Multi-Focus Imaging and U-Net Segmentation for Mesoscale Asphalt Film Structure Analysis—Method for Characterizing Asphalt Film Structures in RAP
Abstract
1. Introduction
2. Methodology
2.1. Image Acquisition Equipment
2.1.1. Industrial CT
2.1.2. Scanning Electron Microscopy (SEM)
2.1.3. Digital Camera
2.2. Specimen Preparation Requirements
2.3. Image Acquisition Platform
2.4. Photography Methodology
2.4.1. Platform Setup
- (1)
- Leveling of the Surface
- (2)
- Instrument Positioning
- (3)
- Lighting Setup
2.4.2. Multi-Focus Imaging Protocol
3. Digital Image Processing (DIP) Workflow
3.1. Multi-Focus Stacking and Stitching
- (1)
- First Stacking: Merging Images with Different Focal Points within the Same Field of View
- (2)
- Second Stacking: Merging Images from Different Fields of View
3.2. Texture Suppression
3.3. Image Acquisition and Processing Workflow
4. U-Net Segmentation Framework
5. Result Analysis
5.1. Statistical Results
5.2. Accuracy Verification
6. Conclusions
7. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Qadi, I.L.; Elseifi, M.; Carpenter, S.H. Reclaimed Asphalt Pavement—A Literature Review; FHWA-ICT-07-001; Illinois Center for Transportation: Rantoul, IL, USA, 2007. [Google Scholar]
- Sharma, A.; Kumar, P.; Walia, A. Use of recycled material in WMA-future of greener road construction. Transp. Res. Procedia 2020, 48, 3770–3778. [Google Scholar] [CrossRef]
- Gong, C.; Jiang, J.; Liu, T.; Zhou, Z. Investigation of the homogeneity of aggregate contact characteristics and thickness distribution of mortar in hot recycled asphalt mixtures. Constr. Build. Mater. 2025, 478, 141448. [Google Scholar] [CrossRef]
- Dhundup, G.; Zhou, J.; Bekoe, M.; Sun, L. Integrating a mortar model into discrete element simulation for enhanced understanding of asphalt mixture cracking. Comput.-Aided Civ. Infrastruct. Eng. 2023, 40, 3279–3294. [Google Scholar] [CrossRef]
- Pichler, C.; Lackner, R.; Aigner, E. Generalized self-consistent scheme for upscaling of viscoelastic properties of highly-filled matrix-inclusion composites–application in the context of multiscale modeling of bituminous mixtures. Compos. Part B Eng. 2012, 43, 457–464. [Google Scholar] [CrossRef]
- Du, C.; Liu, P.; Sun, Y.; Chen, J.Y.; Liu, Q.; Oeser, M. Characterizing asphalt mixtures with random aggregate gradations based on the three-dimensional locally homogeneous model. Comput.-Aided Civ. Infrastruct. Eng. 2022, 37, 1687–1702. [Google Scholar] [CrossRef]
- Li, M.; Zhu, X.; Zhang, Y.; Tsang, D.C.W. A multi-phase mechanical model of biochar–cement composites at the mesoscale. Comput.-Aided Civ. Infrastruct. Eng. 2024, 39, 3552–3572. [Google Scholar] [CrossRef]
- Kim, Y.R.; Lutif, J.E.S.; Allen, D.H. Determining representative volume elements of asphalt concrete mixtures without damage. Transp. Res. Rec. 2009, 2127, 52–59. [Google Scholar] [CrossRef]
- Kim, Y.R.; De Freitas, F.A.C.; Jung, J.S.; Sim, Y.J. Characterization of bitumen fracture using tensile tests incorporated with viscoelastic cohesive zone model. Constr. Build. Mater. 2015, 88, 1–9. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Chen, J. Micromechanical analysis of asphalt mixture fracture with adhesive and cohesive failure. Eng. Fract. Mech. 2014, 132, 104–119. [Google Scholar] [CrossRef]
- Park, K.; Paulino, G.H. Cohesive zone models: A critical review of traction-separation relationships across fracture surfaces. Appl. Mech. Rev. 2011, 64, 060802. [Google Scholar] [CrossRef]
- Dong, Z.J.; Ma, X.Y.; Gong, X.B.; Oeser, M. Theoretical evaluation of the measurement accuracy of fiber Bragg grating strain sensors within randomly filled asphalt mixtures based on finite element simulation. Struct. Control Health Monit. 2018, 25, e2057. [Google Scholar] [CrossRef]
- Kim, Y.R.; Aragão, F.T.S. Microstructure modeling of rate-dependent fracture behavior in bituminous paving mixtures. Finite Elem. Anal. Des. 2013, 63, 23–32. [Google Scholar] [CrossRef]
- Liang, S.; Liao, M.; Tu, C.; Luo, R. Fabricating and determining representative volume elements of two-dimensional random aggregate numerical model for asphalt concrete without damage. Constr. Build. Mater. 2022, 357, 129339. [Google Scholar] [CrossRef]
- Soares, J.B.; De Freitas, F.A.C.; Allen, D.H. Considering material heterogeneity in crack modeling of asphaltic mixtures. Transp. Res. Rec. 2003, 1832, 113–120. [Google Scholar] [CrossRef]
- Yin, A.; Yang, X.; Yang, S.; Jiang, W. Multiscale fracture simulation of three-point bending asphalt mixture beam considering material heterogeneity. Eng. Fract. Mech. 2011, 78, 2414–2428. [Google Scholar] [CrossRef]
- Yin, A.; Yang, X.; Gao, H.; Zhu, H. Tensile fracture simulation of random heterogeneous asphalt mixture with cohesive crack model. Eng. Fract. Mech. 2012, 92, 40–55. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, J.; Zhou, L.; Ni, F.J. Improving the calculation accuracy of FEM for asphalt mixtures in simulation of SCB test considering the mesostructure characteristics. Int. J. Pavement Eng. 2022, 23, 80–94. [Google Scholar] [CrossRef]
- Kim, H.; Buttlar, W.G. Discrete fracture modeling of asphalt concrete. Int. J. Solids Struct. 2009, 46, 2593–2604. [Google Scholar] [CrossRef]
- Zhang, Y.; Leng, Z. Quantification of bituminous mortar ageing and its application in ravelling evaluation of porous asphalt wearing courses. Mater. Des. 2017, 119, 1–11. [Google Scholar] [CrossRef]
- Aljarrah, M.; Karaki, A.; Masad, E.; Castillo, D.; Caro, S.; Little, D. Computational generation of multiphase asphalt nanostructures using random fields. Comput.-Aided Civ. Infrastruct. Eng. 2022, 37, 1639–1653. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, L.; Jiang, J.; Ni, F.J. Accuracy improvement for two-dimensional finite-element modeling while considering asphalt mixture meso-structure characteristics in indirect tensile test simulation. J. Mater. Civ. Eng. 2020, 32, 04020275. [Google Scholar] [CrossRef]
- Polaczyk, P.; Ma, Y.; Jarrar, Z.; Jiang, X.; Xiao, R.; Huang, B.S. Quantification of asphalt mixture interlocking utilizing 2D and 3D image processing. J. Mater. Civ. Eng. 2023, 35, 04022382. [Google Scholar] [CrossRef]
- Tan, Z.; Leng, Z.; Jiang, J.; Cao, P.; Jelagin, D.; Li, G.Y.; Sreeram, A. Numerical study of the aggregate contact effect on the complex modulus of asphalt concrete. Mater. Des. 2022, 213, 110342. [Google Scholar] [CrossRef]
- Yuan, G.; Li, X.; Hao, P.; Li, D.; Pan, J.L.; Li, A.G. Application of flat-joint contact model for uniaxial compression simulation of large stone porous asphalt Mixes. Constr. Build. Mater. 2020, 238, 117695. [Google Scholar] [CrossRef]
- Chen, J.; Wang, H.; Dan, H.; Xie, Y.J. Random modeling of three-dimensional heterogeneous microstructure of asphalt concrete for mechanical analysis. J. Eng. Mech. 2018, 144, 04018083. [Google Scholar] [CrossRef]
- Ozer, H.; Ghauch, Z.G.; Dhasmana, H.; Al-Qadi, I.L. Computational micromechanical analysis of the representative volume element of bituminous composite materials. Mech. Time-Depend. Mater. 2016, 20, 441–453. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; You, Z.; Yang, X.; Huang, Z.H. Characterising the asphalt concrete fracture performance from X-ray CT Imaging and finite element modelling. Int. J. Pavement Eng. 2018, 19, 307–318. [Google Scholar] [CrossRef]
- Darabi, M.K.; Rahmani, E.; Little, D.N.; Masad, E.A.; Rushing, J.F. A computational-experimental method to determine the effective diffusivity of asphalt concrete. J. Eng. Mech. 2017, 143, 04017076. [Google Scholar] [CrossRef]
- El Haloui, Y.; Fakhari Tehrani, F.; Absi, J.; Courreges, F.; Omari, M.E.; Allou, F.; Petit, C. Modelling of asphalt mixes based on X-ray computed tomography and random heterogeneous generation. Int. J. Pavement Eng. 2020, 21, 1626–1637. [Google Scholar] [CrossRef]
- Leon, L.P.; Gay, D. Gene expression programming for evaluation of aggregate angularity effects on permanent deformation of asphalt mixtures. Constr. Build. Mater. 2019, 211, 470–478. [Google Scholar] [CrossRef]
- Lau, D.; Jian, W.; Yu, Z.; Hui, D. Nano-engineering of construction materials using molecular dynamics simulations: Prospects and challenges. Compos. Part B Eng. 2018, 143, 282–291. [Google Scholar] [CrossRef]
- Shi, L.; Xiao, X.; Wang, X.; Liang, H.; Wang, D. Mesostructural characteristics and evaluation of asphalt mixture contact chain complex networks. Constr. Build. Mater. 2022, 340, 127753. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J. Subpixel edge detection algorithm based on improved Gaussian fitting and Canny operator. Acad. J. Comput. Inf. Sci. 2022, 5, 33–39. [Google Scholar] [CrossRef]
- Shreevastava, A.; Hulley, G.; Thompson, J. Algorithms for Detecting Sub-Pixel Elevated Temperature Features for the NASA Surface Biology and Geology (SBG) Designated Observable. J. Geophys. Res. Biogeosciences 2023, 128, e2022JG007370. [Google Scholar] [CrossRef]
- Wang, M.; Xu, F.; Xu, Y.; Brownjohn, J. A robust subpixel refinement technique using self-adaptive edge points matching for vision-based structural displacement measurement. Comput.-Aided Civ. Infrastruct. Eng. 2023, 38, 562–579. [Google Scholar] [CrossRef]
- Montagnon, T.; Giffard-Roisin, S.; Dalla Mura, M.; Pathier, E.; Hollingsworth, J. Sub-pixel displacement estimation with deep learning: Application to optical satellite images containing sharp displacements. J. Geophys. Res. Mach. Learn. Comput. 2024, 1, e2024JH000174. [Google Scholar] [CrossRef]
- Shao, X.; Tan, Y.; Shao, M. Analysis of Influence of Several Indexes of Mineral Filler on Asphalt Mortar. Highway 2004, 122–124. (In Chinese) [Google Scholar] [CrossRef]
- Li, K.; Zheng, C.; Tian, H. The Analysis of the Impact of Mesoscopic Characteristics of Mineral Powder Filler on Cohesive Strength of Asphalt Mortar at Low Temperature. Highway 2015, 60, 144–148. (In Chinese) [Google Scholar]
- Liu, R. Study on the Quantitative Evaluation Method of Asphalt Binder Rutting Resistance. Ph.D. Thesis, Hainan University, Hainan, China, 2022. (In Chinese). [Google Scholar]
- Craus, J.; Ishai, I.; Sides, A. Some physico-chemical aspects of the effect and the role of the filler in bituminous paving mixtures. Asph. Paving Technol. 1978, 47, 558–588. [Google Scholar]
- Buttlar, W.G.; Bozkurt, D.; Al-Khateeb, G.G.; Waldhoff, A.S. Understanding Asphalt Mastic Behavior Through Micromechanics. Transp. Res. Rec. 1999, 1681, 157–169. [Google Scholar] [CrossRef]
- Campen, W.H.; Smith, J.R.; Erickson, L.G.; Mertz, L.R. The relationships between voids, surface area, film thickness and stability in bituminous paving mixtures. Asph. Paving Technol. 1959, 28, 149–178. [Google Scholar]
- Schram, S.; Abdelrahman, M. Effects of Asphalt Film Thickness on Field Performance. In Proceedings of the Transportation Research Board 90th Annual Meeting, Washington, DC, USA, 23–27 January 2011; pp. 4236–4253. [Google Scholar]
- Abouelsaad, A.; White, G. Review of Asphalt Mixture Ravelling Mechanisms, Causes and Testing. Int. J. Pavement Res. Technol. 2022, 15, 1448–1462. [Google Scholar] [CrossRef]
- Radovskiy, B. Analytical Formulas for Film Thickness in Compacted Asphalt Mixture. Transp. Res. Rec. 2003, 1829, 26–32. [Google Scholar] [CrossRef]
- Heitzman, M. New approaches for computing film thickness. J. Assoc. Asph. Paving Technol. 2006, 75, 1120–1168. [Google Scholar]
- Chen, Z. (Ed.) Non-Destructive Testing; Northwestern Polytechnical University Press: Xi’an, China, 2015. (In Chinese) [Google Scholar]
- Duan, Y. Study on the Basic Properties of Coarse Aggregates in Asphalt Mixtures Based on X-Ray CT. Master’s Thesis, South China University of Technology, Guangzhou, China, 2011. (In Chinese). [Google Scholar]
- Ma, J.; Liu, Y.; Li, X.; Zhou, Y. Study on void characteristics of dense-graded asphalt mixtures based on image processing technology. In Proceedings of the World Transport Convention (WTC 2022), Wuhan, China, 13–16 June 2022; pp. 35–42. [Google Scholar]
- Chen, B.; Yuan, S.; Jin, K.; Lin, X.; Li, J.J. Applications of Micro-CT in Aerospace Material Detection. Aerosp. Mater. Technol. 2021, 51, 87–91. (In Chinese) [Google Scholar]
- Khanduri, G. CMOS Image Sensors: Recent Innovations in Imaging Technology. Int. J. Eng. Res. Technol. 2019, 7, 3–8. [Google Scholar]
- Jiang, J.; Xiao, P.; Ding, Y.; Yuan, H. Characterization parameters selection of asphalt mixture aggregate based on digital image. J. Yangzhou Univ. (Nat. Sci. Ed.) 2016, 19, 68–73. (In Chinese) [Google Scholar]
- Kaur, N.; Lee, C.C.; Mostafavi, A.; Mahdavi-Amiri, A. Large-scale building damage assessment using a novel hierarchical transformer architecture on satellite images. Comput.-Aided Civ. Infrastruct. Eng. 2023, 38, 2072–2091. [Google Scholar] [CrossRef]
- Tang, Z.; Guo, J.; Wang, Y.; Xu, W.; Bao, Y.; He, J.; Zhang, Y. Automated seismic event detection considering faulty data interference using deep learning and Bayesian fusion. Comput.-Aided Civ. Infrastruct. Eng. 2024, 40, 1910–1931. [Google Scholar] [CrossRef]
- Tong, Z.; Zhang, Y.; Ma, T. Evidential transformer for buried object detection in ground penetrating radar signals and interval-based bounding box. Comput.-Aided Civ. Infrastruct. Eng. 2025, 40, 2152–2169. [Google Scholar] [CrossRef]
- Schirninger, C.; Jarolim, R.; Veronig, A.M.; Kuckein, C. Deep learning image burst stacking to reconstruct high-resolution ground-based solar observations. Astron. Astrophys. 2025, 693, A6. [Google Scholar] [CrossRef]
- Wang, Y.; Quan, R.; Liu, Y. The Application of Image Processing Software on Insect Family Mordellidae. J. Southwest Univ. (Nat. Sci.) 2021, 43, 95–105. (In Chinese) [Google Scholar]
- Liu, J.; Jiang, Y.; Zhao, Y.; Zeng, J.; Ma, H.; Qin, B. Acquisition Processing and Micro Photography Technology of Insect Specimens. Agric. Eng. 2015, 5, 146–149. (In Chinese) [Google Scholar]
- Hinton, G.; Osindero, S.; Welling, M.; The, W.Y. Unsupervised Discovery of Nonlinear Structure Using Contrastive Backpropagation. Cogn. Sci. 2006, 30, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015), Munich, Germany, 5–9 October 2015; Volume 9351, pp. 234–241. [Google Scholar]
- Tian, X.; Xu, R. (Eds.) Probability Theory and Mathematical Statistics for Artificial Intelligence; China Textile & Apparel Press: Beijing, China, 2021; pp. 178–180. (In Chinese) [Google Scholar]
Sieve Size (mm) | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 |
Original Passing Rate (%) | 96.2 | 91.1 | 14.3 | 1.4 | 0.7 | 0.5 | 0.4 | 0.3 | 0.1 |
Pure Aggregate Passing Rate (%) | 100 | 99.2 | 42.9 | 25.3 | 19.5 | 14.1 | 10.5 | 8.7 | 4.8 |
Sieve Size (mm) | 26.5 | 19 | 16 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 |
Gradation | 100.0 | 88.9 | 77.7 | 64.4 | 48.5 | 41.3 | 30.5 | 22.2 | 15.8 | 9.7 | 7.1 | 5.6 |
Test Item | Value | |
---|---|---|
Penetration (25 °C, 100 g, 5 s), 0.1 mm | 68.7 | |
Softening Point (Ring and Ball Method), °C | 52.3 | |
Viscosity at 135 °C, Pa·s | 0.425 | |
Solubility, % | 99.7 | |
Flash Point (Cleveland Open Cup), °C | 277 | |
Density, g/cm3 | 1.022 | |
Ductility (5 cm/min, 15 °C), cm | >150 | |
Thin Film Oven Test (163 °C, 5 h) | Mass Loss, % | 0.2 |
Retained Penetration Ratio, % | 77 | |
Ductility at 15 °C, cm | 59 |
Residual Binder-to-Aggregate Ratio (%) | Theoretical Maximum Relative Density | Bulk Specific Gravity | Air Voids (%) | Oil Ratio (%) |
---|---|---|---|---|
4.2 | 2.492 | 2.410 | 3.3 | 4.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, S.; She, W.; Cai, Y.; Zhang, H. Multi-Focus Imaging and U-Net Segmentation for Mesoscale Asphalt Film Structure Analysis—Method for Characterizing Asphalt Film Structures in RAP. Materials 2025, 18, 4363. https://doi.org/10.3390/ma18184363
Wang Y, Li S, She W, Cai Y, Zhang H. Multi-Focus Imaging and U-Net Segmentation for Mesoscale Asphalt Film Structure Analysis—Method for Characterizing Asphalt Film Structures in RAP. Materials. 2025; 18(18):4363. https://doi.org/10.3390/ma18184363
Chicago/Turabian StyleWang, Ying, Shuming Li, Weina She, Yichen Cai, and Hongchao Zhang. 2025. "Multi-Focus Imaging and U-Net Segmentation for Mesoscale Asphalt Film Structure Analysis—Method for Characterizing Asphalt Film Structures in RAP" Materials 18, no. 18: 4363. https://doi.org/10.3390/ma18184363
APA StyleWang, Y., Li, S., She, W., Cai, Y., & Zhang, H. (2025). Multi-Focus Imaging and U-Net Segmentation for Mesoscale Asphalt Film Structure Analysis—Method for Characterizing Asphalt Film Structures in RAP. Materials, 18(18), 4363. https://doi.org/10.3390/ma18184363