.2.2. Viscosity Test
3.2.3. Viscoelasticity Test
3.2.4. Structural Recovery
3.3. Tribological Test
3.4. Antioxidation Test
3.5. Discussion
4. Conclusions
- The characterization of SEM, EDS, FTIR, and XRD verified that the MDI was successfully grafted onto the cellulose surface. TGA revealed that the thermal stability of the modified cellulose improved, with the char yield increasing from 12.5% to 14.8% at 800 °C compared to pure cellulose.
- The bio-based grease, which was prepared by modified cellulose and ESO, exhibited a stable state that did not separate after being left to stand for 14 days.
- The rheological tests demonstrated shear-thinning behavior of bio-based grease, which is consistent with the rheological characteristics of gel-like materials. The bio-based grease exhibits a weaker structure compared to the lithium-based grease.
- The friction and wear tests revealed that the bio-based grease had lower friction coefficients and smaller wear scar diameters compared to commercial lithium-based greases, which indicates superior tribological properties.
- The antioxidation test demonstrates that the St-C-MDI/ESO possesses superior oxidation resistance compared to the Li/MO, which is primarily attributed to the exceptional antioxidant performance of the ESO component.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adhvaryu, A.; Sung, C.; Erhan, S. Fatty acids and antioxidant effects on grease microstructures. Ind. Crops Prod. 2005, 21, 285–291. [Google Scholar] [CrossRef]
- Mohana, A.A.; Roddick, F.; Maniam, S.; Gao, L.; Pramanik, B.K. Development of a wet digestion method for the analysis of metal soap in fat, oil, and grease deposits using the Taguchi method. J. Environ. Chem. Eng. 2024, 12, 112959. [Google Scholar] [CrossRef]
- Bashari, N.A.F.; Aziz, M.A.A.; Hairunnaja, M.A.; Arifin, M.A. Formulation of Lubricating Grease from Waste Oil: A Review. Pertanika J. Sci. Tech. 2024, 32. [Google Scholar] [CrossRef]
- Shah, R.; Gashi, B.; Rosenkranz, A. Latest developments in designing advanced lubricants and greases for electric vehicles—An overview. Lubr. Sci. 2022, 34, 515–526. [Google Scholar] [CrossRef]
- Abomohra, A.E.-F.; Elsayed, M.; Esakkimuthu, S.; El-Sheekh, M.; Hanelt, D. Potential of fat, oil and grease (FOG) for biodiesel production: A critical review on the recent progress and future perspectives. Prog. Energ. Combust. 2020, 81, 100868. [Google Scholar] [CrossRef]
- Tran, N.N.; Tišma, M.; Budžaki, S.; McMurchie, E.J.; Ngothai, Y.; Morales Gonzalez, O.M.; Hessel, V. Production of biodiesel from recycled grease trap waste: A review. Ind. Eng. Chem. Res. 2021, 60, 16547–16560. [Google Scholar] [CrossRef]
- Murtaza, B.; Rahman, M.S.; Xu, C.C.; Zhu, T.; Qin, W. Environmental Impact Associated with Oil and Grease and Their Emerging Mitigation Strategies. Waste Biomass Valori. 2024, 15, 3913–3928. [Google Scholar] [CrossRef]
- Saxena, A.; Kumar, D.; Tandon, N. Development of lubricious environmentally friendly greases using synergistic natural resources: A potential alternative to mineral oil-based greases. J. Clean. Prod. 2022, 380, 135047. [Google Scholar] [CrossRef]
- Shamardi, A.; Soufi, M.D.; Ghobadian, B.; Almasi, S. Synthesis of bio-based multi-purpose lithium grease from different vegetable oils: Drop point enhancement approach. Renew. Energ. 2024, 237, 121678. [Google Scholar] [CrossRef]
- Vafaei, S.; Jopen, M.; Jacobs, G.; König, F.; Weberskirch, R. Synthesis and tribological behavior of bio-based lubrication greases with bio-based polyester thickener systems. J. Clean. Prod. 2022, 364, 132659. [Google Scholar] [CrossRef]
- Dube, N.N.; Noby, H.; Nassef, M.G.; Zkria, A.; Naragino, H.; El Kady, M.F. Extraction of Bio-Based Carbon Materials from Agricultural Waste as Additives for the Development of an Eco-Friendly Bio-Based Grease. Mater. Sci. Forum 2023, 1111, 97–103. [Google Scholar] [CrossRef]
- Prasannakumar, P.; Sankarannair, S.; Prasad, G.; Hari Krishna, P.H.; Pranav, S.; Vivek, P.; Sidharth, S.; Shanmugam, R. Bio-based additives in lubricants: Addressing challenges and leveraging for improved performance toward sustainable lubrication. Biomass Convers. Bior 2025, 15, 17969–17997. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, Y.; Yang, E.-h.; Yoo, J.; Choi, S.; Hwangbo, S.; Suh, Y.-W.; Beak, J.; Han, J.; Kim, Y.J. Environmentally friendly process design for furan-based long-chain diester production aiming for bio-based lubricants. Green. Chem. 2025, 27, 607–622. [Google Scholar] [CrossRef]
- Gallego, R.; Arteaga, J.F.; Valencia, C.; Franco, J.M. Chemical modification of methyl cellulose with HMDI to modulate the thickening properties in castor oil. Cellulose 2013, 20, 495–507. [Google Scholar] [CrossRef]
- Sánchez, R.; Stringari, G.B.; Franco, J.M.; Valencia, C.; Gallegos, C. Use of chitin, chitosan and acylated derivatives as thickener agents of vegetable oils for bio-lubricant applications. Carbohyd Polym. 2011, 85, 705–714. [Google Scholar] [CrossRef]
- Wu, Z.; Thoresen, P.P.; Matsakas, L.; Rova, U.; Christakopoulos, P.; Shi, Y. Facile Synthesis of Lignin-Castor Oil-Based Oleogels as Green Lubricating Greases with Excellent Lubricating and Antioxidation Properties. Acs Sustain. Chem. Eng. 2023, 11, 12552–12561. [Google Scholar] [CrossRef]
- Luo, Z.; Li, P.; Cai, D.; Chen, Q.; Qin, P.; Tan, T.; Cao, H. Comparison of performances of corn fiber plastic composites made from different parts of corn stalk. Ind. Crops Prod. 2017, 95, 521–527. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, J.; Chen, F.; Wang, X.; Zhu, Q.; Ao, Q. Surface characterization of corn stalk superfine powder studied by FTIR and XRD. Colloids Surf. B Biointerfaces 2013, 104, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Huang, Y.; Lan, P.; Lan, L.; Lin, N. Physical modification of cellulose nanocrystals with a synthesized triblock copolymer and rheological thickening in silicone oil/grease. Biomacromolecules 2019, 20, 4457–4465. [Google Scholar] [CrossRef] [PubMed]
- Gallego, R.; Arteaga, J.; Valencia, C.; Franco, J. Rheology and thermal degradation of isocyanate-functionalized methyl cellulose-based oleogels. Carbohyd Polym. 2013, 98, 152–160. [Google Scholar] [CrossRef]
- Gallego, R.; Arteaga, J.F.; Valencia, C.; Franco, J.M. Isocyanate-functionalized chitin and chitosan as gelling agents of castor oil. Molecules 2013, 18, 6532–6549. [Google Scholar] [CrossRef]
- Adhvaryu, A.; Erhan, S. Epoxidized soybean oil as a potential source of high-temperature lubricants. Ind. Crops Prod. 2002, 15, 247–254. [Google Scholar] [CrossRef]
- Liu, W.; Duan, F. Lipase-catalyzed transesterification of epoxidized soybean oil to prepare epoxy methyl esters. Grasas Aceites 2018, 69, e247. [Google Scholar] [CrossRef]
- ASTM-D4172; Standard Test Method for Wear Preventive Characteristics of Lubricating Fluid (Four-Ball Method). American Soeiety for Testing and Materials: West Conshohocken, PA, USA, 2021.
- SH/T 0790-2007; Standard Test Method for Oxidation Induction Time of Lubricating Greases by Pressure Differential Scanning Calorimetry. China Petroleum and Chemical Corporation Limited: Beijing, China, 2007.
- Deng, Y.; Zhu, T.; Cheng, Y.; Zhao, K.; Meng, Z.; Huang, J.; Cai, W.; Lai, Y. Recent advances in functional cellulose-based materials: Classification, properties, and applications. Adv. Fiber Mater. 2024, 6, 1343–1368. [Google Scholar] [CrossRef]
- Aziz, T.; Farid, A.; Haq, F.; Kiran, M.; Ullah, A.; Zhang, K.; Li, C.; Ghazanfar, S.; Sun, H.; Ullah, R. A review on the modification of cellulose and its applications. Polymers 2022, 14, 3206. [Google Scholar] [CrossRef]
- Yang, S.; Lai, B.; Liu, Z.; Lou, W. The Development of a Fully Renewable Lubricant: The Effect of Ethyl Cellulose on the Properties of a Polyhydroxyalkanoate (P34HB)-Based Grease. Sustainability 2024, 16, 4149. [Google Scholar] [CrossRef]
- Siqueira, G.; Bras, J.; Dufresne, A. New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 2010, 26, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Amarasekara, A.S.; Hasan, M.A.; Ha, U. A two step method for the preparation of carbamate cross-linked cellulose films using an ionic liquid and their water retention properties. Carbohyd Polym. 2016, 154, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Abushammala, H. On the para/ortho reactivity of isocyanate groups during the carbamation of cellulose nanocrystals using 2, 4-toluene diisocyanate. Polymers 2019, 11, 1164. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, T.; Siesler, H.W.; Mitsui, K.; Tsuchikawa, S. Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: A NIR spectroscopy and XRD study. Biomacromolecules 2010, 11, 2300–2305. [Google Scholar] [CrossRef] [PubMed]
- Ju, X.; Bowden, M.; Brown, E.E.; Zhang, X. An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohyd Polym. 2015, 123, 476–481. [Google Scholar] [CrossRef]
- Gallego, R.; Arteaga, J.; Valencia, C.; Franco, J. Thickening properties of several NCO-functionalized cellulose derivatives in castor oil. Chem. Eng. Sci. 2015, 134, 260–268. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, P.; Lin, J.; Gao, X. Rheological and tribological properties of lithium grease and polyurea grease with different consistencies. Coatings 2022, 12, 527. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Yang, T.; Su, H.; Wang, X.; Zhang, S.; Lou, W. Rheological behaviors and tribological properties of nano-silica grease: A study compared with lithium grease and polyurea grease. Tribol. Int. 2023, 186, 108657. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, P.; Gao, X.; Cheng, Y. Rheological and tribological properties of polyurea greases containing additives of MoDDP and PB. Tribol. Int. 2023, 180, 108291. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, X.; Zhang, P.; Fan, Y. Mechanism of Influence of Graphene on Rheological and Tribological Properties of Polyurea Greases Considering Temperature and Load Effects. Tribol. Lett. 2023, 71, 56. [Google Scholar] [CrossRef]
- Wozniak, M.; Rylski, A.; Lason-Rydel, M.; Orczykowska, M.; Obraniak, A.; Siczek, K. Some rheological properties of plastic greases by Carreau-Yasuda model. Tribol. Int. 2023, 183, 108372. [Google Scholar] [CrossRef]
- Ma, W.; Li, T.; Fang, Z.; Li, W.; Tang, H.; Zhang, L.; Yu, Y.; Qiao, Z. Effect of Ti3C2Tx MXenes on tribological and rheological properties of greases. Tribol. Int. 2024, 191, 109137. [Google Scholar] [CrossRef]
- Kamel, B.M.; Mohamed, A.; Gad, M. Tribological and rheological properties of calcium grease with hybrid nano additives. J. Disper Sci. Technol. 2024, 45, 559–568. [Google Scholar] [CrossRef]
- Gallego, R.; Arteaga, J.F.; Valencia, C.; Díaz, M.J.; Franco, J.M. Gel-Like Dispersions of HMDI-Cross-Linked Lignocellulosic Materials in Castor Oil: Toward Completely Renewable Lubricating Grease Formulations. Acs Sustain. Chem. Eng. 2015, 3, 2130–2141. [Google Scholar] [CrossRef]
- Martín-Alfonso, M.A.; Rubio-Valle, J.F.; Hinestroza, J.P.; Martín-Alfonso, J.E. Impact of Vegetable Oil Type on the Rheological and Tribological Behavior of Montmorillonite-Based Oleogels. Gels 2022, 8, 504. [Google Scholar] [CrossRef]
- Zhang, E.; Li, W.; Zhao, G.; Wang, Z.; Wang, X. A Study on Microstructure, Friction and Rheology of Four Lithium Greases Formulated with Four Different Base Oils. Tribol. Lett. 2021, 69, 98. [Google Scholar] [CrossRef]
- Mohd Nasir, N.A.; Nazmi, N.; Mohamad, N.; Ubaidillah, U.; Nordin, N.A.; Mazlan, S.A.; Abdul Aziz, S.A.; Shabdin, M.K.; Yunus, N.A. Rheological Performance of Magnetorheological Grease with Embedded Graphite Additives. Materials 2021, 14, 5091. [Google Scholar] [CrossRef]
- Hyun, K.; Wilhelm, M.; Klein, C.O.; Cho, K.S.; Nam, J.G.; Ahn, K.H.; Lee, S.J.; Ewoldt, R.H.; McKinley, G.H. A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Prog. Polym. Sci. 2011, 36, 1697–1753. [Google Scholar] [CrossRef]
- Zhao, X.; Tian, C.; Hao, L.; Xu, H.; Dong, J. Tribology and Rheology of Polypropylene Grease with MoS2 and ZDDP Additives at Low Temperatures. Lubricants 2023, 11, 464. [Google Scholar] [CrossRef]
- Martín-Alfonso, J.E.; Martín-Alfonso, M.J.; Valencia, C.; Cuberes, M.T. Rheological and tribological approaches as a tool for the development of sustainable lubricating greases based on nano-montmorillonite and castor oil. Friction 2021, 9, 415–428. [Google Scholar] [CrossRef]
- Martín-Alfonso, J.E.; Martín-Alfonso, M.J.; Franco, J.M. Tunable rheological-tribological performance of “green” gel-like dispersions based on sepiolite and castor oil for lubricant applications. Appl. Clay Sci. 2020, 192, 105632. [Google Scholar] [CrossRef]
- Rasep, Z.; Yazid, M.M.; Samion, S. Lubrication of textured journal bearing by using vegetable oil: A review of approaches, challenges, and opportunities. Renew. Sust. Energ. Rev. 2021, 146, 111191. [Google Scholar] [CrossRef]
- Kohutiar, M.; Krbata, M.; Escherova, J.; Eckert, M.; Mikus, P.; Jus, M.; Polášek, M.; Janík, R.; Dubec, A. The Influence of the Geometry of Movement during the Friction Process on the Change in the Tribological Properties of 30CrNiMo8 Steel in Contact with a G40 Steel Ball. Materials 2024, 17, 127. [Google Scholar] [CrossRef]
- Sharma, B.K.; Perez, J.M.; Erhan, S.Z. Soybean Oil-Based Lubricants: A Search for Synergistic Antioxidants. Energy Fuels 2007, 21, 2408–2414. [Google Scholar] [CrossRef]
- Ilyin, S.; Gorbacheva, S.N.; Yadykova, A.Y. Rheology and tribology of nanocellulose-based biodegradable greases: Wear and friction protection mechanisms of cellulose microfibrils. Tribol. Int. 2022, 178, 108080. [Google Scholar] [CrossRef]
- Borrero-Lopez, A.M.; Blánquez, A.; Valencia, C.; Hernández, M.; Arias, M.E.; Franco, J.M. Influence of solid-state fermentation with Streptomyces on the ability of wheat and barley straws to thicken castor oil for lubricating purposes. Ind. Crops Prod. 2019, 140, 111625. [Google Scholar] [CrossRef]
- Borrero-Lopez, A.M.; Valencia, C.; Blanquez, A.; Hernandez, M.; Eugenio, M.E.; Franco, J.M. Cellulose Pulp- and Castor Oil-Based Polyurethanes for Lubricating Applications: Influence of Streptomyces Action on Barley and Wheat Straws. Polymers 2020, 12, 2822–2837. [Google Scholar] [CrossRef] [PubMed]
Samples | T5%/°C | Tmax/°C | Yc/% |
---|---|---|---|
St | 166.7 | 314.8 | 25.6 |
St-C | 209.7 | 337.8 | 12.5 |
St-C-MDI | 193.8 | 327.8 | 14.8 |
ESO | 346.6 | 398.7 | 1.2 |
St-C-MDI/ESO | 281.8 | 365.7 | 2.3 |
Samples | Flow Point/% | Destruction/% | Recovery/% |
---|---|---|---|
St-C-MDI/ESO | 1.2 | 92.27 | 17.76 |
Li/MO | 20 | 65.65 | 78.78 |
Samples | Friction Coefficient | Friction Force/N | Wear Scar Diameter/mm |
---|---|---|---|
St-C-MDI/ESO | 0.027 | 13.093 | 0.61 |
Li/MO | 0.084 | 40.421 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Lou, G.; Wu, Q.; Cheng, X.; Chen, Y. Bio-Based Grease from Agricultural Waste: Modified Cellulose from Corn Stover for Sustainable Lubrication. Materials 2025, 18, 4413. https://doi.org/10.3390/ma18184413
Fang Y, Lou G, Wu Q, Cheng X, Chen Y. Bio-Based Grease from Agricultural Waste: Modified Cellulose from Corn Stover for Sustainable Lubrication. Materials. 2025; 18(18):4413. https://doi.org/10.3390/ma18184413
Chicago/Turabian StyleFang, Yuhao, Gaobo Lou, Qiang Wu, Xingguo Cheng, and Yifan Chen. 2025. "Bio-Based Grease from Agricultural Waste: Modified Cellulose from Corn Stover for Sustainable Lubrication" Materials 18, no. 18: 4413. https://doi.org/10.3390/ma18184413
APA StyleFang, Y., Lou, G., Wu, Q., Cheng, X., & Chen, Y. (2025). Bio-Based Grease from Agricultural Waste: Modified Cellulose from Corn Stover for Sustainable Lubrication. Materials, 18(18), 4413. https://doi.org/10.3390/ma18184413