1H-Imidazo[4,5-f][1,10]phenanthroline Derivatives as Promising Ligands for Ir and Ru Complex Compounds for Applications in LECs: Mini-Review
Abstract
1. Introduction
2. Synthesis
3. Electrochemical Properties
4. Optical Properties
5. Device Properties
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moral-Carcedo, J.; Pérez-García, J. Measuring Aggregate Electricity Savings from the Diffusion of More Efficient Lighting Technologies. Energy Effic. 2021, 14, 68. [Google Scholar] [CrossRef]
- De Almeida, A.; Santos, B.; Paolo, B.; Quicheron, M. Solid State Lighting Review—Potential and Challenges in Europe. Renew. Sust. Energ. Rev. 2014, 34, 30–48. [Google Scholar] [CrossRef]
- Lahariya, V.; Dhoble, S.J. Development and Advancement of Undoped and Doped Zinc Sulfide for Phosphor Application. Displays 2022, 74, 102186. [Google Scholar] [CrossRef]
- Farinola, G.M.; Ragni, R. Organic Emitters for Solid State Lighting. J. Solid State Light. 2015, 2, 9. [Google Scholar] [CrossRef]
- Pashaei, B.; Karimi, S.; Shahroosvand, H.; Pilkington, M. Molecularly Engineered Near-Infrared Light-Emitting Electrochemical Cells. Adv. Funct. Mater. 2020, 30, 1908103. [Google Scholar] [CrossRef]
- Sudheendran Swayamprabha, S.; Dubey, D.K.; Shahnawaz; Yadav, R.A.K.; Nagar, M.R.; Sharma, A.; Tung, F.; Jou, J. Approaches for Long Lifetime Organic Light Emitting Diodes. Adv. Sci. 2020, 8, 2002254. [Google Scholar] [CrossRef]
- Avci, A.; Akbay, S. A Review Based on OLED Lighting Conditions and Human Circadian System. CCSJ 2023, 15, 7–13. [Google Scholar] [CrossRef]
- Woo, J.Y.; Park, M.-H.; Jeong, S.-H.; Kim, Y.-H.; Kim, B.; Lee, T.-W.; Han, T.-H. Advances in Solution-Processed OLEDs and Their Prospects for Use in Displays. Adv. Mater. 2023, 35, 2207454. [Google Scholar] [CrossRef]
- Chen, H.-W.; Lee, J.-H.; Lin, B.-Y.; Chen, S.; Wu, S.-T. Liquid Crystal Display and Organic Light-Emitting Diode Display: Present Status and Future Perspectives. Light Sci. Appl. 2018, 7, 17168. [Google Scholar] [CrossRef]
- Pashaei, B.; Karimi, S.; Shahroosvand, H.; Abbasi, P.; Pilkington, M.; Bartolotta, A.; Fresta, E.; Fernandez-Cestau, J.; Costa, R.D.; Bonaccorso, F. Polypyridyl Ligands as a Versatile Platform for Solid-State Light-Emitting Devices. Chem. Soc. Rev. 2019, 48, 5033–5139. [Google Scholar] [CrossRef]
- Fresta, E.; Costa, R.D. Advances and Challenges in White Light-Emitting Electrochemical Cells. Adv. Funct. Mater. 2020, 30, 1908176. [Google Scholar] [CrossRef]
- Yang, Z.-P.; Su, H.-C. Recent Advances in Optical Engineering of Light-Emitting Electrochemical Cells. Adv. Funct. Mater. 2020, 30, 1906788. [Google Scholar] [CrossRef]
- Youssef, K.; Li, Y.; O’Keeffe, S.; Li, L.; Pei, Q. Fundamentals of Materials Selection for Light-Emitting Electrochemical Cells. Adv. Funct. Mater. 2020, 30, 1909102. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, R.; Zhang, D.; Duan, L. Progress on Light-Emitting Electrochemical Cells toward Blue Emission, High Efficiency, and Long Lifetime. Adv. Funct. Mater. 2020, 30, 1907156. [Google Scholar] [CrossRef]
- Lin, Y.-D.; Lu, C.-W.; Su, H.-C. Long-Wavelength Light-Emitting Electrochemical Cells: Materials and Device Engineering. Chem. Eur. J. 2023, 29, e202202985. [Google Scholar] [CrossRef]
- Shavaleev, N.M.; Monti, F.; Costa, R.D.; Scopelliti, R.; Bolink, H.J.; Ortí, E.; Accorsi, G.; Armaroli, N.; Baranoff, E.; Grätzel, M.; et al. Bright Blue Phosphorescence from Cationic Bis-Cyclometalated Iridium(III) Isocyanide Complexes. Inorg. Chem. 2012, 51, 2263–2271. [Google Scholar] [CrossRef]
- Shavaleev, N.M.; Scopelliti, R.; Grätzel, M.; Nazeeruddin, M.K.; Pertegás, A.; Roldán-Carmona, C.; Tordera, D.; Bolink, H.J. Pulsed-Current versus Constant-Voltage Light-Emitting Electrochemical Cells with Trifluoromethyl-Substituted Cationic Iridium(III) Complexes. J. Mater. Chem. C 2013, 1, 2241–2248. [Google Scholar] [CrossRef]
- Lu, J.-S.; Kuo, J.-C.; Su, H.-C. Solution-Processable Tandem Solid-State Light-Emitting Electrochemical Cells. Org. Electron. 2013, 14, 3379–3384. [Google Scholar] [CrossRef]
- Nemati Bideh, B.; Roldán-Carmona, C.; Shahroosvand, H.; Nazeeruddin, M.K. Ruthenium Phenanthroimidazole Complexes for near Infrared Light-Emitting Electrochemical Cells. J. Mater. Chem. C 2016, 4, 9674–9679. [Google Scholar] [CrossRef]
- Szlapa-Kula, A.; Kula, S. Progress on Phenanthroimidazole Derivatives for Light-Emitting Electrochemical Cells: An Overview. Energies 2023, 16, 5194. [Google Scholar] [CrossRef]
- Costa, R.D.; Ortí, E.; Bolink, H.J.; Monti, F.; Accorsi, G.; Armaroli, N. Luminescent Ionic Transition-Metal Complexes for Light-Emitting Electrochemical Cells. Angew. Chem. Int. Ed. 2012, 51, 8178–8211. [Google Scholar] [CrossRef]
- Mindemark, J.; Tang, S.; Wang, J.; Kaihovirta, N.; Brandell, D.; Edman, L. High-Performance Light-Emitting Electrochemical Cells by Electrolyte Design. Chem. Mater. 2016, 28, 2618–2623. [Google Scholar] [CrossRef]
- Nemati Bideh, B.; Shahroosvand, H.; Nazeeruddin, M.K. High-Efficiency Deep-Red Light-Emitting Electrochemical Cell Based on a Trinuclear Ruthenium(II)–Silver(I) Complex. Inorg. Chem. 2021, 60, 11915–11922. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Zhu, Y.; Youssef, K.; Yu, Z.; Pei, Q. Structures and Materials in Stretchable Electroluminescent Devices. Adv. Mater. 2021, 34, 2106184. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.; Gan, X.; Leonhardt, C.; Zhang, Z.; Seibert, J.; Busch, J.; Bräse, S. A Brief History of OLEDs—Emitter Development and Industry Milestones. Adv. Mater. 2021, 33, 2005630. [Google Scholar] [CrossRef]
- Sreejith, S.; Ajayan, J.; Reddy, N.V.U.; Manikandan, M.; Umamaheswaran, S.; Reddy, N.V.R. Recent Advancements in High Efficiency Deep Blue Organic Light Emitting Diodes. Micro Nanostruct. 2025, 200, 208101. [Google Scholar] [CrossRef]
- Kanagaraj, S.; Puthanveedu, A.; Choe, Y. Small Molecules in Light-Emitting Electrochemical Cells: Promising Light-Emitting Materials. Adv. Funct. Mater. 2020, 30, 1907126. [Google Scholar] [CrossRef]
- Nannen, E.; Frohleiks, J.; Gellner, S. Light-Emitting Electrochemical Cells Based on Color-Tunable Inorganic Colloidal Quantum Dots. Adv. Funct. Mater. 2020, 30, 1907349. [Google Scholar] [CrossRef]
- Su, Y.-H.; Ji, Y.-C.; Huang, Y.-T.; Luo, D.; Liu, S.-W.; Yang, Z.-P.; Lu, C.-W.; Chang, C.-H.; Su, H.-C. Deep-Red and near-Infrared Light-Emitting Electrochemical Cells Employing Perovskite Color Conversion Layers with EQE >10%. J. Mater. Chem. C 2022, 10, 18137–18146. [Google Scholar] [CrossRef]
- Nemati Bideh, B.; Moghadam, M.; Sousaraei, A.; Shahpoori Arani, B. Phenanthroimidazole as Molecularly Engineered Switch for Efficient and Highly Long-Lived Light-Emitting Electrochemical Cell. Sci. Rep. 2023, 13, 2287. [Google Scholar] [CrossRef]
- Lee, L.C.-C.; Lo, K.K.-W. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem. Rev. 2024, 124, 8825–9014. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Guan, Y.; Liu, C. A Near-Infrared AIE-Active Ir(III) Complex with a Super-Large Stokes Shift and Efficient Singlet Oxygen Generation. Sens. Actuator B Chem. 2025, 437, 137741. [Google Scholar] [CrossRef]
- Yang, X.; Xu, S.; Zhang, Y.; Zhu, C.; Cui, L.; Zhou, G.; Chen, Z.; Sun, Y. Narrowband Pure Near-Infrared (NIR) Ir(III) Complexes for Solution-Processed Organic Light-Emitting Diode (OLED) with External Quantum Efficiency Over 16%. Angew. Chem. Int. Ed. 2023, 62, e202309739. [Google Scholar] [CrossRef]
- Lyons, C.H.; Abbas, E.D.; Lee, J.-K.; Rubner, M.F. Solid-State Light-Emitting Devices Based on the Trischelated Ruthenium(II) Complex. 1. Thin Film Blends with Poly(ethylene oxide). J. Am. Chem. Soc. 1998, 120, 12100–12107. [Google Scholar] [CrossRef]
- Ma, D.; Tsuboi, T.; Qiu, Y.; Duan, L. Recent Progress in Ionic Iridium(III) Complexes for Organic Electronic Devices. Adv. Mater. 2017, 29, 1603253. [Google Scholar] [CrossRef] [PubMed]
- Vásquez, B.; Bayas, M.; Dreyse, P.; Palma, J.L.; Cabrera, A.R.; Rossin, E.; Natali, M.; Saldias, C.; González-Pavez, I. Synthesis and Characterization of Iridium(III) Complexes with Substituted Phenylimidazo(4,5-f)1,10-Phenanthroline Ancillary Ligands and Their Application in LEC Devices. Molecules 2023, 29, 53. [Google Scholar] [CrossRef] [PubMed]
- Nemati Bideh, B.; Sousaraei, A.; Moghadam, M. Unveiling the Key Role of Metal Coordination Mode and Ligand’s Side Groups on the Performance of Deep-Red Light-Emitting Electrochemical Cell. Sci. Rep. 2024, 14, 16070. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, M.; Nemati Bideh, B.; Sousaraei, A. Binuclear Cyclometalated Ir(iii) Complexes with Bis-Bidentate Butterfly-Shaped Ligands: Synthesis, Characterization, and Application in Efficient Yellow–Orange Light-Emitting Electrochemical Cells. Dalton Trans. 2024, 53, 17588–17594. [Google Scholar] [CrossRef]
- Nemati Bideh, B.; Shahroosvand, H.; Sousaraei, A.; Cabanillas-Gonzalez, J. A near Infrared Light Emitting Electrochemical Cell with a 2.3 V Turn-on Voltage. Sci. Rep. 2019, 9, 228. [Google Scholar] [CrossRef]
- Nemati Bideh, B.; Shahroosvand, H. Influence of a Π-Conjugated Bridging Ligand in Light-Emitting Electrochemical Cells (LEECs). ChemistrySelect 2018, 3, 7226–7230. [Google Scholar] [CrossRef]
- Nemati Bideh, B.; Shahroosvand, H. A Molecularly Engineered Near-Infrared-Light-Emitting Electrochemical Cell (NIR-LEC). New J. Chem. 2020, 44, 1881–1887. [Google Scholar] [CrossRef]
- Nemati Bideh, B.; Shahroosvand, H. Efficient near Infrared Light Emitting Electrochemical Cell (NIR-LEEC) Based on New Binuclear Ruthenium Phenanthroimidazole Exhibiting Desired Charge Carrier Dynamics. Sci. Rep. 2017, 7, 15739. [Google Scholar] [CrossRef]
- Tordera, D.; Pertegás, A.; Shavaleev, N.M.; Scopelliti, R.; Ortí, E.; Bolink, H.J.; Baranoff, E.; Grätzel, M.; Nazeeruddin, M.K. Efficient Orange Light-Emitting Electrochemical Cells. J. Mater. Chem. 2012, 22, 19264. [Google Scholar] [CrossRef]
- Nemati Bideh, B.; Shahroosvand, H. New Molecularly Engineered Binuclear Ruthenium(II) Complexes for Highly Efficient near-Infrared Light-Emitting Electrochemical Cells (NIR-LECs). Dalton Trans. 2022, 51, 3652–3660. [Google Scholar] [CrossRef]
- Nemati Bideh, B.; Roldán-Carmona, C.; Shahroosvand, H.; Nazeeruddin, M.K. Low-Voltage, High-Brightness and Deep-Red Light-Emitting Electrochemical Cells (LECs) Based on New Ruthenium(ii) Phenanthroimidazole Complexes. Dalton Trans. 2016, 45, 7195–7199. [Google Scholar] [CrossRef]
- Devi, R.; Boddula, R.; Tagare, J.; Kajjam, A.B.; Singh, K.; Vaidyanathan, S. White Emissive Europium Complex with CRI 95%: Butterfly vs. Triangle Structure. J. Mater. Chem. C 2020, 8, 11715–11726. [Google Scholar] [CrossRef]
- Devi, R.; Rajendran, M.; Singh, K.; Pal, R.; Vaidyanathan, S. Smart Luminescent Molecular Europium Complexes and Their Versatile Applications. J. Mater. Chem. C 2021, 9, 6618–6633. [Google Scholar] [CrossRef]
- Li, X.; Zhao, G.-W.; Hu, Y.-X.; Zhao, J.-H.; Dong, Y.; Zhou, L.; Lv, Y.-L.; Chi, H.-J.; Su, Z. Rational Design and Characterization of Novel Phosphorescent Rhenium(I) Complexes for Extremely High-Efficiency Organic Light-Emitting Diodes. J. Mater. Chem. C 2017, 5, 7629–7636. [Google Scholar] [CrossRef]
- Kar, B.; Paira, P. Photostimulated Anticancer Activity of Mitochondria Localized Rhenium(I) Tricarbonyl Complexes Bearing 1H-imidazo[4,5-f][1,10]Phenanthroline Ligands Against MDA-MB-231 Cancer Cells. Chem. Eur. J. 2025, 31, e202401720. [Google Scholar] [CrossRef]
- Mondal, A.; Paira, P. Hypoxia Efficient and Glutathione-Resistant Cytoselective Ruthenium(II)-p-Cymene-Arylimidazophenanthroline Complexes: Biomolecular Interaction and Live Cell Imaging. Dalton Trans. 2020, 49, 12865–12878. [Google Scholar] [CrossRef]
- Garrote Cañas, A.M.; Yong, X.; Alenezi, M.S.; Martsinovich, N.; Sergeeva, N.N. Phenanthrolines Decorated with Branched Lipophilic Chains and Their Yellow Emitting Heteroleptic Iridium(III) Complexes: Synthesis, Photophysical and Acidochromic Behaviour, and Computational Analysis. Dyes Pigm. 2024, 222, 111844. [Google Scholar] [CrossRef]
- Yang, X.-H.; Li, M.; Peng, H.; Zhang, Q.; Wu, S.-X.; Xiao, W.-Q.; Chen, X.-L.; Niu, Z.-G.; Chen, G.-Y.; Li, G.-N. Highly Luminescent Mono- and Dinuclear Cationic Iridium(III) Complexes Containing Phenanthroline-Based Ancillary Ligand. Eur. J. Inorg. Chem. 2019, 2019, 847–855. [Google Scholar] [CrossRef]
- Mund, S.; Singh, K.; Vaidyanathan, S. High-Performance White Light-Emitting Diodes Based on an Efficient Trivalent Europium Molecular Complex. J. Mater. Chem. C 2024, 12, 18401–18415. [Google Scholar] [CrossRef]
- Wang, L.; Liu, L.; Zhang, C.; Yu, G.; Lin, W.; Duan, X.; Xiong, Y.; Jiang, G.; Wang, J.; Liao, X. Design, Synthesis, Anti-Infective Potency and Mechanism Study of Novel Ru-Based Complexes Containing Substituted Adamantane as Antibacterial Agents. Eur. J. Med. Chem. 2024, 270, 116378. [Google Scholar] [CrossRef]
- Tan, Z.; Lin, M.; Liu, J.; Wu, H.; Chao, H. Cyclometalated Iridium(iii) Tetrazine Complexes for Mitochondria-Targeted Two-Photon Photodynamic Therapy. Dalton Trans. 2024, 53, 12917–12926. [Google Scholar] [CrossRef]
- Wang, L.Q.; Zhang, C.Y.; Chen, J.J.; Lin, W.J.; Yu, G.Y.; Deng, L.S.; Ji, X.R.; Duan, X.M.; Xiong, Y.S.; Jiang, G.J.; et al. Ru-Based Organometallic Agents Bearing Phenyl Hydroxide: Synthesis and Antibacterial Mechanism Study against Staphylococcus aureus. ChemMedChem 2023, 18, e202300306. [Google Scholar] [CrossRef] [PubMed]
Code | Solvent | E1/2ox [V] (ΔE [mV]) | E1/2red [V] (ΔE [mV]) | HOMO [eV] | LUMO a [eV] | Eg [eV] | Ref. |
---|---|---|---|---|---|---|---|
Iridium(III) complexes | |||||||
1 | MeCN | 0.88 (83) | −1.76 (73) | − | − | 2.64 * | [43] |
DMF | 0.95 | −1.73 (78) | − | − | 2.68 * | [43] | |
Ir1 | MeCN | 0.87 (81) | −1.81 (70) | −5.67 | −2.99 | 2.68 | [30] |
Ir2 | MeCN | 0.91 (86) | −1.61 (74) | −5.71 | −3.19 | 2.52 | [30] |
Ir3+ | MeCN | 0.89 (112) | −1.70 (106) | −5.69 | −3.10 | 2.59 | [30] |
IrL1 | MeCN | 1.34 (193) | −1.31 (200) | −6.14 | −3.49 | 2.65 | [38] |
IrL2 | MeCN | 1.35 (95) | −1.27 (105) | −6.15 | −3.53 | 2.62 | [38] |
C1 | MeCN | 0.88 a | −1.81 | − | − | 2.69 | [36] |
C2 | MeCN | 0.89 a | −1.81 | − | − | 2.70 | [36] |
C3 | MeCN | 0.88 a | −1.80 | − | − | 2.68 | [36] |
C4 | MeCN | 1.10 a | −1.74 | − | − | 2.84 | [36] |
C5 | MeCN | 1.11 a | −1.75 | − | − | 2.86 | [36] |
C6 | MeCN | 1.12 a | −1.74 | − | − | 2.86 | [36] |
Ruthenium(II) complexes | |||||||
NE1 | MeCN | 1.38 (70) | −1.02 | −5.82 | −3.38 | 2.44 | [45] |
NE2 | MeCN | 1.32 (60) | −0.88 | −5.77 | −3.52 | 2.25 | [45] |
NE3 | MeCN | 1.36 (105) | −0.86 | −5.81 | −3.54 | 2.27 | [45] |
NE4 | MeCN | 1.33 (126) | −0.96 | −5.78 | −3.44 | 2.34 | [45] |
NE01 | MeCN | 1.31 (75) | −1.33 | −5.68 | −3.04 | 2.64 | [19] |
NE02 | MeCN | 1.24 (84) | −1.23 | −5.61 | −3.14 | 2.47 | [19] |
NE03 | MeCN | 1.31 (63) | −1.40 | −5.68 | −2.97 | 2.71 | [19] |
NE04 | MeCN | 1.28 (71) | −1.25 | −5.65 | −3.12 | 2.53 | [19] |
B1 | MeCN | 1.30 (60) | − | −5.67 | −3.34 b | 2.33 | [42] |
B2 | MeCN | 1.27 (84) | − | −5.64 | −3.37 b | 2.27 | [42] |
B01 | MeCN | 1.28 (60) | − | −5.65 | −3.41 b | 2.24 | [40] |
B02 | MeCN | 1.21 (90) | − | −5.58 | −3.36 b | 2.22 | [40] |
B03 | MeCN | 1.31 (68) | − | −5.70 | −3.37 b | 2.33 | [40] |
F1 | MeCN | 1.30 (70) | − | −5.67 | −3.37 b | 2.30 | [39] |
F2 | MeCN | 1.20 (81) | − | −5.57 | −3.33 b | 2.24 | [39] |
F3 | MeCN | 1.31 (80) | − | −5.68 | −3.32 b | 2.36 | [39] |
Bn1 | MeCN | 1.29 (98) | − | −5.66 | −3.41 b | 2.25 | [41] |
Bn2 | MeCN | 1.21 (91) | − | −5.58 | −3.36 b | 2.22 | [41] |
Bn3 | MeCN | 1.33 (100) | − | −5.70 | −3.43 b | 2.27 | [41] |
E | MeCN | 1.21 (71) | − | −5.58 | −3.37 b | 2.21 | [23] |
ECH3+ | MeCN | 1.26 (93) | − | −5.63 | −3.39 b | 2.24 | [23] |
E2Ag+ | MeCN | 1.31 (90) | − | −5.68 | −3.46 b | 2.22 | [23] |
D1 | MeCN | 1.33 (70) | −1.22 (90) | −5.75 | −3.20 | 2.55 | [44] |
D2 | MeCN | 1.25 (87) | −1.23 (130) | −5.67 | −3.19 | 2.48 | [44] |
D3 | MeCN | 1.28 (85) | −1.23 (80) | −5.71 | −3.20 | 2.51 | [44] |
M1 | MeCN | 1.21 (89) | −1.18 | −5.58 | −3.36 | 2.22 | [37] |
M2 | MeCN | 1.25 (87) | −1.23 | −5.60 | −3.31 | 2.29 | [37] |
D | MeCN | 1.22 (95) | −1.22 | −5.59 | −3.34 | 2.25 | [37] |
[Ru(bpy)3]2+ | MeCN | 1.29 (0.079) | −1.31 | −5.68 | −3.08 | 2.60 | [37] |
Code | Solvent | Absorbance | Emission | Egopt [eV] | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
λabs [nm] (log ε · 103) | Solution | Film | |||||||
λem [nm] (φ) | τ [ns] | kr [s−1] | knr [s−1] | λem [nm] (φ) | |||||
1 | CH2Cl2 | 274 (84), 299 (54), 388 (10), 405 (9.5), 467 (1.4) | 583 (0.43) | 910 | 4.7 × 105 | 6.3 × 105 | 590 (0.45) | - | [43] |
Ir1 | MeCN | 269 (84.2), 294 (58.3), 334 (22.1), 376 (10.8), 396 (10.0), 466 (1.4) | 580 (0.46) | 880 | 5.20 × 105 | 6.14 × 105 | 584 (0.32) | 2.54 | [30] |
Ir2 | MeCN | 274 (82.0), 302 (50.5), 331 (35.7), 383 (12.4), 402 (11.4), 482 (1.6) | 602 (0.42) | 970 | 4.33 × 105 | 5.98 × 105 | 606 (0.26) | 2.45 | [30] |
Ir3+ | MeCN | 272 (78.0), 303 (4.89), 318 (32.8), 341 (16.0), 383 (7.8), 395 (7.5), 452 (0.6) | 592 (0.40) | 950 | 3.66 × 105 | 6.42 × 105 | 603 (0.08) | 2.52 | [30] |
IrL1 | CH2Cl2 | 274 (5.70), 297 (5.60), 344 (5.00), 345 (5.00), 387 (4.80), 475 (3.97) | 570 (0.27) | 790 | 3.4 × 105 | 9.2 × 105 | 590 (0.31) | 2.58 | [38] |
IrL2 | CH2Cl2 | 268 (5.75), 297 (5.58), 344 (5.00), 343 (5.00), 387 (4.88), 475 (3.98) | 582 (0.36) | 850 | 4.2 × 105 | 7.5 × 105 | 598 (0.39) | 2.55 | [38] |
C1 | MeCN | 276, 297, 345, 384, 403 | 602 (0.18) | 630 | − | − | − | − | [36] |
CH2Cl2 | 278, 298, 346 388, 412 | 574 (0.35) | 890 | − | − | − | − | [36] | |
C2 | MeCN | 279, 294, 381, 403 | 600 (0.16) | 580 | − | − | − | − | [36] |
CH2Cl2 | 280, 299, 389, 414 | 576 (0.36) | 960 | − | − | − | − | [36] | |
C3 | MeCN | 274, 295, 341, 381, 406 | 603 (0.18) | 530 | − | − | − | − | [36] |
CH2Cl2 | 276, 296, 345, 387, 412 | 588 (0.31) | 770 | − | − | − | − | [36] | |
C4 | MeCN | 277, 300, 347, 378 | 528 (0.39) | 4660 | − | − | − | − | [36] |
CH2Cl2 | 278, 303, 352, 387 | 522 (0.60) | 3950 | − | − | − | − | [36] | |
C5 | MeCN | 279, 301, 349, 384 | 528 (0.27) | 5670 | − | − | − | − | [36] |
CH2Cl2 | 281, 304, 358, 390 | 525 (0.61) | 5020 | − | − | − | − | [36] | |
C6 | MeCN | 277, 301, 346, 379 | 527 (0.35) | 4990 | − | − | − | − | [36] |
CH2Cl2 | 278, 303, 355, 390 | 523 (0.63) | 4570 | − | − | − | − | [36] | |
[Ir(ppy)2 (phen)]+ | MeCN | 583 (0.39) | 230 | 17.3 × 105 | 2.7 × 105 | 591 (0.11) | − | [30] |
Code | Solvent | Absorbance | Emission | Ref. | ||
---|---|---|---|---|---|---|
λabs [nm] (log ε · 103) | λem [nm] (φ) | |||||
Ligand Transitions | MLCT | Solution | Film | |||
NE1 | MeCN | 220 (4.69), 284 (4.97), 323 (4.40) | 455 (4.24) | 618 (0.121) | 626 | [45] |
NE2 | MeCN | 220 (4.96), 282 (4.94), 318 (4.47) | 469 (4.20) | 635 (0.096) | 676 | [45] |
NE3 | MeCN | 224 (4.89), 262 (4.97), 337 (4.19) | 454 (4.20) | 610 (0.086) | 626 | [45] |
NE4 | MeCN | 224 (4.97), 276 (5.10), 329 (4.42) | 463 (4.43) | 620 (0.078) | 635 | [45] |
NE01 | MeCN | 233 (4.61), 255 (4.10), 285 (4.98) | 456 (4.25) | 605 (0.119) | 632 (0.162) | [19] |
NE02 | MeCN | 221 (4.95), 259 (4.11), 285 (4.96) | 462 (4.22) | 618 (0.091) | 636 (0.151) | [19] |
NE03 | MeCN | 227 (4.87), 263 (4.98), 276 (4.18) | 453 (4.21) | 595 (0.089) | 633 (0.123) | [19] |
NE04 | MeCN | 228 (4.91), 279 (5.12), 309 (4.31) | 464 (4.45) | 609 (0.061) | 643 (0.098) | [19] |
B1 | MeCN | 252 (4.04), 285 (4.97) | 457 (4.24) | 604 (0.116) | 645 | [42] |
B2 | MeCN | 220 (4.91), 287 (4.95) | 463 (4.23) | 620 (0.099) | 690 | [42] |
B01 | MeCN | 242 (4.31), 286 (4.87), 345 (4.33) | 458 (4.26) | 614 (0.112) | 630 | [40] |
B02 | MeCN | 245 (4.28), 284 (4.89), 346 (4.31) | 467 (4.24) | 631 (0.094) | 692 | [40] |
B03 | MeCN | 259 (4.84), 288 (4.43), 380(4.47) | 456 (4.21) | 603 (0.081) | 613 | [40] |
F1 | MeCN | 296 (4.97), 336 (4.36) | 458 (4.28) | 609 (0.116) | 626 | [39] |
F2 | MeCN | 297 (4.93), 338 (4.33) | 467 (4.26) | 630 (0.099) | 689 | [39] |
F3 | MeCN | 297 (4.89), 351 (4.21) | 454 (4.23) | 594 (0.088) | 631 | [39] |
Bn1 | MeCN | 279 (4.87) | 450 (4.31) | 618 (0.122) | 630 (0.168) | [41] |
Bn2 | MeCN | 259 (4.79), 279 (4.96) | 458 (4.33) | 634 (0.096) | 696 (0.153) | [41] |
Bn3 | MeCN | 276 (4.41) | 447 (4.23) | 608 (0.092) | 658 (0.129) | [41] |
E | MeCN | 206, (4.73), 285 (4.91) | 464 (4.32) | 631 (9.9) | 691 | [23] |
ECH3+ | MeCN | 208 (4.75), 249 (4.71), 286 (4.90) | 465 (4.33) | 636 (9.6) | 661 | [23] |
E2Ag+ | MeCN | 208 (4.76), 285 (4.92) | 464 (4.31) | 632 (9.8) | 685 | [23] |
D1 | MeCN | 243 (4.45), 289 (4.86) | 451 (4.07) | 615 (0.101) | 626 (0.093) | [44] |
D2 | MeCN | 230 (4.68), 295 (4.91) | 475 (4.20) | 637 (0.098) | 683 (0.085) | [44] |
D3 | MeCN | 229 (4.78), 282 (4.89) | 463 (4.21) | 629 (0.097) | 675 (0.056) | [44] |
M1 | MeCN | 258 (4.64), 285 (4.99) | 464 (4.27) | 630 (11) | 670 (0.16) | [37] |
M2 | MeCN | 257 (4.53), 284 (4.95) | 457 (4.21) | 620 (9.3) | 665 (0.15) | [37] |
D | MeCN | 252 (4.56), 283 (4.93) | 448 (4.27) | 623 (1.2>) | 668 | [37] |
[Ru(bpy)3]2+ | MeCN | 245 (4.4), 290 (4.91) | 448 (4.17) | 617 (9.5) | 645 (12) | [37] |
Code | ELmax [nm] | Von [V] | t1/2 [s] | ton [s] | Lmax [cd/m2] | Emax [cd/A] | J [A/m2] | EQE [%] | CIE [x,y] | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Iridium(III) complexes | ||||||||||
1 | 589 | 2.6 | − | − | 684 | 6.5 | − | − | (0.550, 0.440) | [43] |
Ir1 | 581 | 2.6 | 2130 h | 0.65 h | 870 | 8.60 | − | 3.1 | (0.519, 0.480) | [30] |
Ir2 | 605 | 2.7 | 1450 h | 1.30 h | 563 | 5.52 | − | 2.5 | (0.648, 0.351) | [30] |
Ir3+ | 596 | 2.6 | 2.25 h | 0.15 h | 45 | 0.38 | − | 0.24 | (0.608, 0.391) | [30] |
IrL1 | 586 | 3.4 | − | − | 208 | 3.46 | 60 | − | (0.551, 0.448) | [38] |
IrL2 | 598 | 3.6 | − | − | 252 | 4.50 | 56 | − | (0.617, 0.381) | [38] |
C1 | 596 | 3.5 | − | − | 15.5 lx | − | − | − | (0.410, 0.570) | [36] |
C2 | 587 | 2.9 | − | − | 21.7 lx | − | − | − | (0.410, 0.570) | [36] |
C3 | 579 | 3.9 | − | − | 16.1 lx | − | − | − | (0.410, 0.570) | [36] |
C4 | 527 | 4.4 | − | − | 3.5 lx | − | − | − | (0.520, 0.470) | [36] |
C5 | 523 | 3 | − | − | 4.4 lx | − | − | − | (0.520, 0.470) | [36] |
C6 | 528 | 3.5 | − | − | 4.1 lx | − | − | − | (0.520, 0.470) | [36] |
[Ir(ppy)2(phen)]+ | 578 | − | 73 h | 6.4 h | 63 | 5.8 | − | 2.1 | − | [30] |
S1 | 577 | − | − | − | >1200 | 2.31 | − | − | − | [30] |
S2 | 600 | − | 65 h | − | About 27 | − | − | − | − | [30] |
S3 | 578 | − | 230 h | 13 h | 92 | 5.2 | − | − | − | [30] |
S4 | 589 | − | 2000 h | 0.47 h | 689 | 6.5 | − | − | − | [30] |
Ruthenium(II) complexes | ||||||||||
NE1 | 633 | 2.8 | − | − | 1500 | − | 2020 | 0.53 | (0.652, 0.315) | [45] |
NE2 | 685 | 2.6 | − | − | 2250 | − | 2100 | 0.61 | (0.662, 0.316) | [45] |
NE3 | 660 | 2.7 | − | − | 790 | − | 2200 | 0.24 | (0.690, 0.305) | [45] |
NE4 | 662 | 3.3 | − | − | 1125 | − | 1790 | 0.33 | (0.630, 0.308) | [45] |
NE01 | 635 | 2.5 | − | − | 1965 | 0.61 | 3290 | 0.689 | (0.650, 0.312) | [19] |
NE02 | 651 | 2.3 | − | − | 2395 | 0.64 | 3920 | 0.845 | (0.685, 0.310) | [19] |
NE03 | 617 | 2.7 | − | − | 1615 | 0.50 | 3380 | 0.370 | (0.587, 0.359) | [19] |
NE04 | 700 | 3.1 | − | − | 1300 | 0.45 | 2850 | 1.367 | (0.678, 0.336) | [19] |
B1 | 635 | 4.5 | 539 | 58 | 193 | 0.12 | 1921 | 0.141 | (0.652, 0.315) | [42] |
B2 | 690 | 3.1 | 1104 | 87 | 742 | 0.34 | 2224 | 0.682 | (0.628, 0.309) | [42] |
B01 | 661 | 2.6 | 667 | 42 | 442 | 0.17 | 1960 | 0.69 | (0.730, 0.269) | [40] |
B02 | 698 | 2.5 | 1171 | 65 | 731 | 0.31 | 2150 | 0.89 | (0.734, 0.265) | [40] |
B03 | 645 | 3.1 | 486 | 48 | 243 | 0.13 | 1453 | 0.59 | (0.723, 0.277) | [40] |
F1 | 664 | 2.4 | 793 | 36 | 1066 | 0.27 | 3910 | 1.40 | (0.730, 0.269) | [39] |
F2 | 695 | 2.3 | 528 | 23 | 589 | 0.19 | 3025 | 0.93 | (0.734, 0.265) | [39] |
F3 | 644 | 2.8 | 1125 | 168 | 878 | 0.26 | 3405 | 1.15 | (0.722, 0.277) | [39] |
Bn1 | 614 | 2.6 | 1794 | 96 | 2229 | 0.65 | 3310 | 1.15 | (0.677, 0.322) | [41] |
Bn2 | 695 | 2.3 | 1598 | 46 | 1248 | 0.30 | 3960 | 0.93 | (0.734, 0.265) | [41] |
Bn3 | 706 | 3.1 | 875 | 92 | 960 | 0.22 | 3150 | 0.510 | (0.735, 0.265) | [41] |
E | 702 | 2.3 | 94 | 79 | − | − | 286 | 0.62 | (0.735, 0.265) | [23] |
ECH3+ | 688 | 2.6 | 8.2 | 27 | − | − | 309 | 0.16 | (0.735, 0.265) | [23] |
E2Ag+ | 696 | 2.3 | 78 | 12 | − | − | 322 | 0.71 | (0.734, 0.266) | [23] |
D1 | 673 | 2.9 | 166 | 7.1 | − | − | 196 | 0.72 | (0.732, 0.268) | [44] |
D2 | 705 | 2.6 | 142 | 6.3 | − | − | 151 | 0.68 | (0.735, 0.265) | [44] |
D3 | 697 | 2.7 | 97 | 1.4 | − | − | 342 | 0.18 | (0.735, 0.265) | [44] |
M1 | 682 | 2.7 | 220 | 27 | − | − | − | − | (0.735, 0.265) | [37] |
M2 | 703 | 3.4 | 317 | 44 | − | − | − | − | (0.733, 0.266) | [37] |
D | − | − | − | − | − | − | − | − | − | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krawiec, A.; Szłapa-Kula, A.; Kula, S. 1H-Imidazo[4,5-f][1,10]phenanthroline Derivatives as Promising Ligands for Ir and Ru Complex Compounds for Applications in LECs: Mini-Review. Materials 2025, 18, 4380. https://doi.org/10.3390/ma18184380
Krawiec A, Szłapa-Kula A, Kula S. 1H-Imidazo[4,5-f][1,10]phenanthroline Derivatives as Promising Ligands for Ir and Ru Complex Compounds for Applications in LECs: Mini-Review. Materials. 2025; 18(18):4380. https://doi.org/10.3390/ma18184380
Chicago/Turabian StyleKrawiec, Agnieszka, Agata Szłapa-Kula, and Sławomir Kula. 2025. "1H-Imidazo[4,5-f][1,10]phenanthroline Derivatives as Promising Ligands for Ir and Ru Complex Compounds for Applications in LECs: Mini-Review" Materials 18, no. 18: 4380. https://doi.org/10.3390/ma18184380
APA StyleKrawiec, A., Szłapa-Kula, A., & Kula, S. (2025). 1H-Imidazo[4,5-f][1,10]phenanthroline Derivatives as Promising Ligands for Ir and Ru Complex Compounds for Applications in LECs: Mini-Review. Materials, 18(18), 4380. https://doi.org/10.3390/ma18184380