Study on the Thermoregulation Mechanism of Temperature Insensitive Asphalt Pavement
Abstract
1. Introduction
2. Experimental Materials and Methods
2.1. Experimental Raw Materials
2.1.1. Selection and Preparation of Phase Change Materials
- Phase transition temperature
- 2.
- Good stability of phase change cycle
- 3.
- Good thermal stability (no decomposition at 200 °C)
- 4.
- It has good chemical compatibility with asphalt
2.1.2. Mineral Gradation
2.1.3. The Optimal Asphalt Content of SBS-Modified Asphalt Was Selected
2.2. Experimental Methods
2.2.1. Preparation of Phase Change Asphalt Mixture
2.2.2. Experimental Method of Indoor Temperature Adjustment Effect of Phase Change Asphalt Mixture
2.2.3. Simulation Method of Indoor Temperature Regulation Effect of Phase Change Asphalt Mixtures
2.2.4. Establishment of Outdoor Temperature Field Model of Phase Change Asphalt Pavement
3. Experimental Results and Discussion
3.1. Experimental and Simulation Results of Phase Change Asphalt Mixtures in Terms of Indoor Thermoregulation Performance
3.1.1. Experimental Results and Analysis of Phase Change Asphalt Mixture Temperature Regulation Performance
3.1.2. Simulation Results and Analysis of Phase Change Asphalt Mixture Temperature Regulation Performance
3.1.3. Comparative Analysis of Experimental Results and Simulation Results of Phase Change Asphalt Mixture Temperature Regulation Performance
3.2. Simulation Results and Analysis of Outdoor Temperature Field of Phase Change Asphalt Pavement
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, M.; Zhang, R.; Du, X.; Liu, P. A State-of-the-Art Review on the Functionality of Ultra-Thin Overlays towards a Future Low Carbon Road Maintenance. Engineering 2024, 32, 82–98. [Google Scholar] [CrossRef]
- Guo, M.; Xie, X.; Du, X.; Sun, C.; Sun, Y. Study on the multi-phase aging mechanism of crumb rubber modified asphalt binder. Int. J. Pavement Eng. 2025, 26, 2449114. [Google Scholar] [CrossRef]
- Guo, M.; Liang, M.; Jiao, Y.; Zhao, W.; Duan, Y.; Liu, H. A review of phase change materials in asphalt binder and asphalt mixture. Constr. Build. Mater. 2020, 258, 119565. [Google Scholar] [CrossRef]
- Grembecka, M. Sugar alcohols—Their role in the modern world of sweeteners: A review. Eur. Food Res. Technol. 2015, 241, 1–14. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; You, Z.; Hossiney, N. Application of phase change material in asphalt mixture—A review. Constr. Build. Mater. 2020, 263, 120219. [Google Scholar] [CrossRef]
- Montoya, M.A.; Rahbar-Rastegar, R.; Haddock, J.E. Incorporating phase change materials in asphalt pavements to melt snow and ice. Int. J. Pavement Eng. 2023, 24, 2041195. [Google Scholar] [CrossRef]
- Mirzanamadi, R.; Johansson, P.; Grammatikos, S.A. Thermal properties of asphalt concrete: A numerical and experimental study. Constr. Build. Mater. 2018, 158, 774–785. [Google Scholar] [CrossRef]
- Dai, M.; Wang, S.; Deng, J.; Gao, Z.; Liu, Z. Study on the cooling effect of asphalt pavement blended with composite phase change materials. Materials 2022, 15, 3208. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhang, X.; Zhou, X.; Liu, B.; Wang, X.; Lin, X. Research and exploration of phase change materials on solar pavement and asphalt pavement: A review. J. Energy Storage 2021, 35, 102246. [Google Scholar] [CrossRef]
- Chen, M.; Wan, L.; Lin, J. Effect of phase-change materials on thermal and mechanical properties of asphalt mixtures. J. Test. Eval. 2012, 40, 746–753. [Google Scholar] [CrossRef]
- Chen, Y.; Sha, A.; Jiang, W.; Lu, Q.; Du, P.; Hu, K.; Li, C. Eco-friendly bismuth vanadate/iron oxide yellow composite heat-reflective coating for sustainable pavement: Urban heat island mitigation. Constr. Build. Mater. 2025, 470, 140645. [Google Scholar] [CrossRef]
- Kong, W.; Liu, Z.; Yang, Y.; Zhou, C.; Lei, J. Preparation and characterizations of asphalt/lauric acid blends phase change materials for potential building materials. Constr. Build. Mater. 2017, 152, 568–575. [Google Scholar] [CrossRef]
- Phan, T.M.; Park, D.W.; Le, T.H.M. Improvement on rheological property of asphalt binder using synthesized micro-encapsulation phase change material. Constr. Build. Mater. 2021, 287, 123021. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, M.; Wu, S.; Riara, M.; Wan, J.; Li, Y. Thermal and rheological performance of asphalt binders modified with expanded graphite/polyethylene glycol composite phase change material (EP-CPCM). Constr. Build. Mater. 2019, 194, 83–91. [Google Scholar] [CrossRef]
- Wang, X.; Ma, B.; Li, S.; Si, W.; Wei, K.; Zhang, H.; Zhou, X.; Fang, Y.; Kang, X.; Shi, W. Review on application of phase change materials in asphalt pavement. J. Traffic Transp. Eng. 2023, 10, 185–229. [Google Scholar] [CrossRef]
- Sarier, N.; Onder, E. Organic phase change materials and their textile applications: An overview. Thermochim. Acta 2012, 540, 7–60. [Google Scholar] [CrossRef]
- Kemp, D.; Ebert, D.; Danielson, R.; Marshall-Goebel, K.; Macias, B.; Stenger, M. Use of Otoacousticemission Phase Change to Evaluate Countermeasures for Spaceflight-Associated Neuro-Ocular Syndrome. 2020. Available online: https://ntrs.nasa.gov/citations/20200001310 (accessed on 7 September 2025).
- Kenisarin, M.; Mahkamov, K. Solar energy storage using phase change materials. Renew. Sustain. Energy Rev. 2007, 11, 1913–1965. [Google Scholar] [CrossRef]
- Asgharian, H.; Baniasadi, E. A review on modeling and simulation of solar energy storage systems based on phase change materials. J. Energy Storage 2019, 21, 186–201. [Google Scholar] [CrossRef]
- Souayfane, F.; Fardoun, F.; Biwole, P.-H. Phase change materials (pcm) for cooling applications in buildings: A review. Energy Build. 2016, 129, 396–431. [Google Scholar] [CrossRef]
- Tseng, Y.H.; Fang, M.H.; Tsai, P.S.; Yang, Y.M. Preparation of microencapsulated phase-change materials (mcpcms) by means of interfacial polycondensation. J. Microencapsul. 2005, 22, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.-S.; Kwon, A.; Cho, C.-G. Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system. Colloid Polym. Sci. 2002, 280, 260–266. [Google Scholar] [CrossRef]
- He, L.; Li, J.; Zhou, C.; Zhu, H.; Cao, X.; Tang, B. Phase change characteristics of shape-stabilized PEG/SiO2 composites using calcium chloride-assisted and temperature-assisted sol gel methods. Sol. Energy 2014, 103, 448–455. [Google Scholar] [CrossRef]
- Deng, Y.; Shi, X.; Zhang, Y.; Chen, J. Numerical modelling of rutting performance of asphalt concrete pavement containing phase change material. Eng. Comput. 2023, 39, 1167–1182. [Google Scholar] [CrossRef]
- Wei, K.; Wang, X.; Ma, B.; Shi, W.; Duan, S.; Liu, F. Study on rheological properties and phase-change temperature control of asphalt modified by polyurethane solid–solid phase change material. Sol. Energy 2019, 194, 893–902. [Google Scholar] [CrossRef]
- Kakar, M.R.; Refaa, Z.; Worlitschek, J.; Stamatiou, A.; Partl, M.N.; Bueno, M. Effects of aging on asphalt binders modified with microencapsulated phase change material. Compos. Part B Eng. 2019, 173, 107007. [Google Scholar] [CrossRef]
- Gao, Y.; Jin, J.; Xiao, T.; Liu, M.; Liu, S.; Liu, R.; Pan, J.; Qian, G.; Liu, X. Study of temperature-adjustment asphalt mixtures based on silica-based composite phase change material and its simulation. Constr. Build. Mater. 2022, 342, 127871. [Google Scholar] [CrossRef]
- Amini, N.; Hayati, P. Effects of CuO nanoparticles as phase change material on chemical, thermal and mechanical properties of asphalt binder and mixture. Constr. Build. Mater. 2020, 251, 118996. [Google Scholar] [CrossRef]
- Cheng, C.; Cheng, G.; Gong, F.; Fu, Y.; Qiao, J. Performance evaluation of asphalt mixture using polyethylene glycol polyacrylamide graft copolymer as solid–solid phase change materials. Constr. Build. Mater. 2021, 300, 124221. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, J.; Gong, F.; Fu, Y.; Cheng, X.; Qiao, J. Performance and evaluation models for different structural types of asphalt mixture using shape-stabilized phase change material. Constr. Build. Mater. 2023, 383, 131411. [Google Scholar] [CrossRef]
- Barkhordari, M.S.; Qi, C. Prediction of zinc, cadmium, and arsenic in european soils using multi-end machine learning models. J. Hazard. Mater. 2025, 490, 137800. [Google Scholar] [CrossRef]
- Sun, G.; Ma, T.; Jiang, Y.; Hu, M.; Lu, T.; Siwainao, D.H.I. Dual self-repairing enhancement mechanisms of blocked dynamic isocyanate prepolymer on aging degradation and fatigue damages of high-content SBS-modified asphalt. Constr. Build. Mater. 2025, 472, 140855. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, Q.; Peng, Z.; Wang, H.; Wan, P.; Ye, Q. A comparative study of the effects of calcium alginate capsules on self-healing properties of base and SBS modified asphalt mixtures. Constr. Build. Mater. 2023, 364, 129908. [Google Scholar] [CrossRef]
- JTG F40-2004[S]; Technical Specifications for Construction of Highway Asphalt Pavement. Ministry of Transport of the People’s Republic of China: Beijing, China, 2004.
- JTG E20-2011[S]; Test Code for Asphalt and Asphalt Mixture in Highway Engineering. Federal Highway Administration: Washington, DC, USA, 2011.
- Huo, D.; Hou, D.; Zhang, S.; Gao, W.; Yu, C.; Jia, L.; Chang, B.; Zhang, R.; Guo, M. Study of Pavement Performance and Temperature Regulation Capacity of Asphalt Binders Modified with Dual-Phase-Change Materials. Buildings 2023, 13, 2702. [Google Scholar] [CrossRef]
- Zhao, P.; Li, K.; Zhou, N.; Chen, Q.; Zhou, M.; Qi, C. Enhanced prediction of occurrence forms of heavy metals in tailings: A systematic comparison of machine learning methods and model integration. Int. J. Miner. Metall. Mater. 2025, 1–12. [Google Scholar] [CrossRef]
Mineral Specification | Proportions | Passage Rate (%) for the Following Mesh Sizes (mm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
16 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | ||
10–15 | 40.0 | 100 | 78.85 | 8.59 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
5–10 | 34.0 | 100 | 99.88 | 90.25 | 6.71 | 0.72 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 |
0–3 | 16.0 | 100 | 100 | 100 | 95.22 | 69.47 | 51.38 | 33.44 | 21.71 | 13.3 | 3.97 |
Mineral powderpowder | 10.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 97.6 | 91.4 | 83.9 |
Upper limit of gradation | 100 | 100 | 100 | 75 | 34 | 26 | 24 | 20 | 16 | 15 | 12 |
Lower limit of gradation | 100 | 100 | 90 | 50 | 20 | 15 | 14 | 12 | 10 | 9 | 8 |
Median of gradation | 100 | 100 | 95 | 63 | 27 | 21 | 19 | 16 | 13 | 12 | 10 |
Synthetic gradation grade | 100.0 | 100.0 | 91.5 | 60.1 | 27.5 | 21.3 | 18.4 | 15.6 | 13.5 | 11.4 | 9.2 |
Item | Flat | Technical Requirements | Test Results | Test Methods |
---|---|---|---|---|
penetration of a needle (25 °C, 100 g, 5 s) | 0.1 mm | 60~800 | 67 | T0604 |
ductility (5 cm/min, 5 °C) | cm | ≥30 | 44 | T0605 |
Softening point (global method) | °C | ≥55 | 72.4 | T0606 |
Densities (15 °C) | g/cm3 | -- | 1.044 | T0603 |
Elastic recovery 25 °C | % | ≥75 | 98.0 | T0662 |
mass loss | % | 0.8 | 0.56 | T0610 |
Residual needle penetration ratio (25 °C) | % | ≥60 | 71.3 | T0604 |
Residual elongation (10 °C) | cm | ≥15 | 25 | T0605 |
Oil-Rock Ratio (%) | Theoretical Maximum Relative Density | Gross Volume Relative Density | VV (%) | VMA (%) | VFA (%) | VCAmix (%) | Degree of Stability (kN) | Stream Value (0.1 mm) |
---|---|---|---|---|---|---|---|---|
6.0 | 2.540 | 2.448 | 3.6 | 18.4 | 80.3 | 40.7 | 7.64 | 33 |
Enterprise | Work Unit | Test Results | Regulatory Requirement |
---|---|---|---|
void ratioVV | % | 3.6 | 3~4 |
VCAmix | % | 40.7 | ≤VCADRC |
VMA | % | 18.4 | ≥17.0 |
VFA | % | 80.3 | 75~85 |
degree of stability | kN | 7.64 | ≥6.0 |
stream value | 0.1 mm | 33 | - |
Enterprise | Work Unit | SMA-13 | Regulatory Requirement | Test Methods |
---|---|---|---|---|
Loss of binding material in asphalt segregation tests | % | 0.06 | ≤0.1 | T0732 |
Loss of mix for flyaway test (20 °C) | % | 5.6 | ≤15 | T0733 |
DS | times/mm | 5863 | ≥3000 | T0719 |
Cracking resistance at low temperature | µε | 2844 | ≥2800 | T0728 |
Residual Marshall Stability | % | 91.2 | ≥80 | T0709 |
Freeze-thaw split residual strength ratio | % | 83.1 | ≥80 | T0729 |
seepage coefficient | mL/min | - | ≤80 | T0730 |
tectonic depth | mm | 0.96 | 0.8–1.5 | T0731 |
Densities (kg/m3) | Thermal Conductivity (W/m·K) | Constant Pressure Heat Capacity (J/K) |
---|---|---|
2540 | 2.3 | 1000 |
Quantity Contained | 0.6% | 1.2% | 1.8% | 2.4% |
---|---|---|---|---|
latent heat of phase transition (KJ/kg) | 14 | 28 | 42 | 56 |
Matter | Thicknesses (cm) | Densities (kg/m3) | Thermal Conductivity (W/m·K) | Constant Pressure Heat Capacity (J/K) |
---|---|---|---|---|
SMA-13 upper layer | 4 | 2128 | 2.3 | 1000 |
AC-20 middle layer | 6 | 2540 | 1.55 | 1000 |
AC-25 lower layer | 8 | 2580 | 1.6 | 1000 |
0 PCM | 0.6% PCM | 1.2% PCM | 1.8% PCM | 2.4% PCM | |
---|---|---|---|---|---|
heating rate (°C/min) | 0.60 | 0.60 | 0.59 | 0.58 | 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Cheng, X.; Qi, Y.; Guo, M.; Song, S.; Kou, X.; Zhang, F. Study on the Thermoregulation Mechanism of Temperature Insensitive Asphalt Pavement. Materials 2025, 18, 4326. https://doi.org/10.3390/ma18184326
Yang Y, Cheng X, Qi Y, Guo M, Song S, Kou X, Zhang F. Study on the Thermoregulation Mechanism of Temperature Insensitive Asphalt Pavement. Materials. 2025; 18(18):4326. https://doi.org/10.3390/ma18184326
Chicago/Turabian StyleYang, Yongjun, Xiaojun Cheng, Yang Qi, Meng Guo, Shanglin Song, Xiaoming Kou, and Fukui Zhang. 2025. "Study on the Thermoregulation Mechanism of Temperature Insensitive Asphalt Pavement" Materials 18, no. 18: 4326. https://doi.org/10.3390/ma18184326
APA StyleYang, Y., Cheng, X., Qi, Y., Guo, M., Song, S., Kou, X., & Zhang, F. (2025). Study on the Thermoregulation Mechanism of Temperature Insensitive Asphalt Pavement. Materials, 18(18), 4326. https://doi.org/10.3390/ma18184326