Chloride Ion Transport in Concrete Subjected to Sustained Compressive Stress Under Different Dry-Wet Ratios
Abstract
1. Introduction
2. Experiment Design
2.1. Materials and Design
2.2. Chlorine Salt Erosion Experiment
3. Analysis of Experiment Results
3.1. Effect of the Dry-Wet Time Ratio
3.2. Effect of the Compressive Stress Level
3.3. Effect of the Exposure Environment
4. Chloride Diffusion Coefficient Model
4.1. Establishment of Model
4.2. Verification of Model
5. Conclusions
- The enhancing effect of the dry–wet time ratio on chloride ion transport became significant under relatively high compressive stress. When the dry–wet time ratio was 7:1, the convection zone depths of concrete specimens under no stress and compressive stress were both 5 mm.
- The effect of the drying–wetting cycling environment on the distribution of chloride concentration was more pronounced than that of the natural immersion environment.
- When the compressive stress level was 0.5 fc and the dry–wet time ratio was 7:1, the chloride concentration of the specimens increased by 756.4% on average compared with that under natural immersion.
- The Mean Absolute Percentage Error (MAPE) between the experimental results and the model predictions proposed in this study was less than 15%, and the accuracy of the proposed model was higher than that of existing models. Therefore, the chloride diffusion coefficient model considering both the dry–wet time ratio and sustained compressive stress was verified to be applicable.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, J.X.; Cheng, X.K.; Yang, Y.M.; Xiao, J.Y. Chloride transport in concrete subjected to multiple cracks under drying-wetting cycles. Constr. Build. Mater. 2025, 470, 140559. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Mailyan, L.R.; Meskhi, B.; Chernil’nik, A.; Diana El’shaeva, D.; Pogrebnyak, A. Influence of variotropy on the change in concrete strength under the impact of wet–dry cycles. Appl. Sci. 2023, 13, 1745. [Google Scholar] [CrossRef]
- Pilvar, A.; Ramezanianpour, A.A.; Rajaie, H. New method development for evaluation concrete chloride ion permeability. Constr. Build. Mater. 2015, 93, 790–797. [Google Scholar] [CrossRef]
- Li, H.M.; Jin, W.; Song, Y.J.; Wang, Z. Effect of external loads on chloride diffusion coefficient of concrete with fly ash and blast furnace slag. J. Mater. Civ. Eng. 2014, 26, 04014053. [Google Scholar] [CrossRef]
- Oh, B.H.; Kim, K.H.; Jang, B.S. Critical corrosion amount to cause cracking of reinforced concrete structures. ACI Mater. J. 2009, 106, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.K.; Peng, J.X.; Cai, C.S.; Zhang, J.R. Experimental study on chloride ion diffusion in concrete under uniaxial and biaxial sustained stress. Materials 2020, 13, 5717. [Google Scholar] [CrossRef]
- Turgeon-Malette, V.; Chen, X.; Bah, A.S.; Conciatori, D.; Sanchez, T.; Teguedy, M.C.; Sorelli, L. Chloride ion permeability of Ultra-high-performance fiber-reinforced concrete under sustained load. J. Build. Eng. 2023, 66, 105842. [Google Scholar] [CrossRef]
- Yoo, S.W.; Kwon, S.J. Effects of cold joint and loading conditions on chloride diffusion in concrete containing GGBFS. Constr. Build. Mater. 2016, 115, 247–255. [Google Scholar] [CrossRef]
- Wan, X.M.; Su, Q.; Zhao, T.J.; Ren, X.B. Microcracking and chloride penetration of concrete under uniaxial Compression. J. Civ. Archit. Environ. Eng. 2013, 35, 104–110. [Google Scholar]
- Chen, C.H.; Wang, L.; Liu, R.G.; Liu, R.G.; Zhu, P.H.; Liu, H.; Wang, X.J.; Yu, J.; Chen, X.C. Chloride penetration of concrete exposed to dry-wet cycle with various dry-wet ratios and temperature. Constr. Build. Mater. 2023, 400, 132883. [Google Scholar] [CrossRef]
- Yamamoto, M.; Nakarai, K.; Yoshizumi, Y.; Torrent, R. Relationship between chloride ingress and concrete cover quality of inland structures exposed to deicing salts. Case Stud. Constr. Mater. 2024, 20, e03075. [Google Scholar] [CrossRef]
- Lee, J.M.; Hong, S.I.; Yang, H.J.; Jung, D.-H. Numerical modeling of chloride transport in concrete under cyclic exposure to chloride. Materials 2022, 15, 5966. [Google Scholar] [CrossRef] [PubMed]
- Rong, G.C.; He, T.; Zhang, G.Z.; Li, Y.; Wang, Y.X.; Xie, W.J. A review on chloride transport model and research method in concrete. Mater. Res. Express. 2023, 10, 042002. [Google Scholar] [CrossRef]
- Wang, H.L.; Dai, J.G.; Sun, X.Y.; Zhang, X.L. Time-dependent and stress-dependent chloride diffusivity of concrete subjected to sustained compressive loading. J. Mater. Civ. Eng. 2016, 28, 04016059. [Google Scholar] [CrossRef]
- Chen, D.S.; Feng, Y.P.; Shen, J.Y.; Sun, G.R.; Shi, J. Experimental and simulation study on chloride diffusion in unsaturated concrete under the coupled effect of carbonation and loading. Structures 2022, 43, 1356–1368. [Google Scholar] [CrossRef]
- Luo, Z.R.; Liu, J.H.; Zhang, Y.X.; Zhou, J.J.; Yu, Y.D.; Jia, R.T. Spatiotemporal characteristics of urban dry/wet islands in China following rapid urbanization. J. Hydrol. 2021, 601, 126618. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Guo, S.; Yan, B.C.; Liu, Z.; Wang, Y.C. Experimental and analytical investigation on chloride ions transport in concrete considering the effect of dry-exposure ratio under diurnal tidal environment. Constr. Build. Mater. 2022, 328, 127138. [Google Scholar] [CrossRef]
- AL-Ameeri, A.S.; Rafiq, M.I.; Tsioulou, O. Combined impact of carbonation and crack width on the chloride penetration and corrosion resistance of concrete structures. Cem. Concr. Comp. 2021, 115, 103819. [Google Scholar] [CrossRef]
- Kosalla, M.; Raupach, M. Diagnosis of concrete structures: The influence of sampling parameters on the accuracy of chloride profiles. Mater. Struct. 2018, 51, 75. [Google Scholar] [CrossRef]
- ASTM C1218/C1218M-19; Standard Test Method for Water-Soluble Chloride in Mortar and Concrete. ASTM International: West Conshohocken, PA, USA, 2019.
- Zeng, J. Chloride Ion Transport Experiment and Theoretical Study in the Anchoring Area of Prestressed Concrete T Beam Under Wet and Dry Cycles. Master’s Thesis, Changsha University of Science and Technology, Changsha, China, 2022. [Google Scholar]
- Cai, R.; Yu, M.; Hu, Y.S.; Yang, L.F.; Ma, H.Y. Influence of data acquisition and processing on surface chloride concentration of marine concrete. Constr. Build. Mater. 2021, 273, 121705. [Google Scholar] [CrossRef]
- Mu, L.J.; Wang, L.C.; Wang, L. Investigation on water absorption of concrete under the coupling action of uniaxial compressive load and freeze-thaw cycles. Mater. Struct. 2022, 55, 127. [Google Scholar] [CrossRef]
- Hu, S.W.; Peng, J.X.; Zhang, J.R.; Cai, C.S. Influences of time, temperature, and humidity on chloride diffusivity: Mesoscopic numerical research. J. Mater. Civ. Eng. 2017, 29, 04017223. [Google Scholar] [CrossRef]
- Lu, C.H.; Li, H.; Liu, R.G. Chloride transport in cracked RC beams under dry–wet cycles. Mag. Concr. Res. 2017, 69, 453–466. [Google Scholar] [CrossRef]
- Yoon, I.S. Simple approach for computing chloride diffusivity of (non) carbonated concrete. Key Eng. Mater. 2008, 385, 281–284. [Google Scholar] [CrossRef]
- Cao, J.R.; Jin, Z.Q.; Ding, Q.J.; Xiong, C.S.; Zhang, G.Z. Influence of the dry/wet ratio on the chloride convection zone of concrete in a marine environment. Constr. Build. Mater. 2022, 316, 125794. [Google Scholar] [CrossRef]
- Chen, D.S.; Guo, W.H.; Quan, X.K.; Duan, B.X. Mesoscopic statistics-based probability characteristics of chloride transport and reliability-based corrosion initiation life of bridge tower. Thin-Walled Struct. 2024, 198, 111680. [Google Scholar] [CrossRef]
- Cai, R.; Han, T.H.; Liao, W.Y.; Huang, J.; Li, D.W.; Kumar, A.; Ma, H.Y. Prediction of surface chloride concentration of marine concrete using ensemble machine learning. Cem. Concr. Res. 2020, 136, 106164. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | TiO2 | K2O | Loss on Ignition | |
---|---|---|---|---|---|---|---|---|---|
Chemical composition (%) | 21.09 | 6.37 | 4.57 | 60.48 | 1.43 | 1.89 | 0.21 | 0.45 | 2.57 |
NC45 | Unit (kg/m3) | fc (MPa) | ||||
Water | Cement | Natural Fine Aggregate | Natural Coarse Aggregate | SP | 47.5 | |
180 | 450 | 550 | 1170 | 3 |
Specimens | Expose the Environment | Dry-Wet Time Ratio | Sustained Compressive Load (fc) |
---|---|---|---|
CD1 | Drying-wetting cycles | 1:1 | - |
CD2 | 3:1 | - | |
CD3 | 7:1 | - | |
CD1F1 | 1:1 | 0.2 | |
CD1F2 | 1:1 | 0.3 | |
CD1F3 | 1:1 | 0.5 | |
CD2F1 | 3:1 | 0.2 | |
CD2F2 | 3:1 | 0.3 | |
CD2F3 | 3:1 | 0.5 | |
CD3F1 | 7:1 | 0.2 | |
CD3F2 | 7:1 | 0.3 | |
CD3F3 | 7:1 | 0.5 | |
N | Natural immersion | - | - |
NF1 | - | 0.2 | |
NF2 | - | 0.3 | |
NF3 | - | 0.5 |
CD1 | CD2 | CD3 | |
---|---|---|---|
Δx (mm) | 3 | 3 | 5 |
CD1 | CD2 | CD3 | |
---|---|---|---|
Cs,Δx (%) | 0.415 | 0.446 | 0.511 |
CD1 | CD2 | CD3 | |
---|---|---|---|
Dd,f (m2/s) | 1.462 × 10−11 | 2.17 × 10−11 | 3.57 × 10−11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Zhang, R.; Li, X.; Cheng, X.; Xiong, Y. Chloride Ion Transport in Concrete Subjected to Sustained Compressive Stress Under Different Dry-Wet Ratios. Materials 2025, 18, 4388. https://doi.org/10.3390/ma18184388
Ma W, Zhang R, Li X, Cheng X, Xiong Y. Chloride Ion Transport in Concrete Subjected to Sustained Compressive Stress Under Different Dry-Wet Ratios. Materials. 2025; 18(18):4388. https://doi.org/10.3390/ma18184388
Chicago/Turabian StyleMa, Wenqi, Renchi Zhang, Xiang Li, Xiaokang Cheng, and Yongming Xiong. 2025. "Chloride Ion Transport in Concrete Subjected to Sustained Compressive Stress Under Different Dry-Wet Ratios" Materials 18, no. 18: 4388. https://doi.org/10.3390/ma18184388
APA StyleMa, W., Zhang, R., Li, X., Cheng, X., & Xiong, Y. (2025). Chloride Ion Transport in Concrete Subjected to Sustained Compressive Stress Under Different Dry-Wet Ratios. Materials, 18(18), 4388. https://doi.org/10.3390/ma18184388