Effect of the Addition of Zeolites on the Resistance to Permanent Deformations of Mastic Asphalt Bridge Pavement
Abstract
1. Introduction
2. Materials and Methods
2.1. Mastic Asphalt Mixtures
2.2. Zeolites
2.3. Testing Methods
- Maximum load value: 0.875 kN (corresponds to a sample load of 0.35 N/mm2);
- Minimum load value: 0.20 kN (corresponds to a sample load of 0.08 N/mm2);
- Load duration: 0.2 s;
- Rest time: 1.5 s;
- Cycle duration: 1.7 s;
- Load curve shape: half-sine.
3. Results
3.1. Static Indentation Test
3.2. Dynamic Indentation Test
4. Discussion
4.1. Resistance to Permanent Deformation in Static Indentation Test
4.2. Resistance to Permanent Deformation in Dynamic Indentation Test
4.3. Effect of the Test Method
5. Conclusions
- The addition of a 5% amount of zeolite with respect to asphalt mass does not significantly change the plastic deformation resistance and makes it possible to reduce the MA technological (laying) temperature by up to 30 degrees Celsius, which seems to be very important from ecological, economical, and pavement durability points of view.
- Based on the static indentation test, the best results in terms of resistance to permanent deformations are shown by the MA 8 PMB 25/55-60 mixture with natural zeolite and the MA 11 PMB 25/55-60 mixture with synthetic zeolite Na-P1.
- The dynamic indentation test revealed that both zeolites affect the deformation properties of the two MA 8 mixtures in a similar way; in the case of the MA 11 mixture with 35/50 bitumen, it is more beneficial to use the synthetic zeolite Na-P1, but for MA 11 with PMB 25/55-60 bitumen, both zeolites affect the behavior of the mixture in a similar way.
- According to Polish requirements based on the static indentation method, almost all tested MA mixtures with zeolite additives meet these requirements (one exception: MA 8 with PMB 25/55-60 bitumen); similarly, according to Swiss requirements based on the dynamic indentation method, almost all tested MA mixtures with zeolite additives meet these requirements (one exception: MA11 mixture with 35/50 bitumen).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, M.; Hu, D.; Xiao, L.; Shang, F. Developments of Gussasphalt System on Steel Deck Pavement. World J. Eng. Technol. 2017, 5, 141–147. [Google Scholar] [CrossRef]
- Zhang, Z.; Ni, F.; Jiang, J.; Huang, J.; Han, Y.; Yu, S. Comprehensive evaluation and data analysis of field pavement distress for epoxy asphalt pavement on steel bridge deck. Constr. Build. Mater. 2023, 409, 133860. [Google Scholar] [CrossRef]
- Zou, G.; Zhang, X.; Wu, C. Experimental method of fatigue performance of mastic asphalt for bridge deck pavement. Balt. J. Road Bridg. Eng. 2019, 14, 568–586. [Google Scholar] [CrossRef]
- European Asphalt Pavement Association. Asphalt Pavements on Bridge Decks; EAPA: Brussels, Belgium, 2013. [Google Scholar]
- Park, H.M.; Choi, J.Y.; Lee, H.J.; Hwang, E.Y. Performance evaluation of a high durability asphalt binder and a high durability asphalt mixture for bridge deck pavements. Constr. Build. Mater. 2009, 23, 219–225. [Google Scholar] [CrossRef]
- Radziszewski, P.; Piłat, J.; Sarnowski, M.; Kowalski, K.; Król, J. Influence of high temperature on properties of materials used in bridge asphalt pavement structures. Roads Bridg Drog i Most 2015, 14, 175–191. [Google Scholar] [CrossRef]
- Zou, G.; Xu, X.; Li, J.; Yu, H.; Wang, C.; Sun, J. The effects of bituminous binder on the performance of gussasphalt concrete for bridge deck pavement. Materials 2020, 13, 364. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Wang, Q.; Wu, W.; Zhang, H. Fatigue performance of gussasphalt concrete made from modified AH-70# asphalt. Mater. Des. 2013, 52, 686–692. [Google Scholar] [CrossRef]
- Butt, A.; Jelagin, D.; Tasdemir, Y.; Birgisson, B. The Effect of Wax Modification on the Performance of Mastic Asphalt. Int. J. Pavement Res. Technol. 2010, 3, 86–95. [Google Scholar]
- Kołodziej, K.; Bichajło, L.; Siwowski, T. Experimental Study on Physical and Rheological Properties of Trinidad Lake Asphalt Modified Binder. Appl. Sci. 2021, 11, 2796. [Google Scholar] [CrossRef]
- Kołodziej, K.; Bichajło, L.; Siwowski, T. The Influence of Zero Shear Viscosity of TLA-Modified Binder and Mastic Composition on the Permanent Deformation Resistance of Mastic Asphalt Mixture. Materials 2021, 14, 5167. [Google Scholar] [CrossRef] [PubMed]
- Widyatmoko, I.; Elliott, R.C.; Read, J.M. Development of heavy-duty mastic asphalt bridge surfacing, incorporating Trinidad lake asphalt and polymer modified binders. Road Mater. Pavement Des. 2005, 6, 469–483. [Google Scholar] [CrossRef]
- Mitchell, M.; Link, R.; Cao, W.-D.; Yao, Z.; Liu, S.; Cui, X. Performance of composite modified asphalt with Trinidad lake asphalt used as waterproofing material for bridge deck pavement. J. Test. Eval. 2009, 37, 463–467. [Google Scholar] [CrossRef]
- Jian-Shiuh, C.; Min-Chih, L.; Chien-Chung, H.; Ching-Hsiung, W. Fundamental characterization of engineering properties of gussasphalt mixtures. J. Mater. Civ. Eng. 2011, 23, 1719–1726. [Google Scholar] [CrossRef]
- Ruttmar, I.; Hering, M. Renesans asfaltu lanego w Polsce? Pierwsze doświadczenia z niekonwencjonalnego projektu przy realizacji nawierzchni mostowych w Toruniu. Nawierzchnie Asf. 2014, 1, 4–11. (In Polish) [Google Scholar]
- Wang, H.; Li, G. Study of factors influencing gussasphalt mixture performance. Constr. Build. Mater. 2015, 101, 193–200. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Zhu, Y.; Zhang, H. A Review of Sustainability in Hot Asphalt Production: Greenhouse Gas Emissions and Energy Consumption. Appl. Sci. 2024, 14, 10246. [Google Scholar] [CrossRef]
- Generalna Dyrekcja Dróg Krajowych i Autostrad. WT-2 2014—Część, I. Nawierzchnie asfaltowe na drogach krajowych. In Mieszanki Mineralno-Asfaltowe, Wymagania Techniczne; GDDKiA: Warszawa, Poland, 2014. (In Polish) [Google Scholar]
- Chen, J.Q.; Wang, H.; Zhu, H. Analytical approach for evaluating temperature field of thermal modified asphalt pavement and urban heat island effect. Appl. Therm. Eng. 2017, 113, 739–748. [Google Scholar] [CrossRef]
- Chmielewska, B.; Garbacz, A.; Adamczewski, G.; Rymsza, B. Thermal actions on the materials during deck and pavement construction. Arch. Civ. Eng. 2018, 64, 101–118. [Google Scholar] [CrossRef]
- Chmielewska, B. Destruction of waterproofing membrane on the viaduct deck due to blisters containing hydrogen. Arch. Civ. Eng. 2007, 53, 683–696. [Google Scholar]
- Edwards, Y.; Tasdemir, Y.; Butt, A.A. Energy saving and environmental friendly wax concept for polymer modified mastic asphalt. Mater. Struct. 2010, 43, 123–131. [Google Scholar] [CrossRef]
- Hofko, B.; Dimitrov, M.; Schwab, O.; Weiss, F.; Rechberger, H.; Grothe, H. Technological and environmental performance of temperature-reduced mastic asphalt mixtures. Road Mater. Pavement Des. 2016, 18, 22–37. [Google Scholar] [CrossRef]
- Weiss, F.; Baloh, P.; Pfaller, C.; Can Cetintas, E.; Kasper-Giebl, A.; Wonaschütz, A.; Dimitrov, M.; Hofko, B.; Rechberger, H.; Grothe, H. Reducing paving emissions and workers’ exposure using novel mastic asphalt mixtures. Build. Environ. 2018, 137, 51–57. [Google Scholar] [CrossRef]
- Yadykova, A.Y.; Shariati, S.; Fini, E.H.; Ilyin, S.O. Novel Bio-Nanocomposite for Asphalt Pavements: Montmorillonite Intercalated with Castor Oil. ACS Sustain. Chem. Eng. 2024, 12, 13062–13079. [Google Scholar] [CrossRef]
- Budziński, B.; Mieczkowski, P.; Słowik, M.; Mielczarek, M.; Bilski, M.; Fornalczyk, S. Assessment of the low-temperature performance of asphalt mixtures for bridge pavement. Road Mater. Pavement Des. 2023, 24, 409–423. [Google Scholar] [CrossRef]
- Woszuk, A.; Franus, W. A Review of the Application of Zeolite Materials in Warm Mix Asphalt Technologies. Appl. Sci. 2017, 7, 293. [Google Scholar] [CrossRef]
- Woszuk, A.; Franus, W. Properties of the Warm Mix Asphalt involving clinoptilolite and Na-P1 zeolite additives. Constr. Build. Mater. 2016, 114, 556–563. [Google Scholar] [CrossRef]
- Wasilewska, M.; Pacholak, R.; Gierasimiuk, P.; Gardziejczyk, W.; Woszuk, A.; Bichajlo, L.; Siwowski, T. The Effect of a Zeolite Addition to Modified Bitumen on the Properties of Stone Matrix Asphalt Lärmarmer Mixtures Produced as Warm Mix Asphalt. Materials 2024, 17, 5848. [Google Scholar] [CrossRef]
- Sengoz, B.; Topal, A.; Gorkem, C. Evaluation of natural zeolite as warm mix asphalt additive and its comparison with other warm mix additives. Constr. Build. Mater. 2013, 43, 242–252. [Google Scholar] [CrossRef]
- EN1426:2015; Bitumen and Bituminous Binders—Determination of Needle Penetration. European Committee for Standardization: Brussels, Belgium, 2015.
- EN 1427: 2015-08; Bitumen and Bituminous Binders—Determination of the Softening Point—Ring and Ball Method. European Committee for Standardization: Brussels, Belgium, 2015.
- EN 12593: 2015-08; Bitumen and Bituminous Binders—Determination of the Fraass Breaking Point. European Committee for Standardization: Brussels, Belgium, 2015.
- EN 13398:2017; Bitumen and Bituminous Binders—Determination of the Elastic Recovery of Modified Bitumen. European Committee for Standardization: Brussels, Belgium, 2017.
- Mojet, B.L.; Ebbesen, S.D.; Lefferts, L. Light at the interface: The potential of attenuated total reflection infrared spectroscopy for understanding heterogeneous catalysis in water. Chem. Soc. Rev. 2010, 39, 4643. [Google Scholar] [CrossRef]
- Malinowski, S.; Pacholak, R.; Kołodziej, K.; Woszuk, A. Application of NaP1 Zeolite Modified with Silanes in Bitumen Foaming Process. Materials 2024, 17, 5902. [Google Scholar] [CrossRef] [PubMed]
- EN 12697-20:2012; Bituminous Mixtures—Test Methods for Hot Mix Asphalt—Part 20: Indentation Using Cube or Marshall Specimen. European Committee for Standardization: Brussels, Belgium, 2012.
- EN 12697-25:2016; Bituminous Mixtures—Test Methods for Hot Mix Asphalt—Part 25: Cyclic Compression Test. European Committee for Standardization: Brussels, Belgium, 2016.
- EN 13108-20:2016; Bituminous Mixtures—Material Specifications—Part 20: Type Testing. European Committee for Standardization: Brussels, Belgium, 2016.
- Institut für Materialprüfung Bautest AG. Handbuch 12 Bituminöser Strassenbau und Brückenabdichtungen; IMP Bautest AG: Basel, Switzerland, 2012. [Google Scholar]
Property | Test Method | Bitumen Type | |
---|---|---|---|
35/50 | PMB 25/55-60 | ||
Penetration at 25 °C [0.1 mm] | [31] | 43 | 36 |
Softening point R and B [°C] | [32] | 55.1 | 68.4 |
Fraass breaking point [°C] | [33] | −13 | not tested |
Elastic recovery at 25 °C [%] | [34] | not tested | 79 |
Component | Content [%] |
---|---|
MgO | 0.88 |
Al2O3 | 11.24 |
SiO2 | 76.93 |
K2O | 3.94 |
CaO | 3.77 |
TiO2 | 0.25 |
MnO | 0.07 |
Fe2O3 | 2.71 |
Rb2O | 0.02 |
SrO | 0.04 |
ZrO2 | 0.02 |
Ag2O | 0.08 |
BaO | 0.05 |
MA Mixture | Zeolite Addition [%] | Results [mm] | |
---|---|---|---|
35/50 Binder | PMB 25/55-60 Binder | ||
MA 8 | 0Z | 1.59 ± 0.22 | 0.94 ± 0.10 |
5ZN | 1.15 ± 0.12 | 1.04 ± 0.08 | |
5ZS | 1.19 ± 0.14 | 1.09 ± 0.06 | |
MA 11 | 0Z | 1.62 ± 0.23 | 1.12 ± 0.17 |
5ZN | 1.82 ± 0.22 | 1.38 ± 0.04 | |
5ZS | 1.87 ± 0.22 | 1.24 ± 0.15 |
MA Mixture | Zeolite Addition [%] | Results [mm] | |
---|---|---|---|
35/50 Binder | PMB 25/55-60 Binder | ||
MA 8 | 0Z | 0.16 ± 0.03 | 0.11 ± 0.03 |
5ZN | 0.12 ± 0.03 | 0.10 ± 0.03 | |
5ZS | 0.12 ± 0.01 | 0.12 ± 0.05 | |
MA 11 | 0Z | 0.17 ± 0.03 | 0.16 ± 0.04 |
5ZN | 0.20 ± 0.04 | 0.15 ± 0.04 | |
5ZS | 0.18 ± 0.02 | 0.13 ± 0.02 |
MA Mixture | Zeolite Addition [%] | Results [mm] | |
---|---|---|---|
35/50 Binder | PMB 25/55-60 Binder | ||
MA 8 | 0Z | 0.94 ± 0.20 | 0.51 ± 0.11 |
5ZN | 1.45 ± 0.41 | 0.93 ± 0.20 | |
5ZS | 1.54 ± 0.37 | 0.82 ± 0.11 | |
MA 11 | 0Z | 2.74 ± 0.46 | 0.84 ± 0.09 |
5ZN | 3.82 ± 0.49 | 1.26 ± 0.34 | |
5ZS | 0.94 ± 0.20 | 0.51 ± 0.11 |
MA Mixture | Zeolite Addition [%] | Results [mm] | |
---|---|---|---|
35/50 Binder | PMB 25/55-60 Binder | ||
MA 8 | 0Z | 0.28 ± 0.13 | 0.07 ± 0.05 |
5ZN | 0.41 ± 0.23 | 0.15 ± 0.10 | |
5ZS | 0.48 ± 0.14 | 0.13 ± 0.03 | |
MA 11 | 0Z | 1.11 ± 0.19 | 0.17 ± 0.05 |
5ZN | 1.36 ±0.25 | 0.26 ± 0.17 | |
5ZS | 1.13 ± 0.29 | 0.25 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bichajło, L.; Gardziejczyk, W.; Gierasimiuk, P.; Kołodziej, K.; Kowalski, K.; Malinowski, S.; Siwowski, T.; Wasilewska, M. Effect of the Addition of Zeolites on the Resistance to Permanent Deformations of Mastic Asphalt Bridge Pavement. Materials 2025, 18, 4325. https://doi.org/10.3390/ma18184325
Bichajło L, Gardziejczyk W, Gierasimiuk P, Kołodziej K, Kowalski K, Malinowski S, Siwowski T, Wasilewska M. Effect of the Addition of Zeolites on the Resistance to Permanent Deformations of Mastic Asphalt Bridge Pavement. Materials. 2025; 18(18):4325. https://doi.org/10.3390/ma18184325
Chicago/Turabian StyleBichajło, Lesław, Władysław Gardziejczyk, Paweł Gierasimiuk, Krzysztof Kołodziej, Kamil Kowalski, Szymon Malinowski, Tomasz Siwowski, and Marta Wasilewska. 2025. "Effect of the Addition of Zeolites on the Resistance to Permanent Deformations of Mastic Asphalt Bridge Pavement" Materials 18, no. 18: 4325. https://doi.org/10.3390/ma18184325
APA StyleBichajło, L., Gardziejczyk, W., Gierasimiuk, P., Kołodziej, K., Kowalski, K., Malinowski, S., Siwowski, T., & Wasilewska, M. (2025). Effect of the Addition of Zeolites on the Resistance to Permanent Deformations of Mastic Asphalt Bridge Pavement. Materials, 18(18), 4325. https://doi.org/10.3390/ma18184325