Biocompatibility of CAD/CAM Milled Dental Restorative Materials: A Systematic Review from In Vitro Studies
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Material Characterization
3.2. Assessment of Heterogeneity
3.3. Risk of Bias
3.4. Cytotoxicity Evaluation
3.5. Summary of Results
3.6. Evaluation of the Quality of the Evidence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balestra, D.; Lowther, M.; Goracci, C.; Mandurino, M.; Cortili, S.; Paolone, G.; Louca, C.; Vichi, A. 3D Printed Materials for Permanent Restorations in Indirect Restorative and Prosthetic Dentistry: A Critical Review of the Literature. Materials 2024, 17, 1380. [Google Scholar] [CrossRef] [PubMed]
- Warreth, A.; Elkareimi, Y. All-ceramic restorations: A review of the literature. Saudi Dent. J. 2020, 32, 365–372. [Google Scholar] [CrossRef]
- Sahin, O.; Ozdemir, A.K.; Turgut, M.; Boztug, A.; Sumer, Z. Investigation of flexural strength and cytotoxicity of acrylic resin copolymers by using different polymerization methods. J. Adv. Prosthodont. 2015, 7, 98–107. [Google Scholar] [CrossRef]
- Hayran, Y.; Yu-Shan, H.; Cheng-Yuan, H.; Her-Hsiung, H. Surface changes and bacterial adhesion on implant abutment materials after various clinical cleaning procedures. J. Chin. Med. Assoc. 2019, 82, 643–650. [Google Scholar]
- Badawy, R.E.; Mohamed, D.A. Evaluation of new bioceramic endodontic sealers: An in vitro study. Dent. Med. Probl. 2022, 59, 85–92. [Google Scholar] [CrossRef]
- Sannino, G.; Germano, F.; Arcuri, L.; Bigelli, E.; Arcuri, C.; Barlattani, A. CEREC CAD/CAM chairside system. ORAL Implantol. 2015, 3, 57–70. [Google Scholar]
- Sonmez, N.; Gultekin, P.; Turp, V.; Akgungor, G.; Sen, D.; Mijiritsky, E. Evaluation of five CAD/CAM materials by microstructural characterization and mechanical tests: A comparative in vitro study. BMC Oral Health 2018, 18, 5. [Google Scholar] [CrossRef] [PubMed]
- Cokic, S.M.; Ghosh, M.; Hoet, P.; Godderis, L.; Van Meerbeek, B.; Van Landuyt, K.L. Cytotoxic and genotoxic potential of respirable fraction of composite dust on human bronchial cells. Dent. Mater. 2020, 36, 270–283. [Google Scholar] [CrossRef]
- Manshian, B.B.; Himmelreich, U.; Soenen, S.J. Standard cellular testing conditions generate an exaggerated nanoparticle cytotoxicity profile. Chem. Res. Toxicol. 2017, 30, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Ng, S.; Heng, B.C.; Guo, J.; Ma, L.; Tan, T.T.Y. Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Arch. Toxicol. 2013, 87, 1037–1052. [Google Scholar] [CrossRef]
- Rexhepi, I.; Santilli, M.; D’Addazio, G.; Tafuri, G.; Manciocchi, E.; Caputi, S.; Sinjari, B. Clinical Applications and Mechanical Properties of CAD-CAM Materials in Restorative and Prosthetic Dentistry: A Systematic Review. J. Funct. Biomater. 2023, 14, 431. [Google Scholar] [CrossRef]
- Wang, W.; Li, T.; Luo, X.; Zhang, K.; Cao, N.; Liu, K. Cytotoxic effects of dental prosthesis grinding dust on RAW264.7 cells. Sci. Rep. 2020, 10, 14364. [Google Scholar] [CrossRef]
- Kawala, M.; Smardz, J.; Adamczyk, L.; Grychowska, N.; Wieckiewicz, M. Selected Applications for Current Polymers in Prosthetic Dentistry—State of the Art. Curr. Med. Chem. 2018, 25, 6002–6012. [Google Scholar] [CrossRef] [PubMed]
- Motie, P.; Mohaghegh, S.; Kouhestani, F.; Motamedian, S.R. Effect of mechanical forces on the behavior of osteoblasts: A systematic review of in vitro studies. Dent. Med. Probl. 2023, 60, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Yalniz, H.; Ziraman, F.G.; Oncu, A.; Celikten, B. Porosity analysis of four bioceramic materials used for the repair of furcation perforations via micro-computed tomography. Dent. Med. Probl. 2024, 61, 71–76. [Google Scholar] [CrossRef]
- Tribst, J.P.M.; Valandro, L.F.; Dal Piva, A.M.O. Brittle dental ceramics: A challenge in dentistry. Dent. Med. Probl. 2024, 61, 319–321. [Google Scholar] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Delgado, A.H.; Sauro, S.; Lima, A.F.; Loguercio, A.D.; Della Bona, A.; Mazzoni, A.; Collares, F.M.; Staxrud, F.; Ferracane, J.; Tsoi, J.; et al. RoBDEMAT: A risk of bias tool and guideline to support reporting of pre-clinical dental materials research and assessment of systematic reviews. J. Dent. 2022, 127, 104350. [Google Scholar] [CrossRef]
- Tetè, S.; Zizzari, V.L.; Borelli, B.; De Colli, M.; Zara, S.; Sorrentino, R.; Scarano, A.; Gherlone, E.; Cataldi, A.; Zarone, F. Proliferation and adhesion capability of human gingival fibroblasts onto zirconia, lithium disilicate and feldspathic veneering ceramic in vitro. Dent Mater J. 2014, 33, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Pabst, A.M.; Walter, C.; Bell, A.; Weyhrauch, M.; Schmidtmann, I.; Scheller, H.; Lehmann, K.M. Influence of CAD/CAM zirconia for implant-abutment manufacturing on gingival fibroblasts and oral keratinocytes. Clin. Oral Investig. 2016, 20, 1101–1108. [Google Scholar] [CrossRef]
- Contreras, L.; Dal Piva, A.; Ribeiro, F.C.; Anami, L.C.; Camargo, S.; Jorge, A.; Bottino, M.A. Effects of Manufacturing and Finishing Techniques of Feldspathic Ceramics on Surface Topography, Biofilm Formation, and Cell Viability for Human Gingival Fibroblasts. Oper. Dent. 2018, 43, 593–601. [Google Scholar] [CrossRef]
- Rizo-Gorrita, M.; Luna-Oliva, I.; Serrera-Figallo, M.-Á.; Gutiérrez-Pérez, J.-L.; Torres-Lagares, D. Comparison of Cytomorphometry and Early Cell Response of Human Gingival Fibroblast (HGFs) between Zirconium and New Zirconia-Reinforced Lithium Silicate Ceramics (ZLS). Int. J. Mol. Sci. 2018, 19, 2718. [Google Scholar] [CrossRef]
- Shishehian, A.; Izadi, A.; Abbasi, S.; Khazai, S.; Anjam, S. Comparative Evaluation of Cellular Response to Three Types of Zolid Surface Full Contour: Glazing, Polishing, and CO2 Laser. J. Mol. Biol. Res. 2018, 8, 53. [Google Scholar] [CrossRef]
- Aydın, N.; Karaoglanoglu, S.; Oktay, E.A. Evaluating Cytotoxic Effects of Resin Based CAD/CAM Blocks. J. Res. Med. Dent. Sci. 2020, 8, 131–136. [Google Scholar]
- Sultan, S.E.S.; Albadi, M.A.A.; Alhassan, F.S.; Elsharkawy, S.M. In vitro Evaluation of the Cytotoxicity of Chairside CAD/CAM Block Materials for Fabricating Dental Restorations. J. Pharm. Bioallied Sci. 2024, 16 (Suppl. 3), S2491–S2493. [Google Scholar] [CrossRef]
- Grenade, C.; De Pauw-Gillet, M.C.; Gailly, P.; Vanheusden, A.; Mainjot, A. Biocompatibility of polymer-infiltrated-ceramic-network (PICN) materials with Human Gingival Fibroblasts (HGFs). Dent. Mater. 2016, 32, 1152–1164. [Google Scholar] [CrossRef] [PubMed]
- Pantea, M.; Totan, A.R.; Imre, M.; Petre, A.E.; Țâncu, A.M.C.; Tudos, C.; Farcașiu, A.T.; Butucescu, M.; Spînu, T.C. Biochemical Interaction between Materials Used for Interim Prosthetic Restorations and Saliva. Materials 2022, 15, 226. [Google Scholar] [CrossRef]
- Mavriqi, L.; Valente, F.; Murmura, G.; Sinjari, B.; Macrì, M.; Trubiani, O.; Caputi, S.; Traini, T. Lithium disilicate and zirconia reinforced lithium silicate glass-ceramics for CAD/CAM dental restorations: Biocompatibility, mechanical and microstructural properties after crystallization. J. Dent. 2022, 119, 104054. [Google Scholar] [CrossRef] [PubMed]
- Nakai, M.; Imai, K.; Hashimoto, Y. Cell viability of fine powders in hybrid resins and ceramic materials for CAD/CAM. Dent. Mater. J. 2022, 41, 495–505. [Google Scholar] [CrossRef]
- Ille, C.E.; Moacă, E.-A.; Suciu, M.; Barbu-Tudoran, L.; Negruțiu, M.-L.; Jivănescu, A. The Biological Activity of Fragmented Computer-Aided Design/Manufacturing Dental Materials before and after Exposure to Acidic Environment. Medicina 2023, 59, 104. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Bae, H.-J.; Lee, H.-H.; Lee, J.-H.; Kim, Y.-J.; Choi, Y.-S.; Lee, J.-H.; Shin, S.-Y. The Effects of Thermocycling on the Physical Properties and Biocompatibilities of Various CAD/CAM Restorative Materials. Pharmaceutics 2023, 15, 2122. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, T.; Komatsu, K.; Choi, K.; Suzumura, T.; Cheng, J.; Chang, T.-L.; Chao, D.; Ogawa, T. Conditional Mitigation of Dental-Composite Material-Induced Cytotoxicity by Increasing the Cure Time. J. Funct. Biomater. 2023, 14, 119. [Google Scholar] [CrossRef] [PubMed]
- Ozverel, C.S.; Kurtulmus-Yilmaz, S. Effect of the application of a hydrogen peroxide home bleaching agent on the cytotoxicity of different CAD-CAM restorative materials. Dent. Med. Probl. 2023, 60, 311–320. [Google Scholar] [CrossRef]
- Saramet, V.; Stan, M.S.; RipszkyTotan, A.; Țâncu, A.M.C.; Voicu-Balasea, B.; Enasescu, D.S.; Rus-Hrincu, F.; Imre, M. Analysis of Gingival Fibroblasts Behaviour in the Presence of 3D-Printed versus Milled Methacrylate-Based Dental Resins—Do We Have a Winner? J. Funct. Biomater. 2024, 15, 147. [Google Scholar] [CrossRef]
- Hussain, B.; Thieu, M.K.L.; Johnsen, G.F.; Reseland, J.E.; Haugen, H.J. Can CAD/CAM resin blocks be considered as substitute for conventional resins? Dent. Mater. 2017, 33, 1362–1370. [Google Scholar] [CrossRef]
- Atay, A.; Gürdal, I.; BozokÇetıntas, V.; Üşümez, A.; Cal, E. Effects of New Generation All-Ceramic and Provisional Materials on Fibroblast Cells. J. Prosthodont. 2019, 28, e383–e394. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, H.; Kang, S.Y.; Kim, J.; Kim, J.H. Effect of core materials for core fabrication for dental implants on in-vitro cytocompatibility of MC3T3-E1 cells. BMC Oral Health 2019, 19, 284. [Google Scholar] [CrossRef]
- Campaner, M.; Takamiya, A.S.; Bitencourt, S.B.; Mazza, L.C.; de Oliveira, S.H.P.; Shibayama, R.; Barão, V.A.R.; Sukotjo, C.; Pesqueira, A.A. Cytotoxicity and inflammatory response of different types of provisional restorative materials. Arch. Oral Biol. 2020, 111, 104643. [Google Scholar] [CrossRef]
- Souza, I.R.; Pansani, T.N.; Basso, F.G.; Hebling, J.; de Souza Costa, C.A. Cytotoxicity of acrylic resin-based materials used to fabricate interim crowns. J. Prosthet. Dent. 2020, 124, 122.e1–122.e9. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Pan, Y.; Wang, M.; Wang, Y.; Lin, H.; Jiang, L.; Lin, D.; Cheng, H. Comparative analysis of leaching residual monomer and biological effects of four types of conventional and CAD/CAM dental polymers: An in vitro study. Clin. Oral Investig. 2022, 26, 2887–2898. [Google Scholar] [CrossRef]
- Aydın, N.; Karaoğlanoğlu, S.; Kılıç-Süloğlu, A.; Öztürk, S. Comparison of the Cytotoxic Effect of 3D-Printed Resins, Resin-based CAD/CAM blocks and Composite Resin. J. Clin. Exp. Dent. 2023, 15, e984–e990. [Google Scholar]
- Ko, J.W.; Sakong, J.; Kang, S. Cytotoxicity of dental self-curing resin for a temporary crown: An in vitro study. J. Yeungnam Med. Sci. 2023, 40, S1–S8. [Google Scholar] [CrossRef]
- Wei, X.; Wang, M.; Pan, Y.; Lin, H.; Jiang, L.; Wang, Y.; Cheng, H. Influence of fabrication method on the biological properties of modified PEEK. Dent. Mater. J. 2023, 42, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Grenade, C.; De Pauw-Gillet, M.C.; Pirard, C.; Bertrand, V.; Charlier, C.; Vanheusden, A.; Mainjot, A. Biocompatibility of polymer-infiltrated-ceramic-network (PICN) materials with Human Gingival Keratinocytes (HGKs). Dent. Mater. 2017, 33, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cui, B.; Li, J.; Li, S.; Lin, Y.; Liu, D.; Li, M. Mechanical properties and biocompatibility of polymer infiltrated sodium aluminum silicate restorative composites. J. Adv. Ceram. 2017, 6, 73–79. [Google Scholar] [CrossRef]
- Cui, B.; Zhang, R.; Sun, F.; Ding, Q.; Lin, Y.; Zhang, L.; Nan, C. Mechanical and biocompatible properties of polymer-infiltrated-ceramic-network materials for dental restoration. J. Adv. Ceram. 2020, 9, 123–128. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, C.; Cao, J.; Wu, Y.; Cui, B.; Ma, J.; Wang, H. Mechanical Properties and In Vitro Biocompatibility of Hybrid Polymer-HA/BAG Ceramic Dental Materials. Polymers 2022, 14, 3774. [Google Scholar] [CrossRef]
- Rodríguez-Lozano, F.J.; López-García, S.; Sánchez-Bautista, S.; Pérez-López, J.; Raigrodski, A.J.; Revilla-León, M. Effect of milled and lithography-based additively manufactured zirconia (3Y-TZP) on the biological properties of human osteoblasts. J. Prosthet. Dent. 2023, 130, 889–896. [Google Scholar] [CrossRef]
- Kim, M.J.; Mangal, U.; Seo, J.Y.; Kim, J.Y.; Kim, J.Y.; Ryu, J.H.; Kim, H.J.; Lee, K.J.; Kwon, J.S.; Choi, S.H. A novel zwitterion incorporated Nano-crystalline ceramic and polymer for bacterial resistant dental CAD-CAM block. J. Dent. 2024, 148, 105054. [Google Scholar] [CrossRef] [PubMed]
- Wuersching, S.N.; Hickel, R.; Edelhoff, D.; Kollmuss, M. Initial biocompatibility of novel resins for 3D printed fixed dental prostheses. Dent. Mater. 2022, 38, 1587–1597. [Google Scholar] [CrossRef]
- ISO-10993:5; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. ISO: Geneva, Switzerland, 2009.
- Lee, J.H.; Jun, S.K.; Moon, H.J.; Lee, H.H. Cytotoxicity and proinflammatory cytokine expression induced by interim resin materials in primary cultured human dental pulp cells. J. Prosthet. Dent. 2017, 118, 524–534. [Google Scholar] [CrossRef] [PubMed]
- ISO-25718; Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters. ISO: Geneva, Switzerland, 2021.
PICOS | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Population | Milled materials for fixed dental restoration | 3D-printed materials Samples used for filling restoration Materials for denture base plates |
Intervention | Incubation with in vitro cell cultures (direct or non-direct contact tests) | Lack of any biological study |
Comparator | Conventional (not milled) or 3D-printed materials | None |
Outcome | Assessing the cytotoxicity of CAD/CAM dental milled materials | Only material properties evaluation |
Study | Only English language research articles published between 1 January 2014 and 31 October 2024 | Review articles Articles published before 1 January 2014 Articles not in English |
Author and Year | CAD/CAM Material | Sample Size | Cell Line Name | Biocompatibility Test | Experiment Time Frame | Primary Outcome | Side Effect |
---|---|---|---|---|---|---|---|
Tete 2014 [19] | 1. IPS e.maxZirCAD (IvoclarVivadent AG, Schaan, Liechtenstein), with no surface treatment 2. IPS e.maxZirCAD (IvoclarVivadent, Schaan, Liechtenstein), ground and polished 3. IPS e.max (Ivoclar Vivadent, Schaan, Liechtenstein) ground and polished 4. feldspathic veneering ceramic (conventional control, non-CAD-CAM) | n = 144 | Human gingival fibroblasts (non-commercial) | - MTT assay - ELISA (type I collagen secretion) - LDH assay - SEM analysis | - 3 h - 24 h - 72 h | More positive cell response in contact with ground and polished zirconia than with lithium disilicate or feldspathic ceramic was revealed. | Lower fibroblast growth rate and collagen I secretion when culturing cells on conventional feldspathic ceramic and IPS e.max was revealed. |
Grenade 2016 [26] | 1. Experimental Polymer-infiltrated ceramic network—PICN 2. Grade V titanium (Procera, Nobel Biocare, Kloten, Switzerland) 3. Y-TZP (Procera, Nobel Biocare, Kloten, Switzerland) 4. IPS e.max Press (Ivoclar Vivadent, Schaan, Liechtenstein) | n = 136 | Human gingival fibroblasts (non-commercial) | - MTS assay - Immunofluorescence staining of actin filaments and nuclei - SEM analysis | - 24 h - 48 h - 72 h | Titanium and zirconia were most biocompatible; PICN exhibited comparable results to lithium disilicate glass-ceramic. | Experimental Polymer-infiltrated ceramic network—PICN—showed good cellular attachments but slower proliferation than titanium and zirconia. |
Pabst 2016 [20] | 1. Sirona inCoris ZI (Dentsply Sirona, Bensheim, Germany) 2. VITA In-Ceram YZ (VITA Zahnfabrik, Bad Säckingen, Germany) 3. Ivoclar IPS e.maxZirCAD (Ivoclar Vivadent, Schaan, Liechtenstein) | n = 160 | Human gingival fibroblasts (Lonza, Basel, Switzerland) Human oral keratinocytes (HOK) (Provitro, Heidelberg, Germany) | - MTT assay - Scratch assay - ToxiLight assay (ADK release) | - 3 days - 6 days - 9 days - 12 days | The viability and migration ability of HOKs were negatively influenced by the tested CAD/CAM zirconia ceramics, whereas their biocompatibility with HGFs was better. | Lower viability and migration ability of oral keratinocytes on all tested zirconium-based materials. |
Grenade 2017 [44] | 1. Experimental Polymer-infiltrated ceramic network—PICN 2. grade V titanium (Procera, Nobel Biocare, Kloten, Switzerland) 3. Y-TZP (Procera, Nobel Biocare, Kloten, Switzerland) 4. IPS e.max Press (Ivoclar Vivadent, Schaan, Liechtenstein) 5. Polytetrafluoroethy-lene (Sirris, Seraing, Belgium) as negative control | n = 182 | Human gingival keratinocytes (non-commercial) and L929 mouse fibroblasts | - MTS assay - Immunofluorescence staining (vinculin, actin, nuclei) | - 24 h - 48 h - 72 h | Results similar to HGFs [20], but slightly better biocompatibility of PICN to HGKs compared with HGFs. | Slightly lower HGF cell adhesion to PICN when compared with HGK adhesion. |
Hussain 2017 [35] | 1. Lava Ultimate (3M ESPE, Seefeld, Germany) 2. Vita Enamic (VITA Zahnfabrik, Bad Säckingen, Germany) 3. Paradigm MZ100 4. Filtek Z250 (3M ESPE, Seefeld, Germany) 5. Tetric EvoCeram(Ivoclar Vivadent, Schaan, Liechteinstein) | n = 50 | 1. Epithelial lung carcinoma cell line (A549, ATCC, Manassas, VA, USA) 2. Human gingival fibroblasts (Provitro GmbH, Heidelberg, Germany) | - LDH assay - Cell morphology | - 24 h - 48 h | Cytotoxicity of LAVA, VITA, andMZ100 was above the maximum value accepted for cytotoxicity of medical devices according to ISO-10993:5 [51]. | Extracts from LAVA Ultimate, VITA Enamic, andParadigm MZ100 showed high LDH activity (above the maximum value accepted in ISO 10993:5). |
Lee 2017 [52] | 1. Snap (Parkell, Edgewood, NY, USA) 2. Jet (Lang Dental, Rochester, NY, USA) 3. Luxatemp (DMG, Hamburg, Germany) 4. Revotec LC (GC, Luzern, Switzerland) 5. Vipi block (Vipi, Pirassununga-SP, Brazil) | n = 15 | Primary cultured human dental pulp cells -hDPCs(non-commercial) | - MTS assay - Cytokine expression analysis - Confocal laser scanning microscopy (live/dead assay) | - 24 h | CAD/CAM material (Vipi block) achieved better biocompatibility compared to conventional resin (Snap, Jet, Luxatemp). | Extracts from the conventional resins (Snap, Jet, Luxatemp), especially in the initial polymerizing state, significantly lowered the cell viability without inducing proinflammatory cytokines. CAD/CAM resin blocks (Vipi block) were not cytotoxic. |
Wang 2017 [45] | 1. Experimental PICN Composites | No data | Rat bone mesenchymal stem cells (source not defined) | - CCK 8 assay | - 1 day - 3 days - 5 days | The fabricated PICN showed good biocompatibility. | No side effects detected. |
Contreras 2018 [21] | 1. Vita Mark II blocks (Vita Zahnfabrik, Bad Säckingen, Germany) 2. Vita VM9 stratified ceramic powder and modeling liquid (Vita Zahnfabrik, Bad Säckingen, Germany) | No data | Human gingival fibroblasts FMM-1 cell line (source not defined) | - MTT assay - SEM | - 24 h - 7 days | No cytotoxicity detected | No side effects detected |
Rizo-Gorrita 2018 [22] | 1. Vita YZ (Vita Zahnfabrik, Bad Säckingen, Germany) 2. Celtra Duo (Degudent, Hanau-Wolfgang, Germany) | No data | Human gingival fibroblasts (Lonza, Basel, Switzerland) | - Nuclear and cytoskeletalparameters measured using confocal microscopy | - 24 h | Lower cytotoxicity of Y-TZP Vita compared to ZLS Celtra Duo. | HGFs cultured on ZLS Celtra Duo showed lower spreading, proliferation, and coverage than cells cultured on Y-TZP (Vita YZ T). |
Shishehian 2018 [23] | Ceramill Zolid FX (Amann Girrbach AG, Maeder, Austria): 1. glazed chemically 2. polished 3. glazed by laser radiation 4. intact | n = 20 | Fibroblasts (source not defined) | - MTT assay | - 72 h - 1 week | Polished only zirconium restorations can result in incompatible cellular response. | Glazing of zirconia improved its biocompatibility; intact samples had inhibitory effect on mitochondrial SDH activity in cells, while the glazed group revealed the least inhibitory response. |
Atay 2019 [36] | 1. Lava Ultimate (3M ESPE, Seefeld, Germany) 2. VITA Mark II (Vita Zahnfabrik, Bad Säckingen, Germany) 3. InCoris TZI (Ivoclar Vivadent, Schaan, Liechteinstein) 4. IPS e.max CAD (Ivoclar Vivadent, Schaan, Liechteinstein) 5. VITA Suprinity (Vita Zahnfabrik, Bad Säckingen, Germany) 6. Cerasmart (GC, Luzern, Switzerland) 7. IPS Empress CAD (Ivoclar Vivadent, Schaan, Liechteinstein) 8. Protemp4 (3M ESPE, Seefeld, Germany) 9. Telio CAD (Ivoclar Vivadent, Schaan, Liechteinstein) 10. CAD-Temp 11. Telio Lab (Ivoclar Vivadent, Schaan, Liechteinstein) 12. Temdent Classic (Schutz Dental, Rosbach, Germany) 13. Telio CS C&B (Ivoclar Vivadent, Schaan, Liechteinstein) | n = 312 | L929 Mouse fibroblast cell line (ATCC, Manassas, VA, USA) | - XTT assay - Apoptosis determined by Annexin-V/PI staining and analyzed by flow cytometry | - 1 day - 3 days - 7 days | CAD/CAM ceramics and polymers showed very low cytotoxicity. | Leucite-based glass ceramic material (IPS Empress CAD) showed the lowest cell viability and the highest apoptosis rate among all-ceramic materials on the 7th day. The resin matrix ceramics showed favorable viability results. |
Park 2019 [37] | 1. ZenostarT (Wieland Dental, Pforzheim, Germany) 2. Co-Cr (StarLoy C, Degudent, Hanau-Wolfgang, Germany) 3. Ni-Cr (VeraBond 2V, Aalba Dent, Fairfield, CA, USA) 4. IPS e.max Press (Ivoclar Vivadent, Schaan, Liechteinstein) 4. Porcelain fused to Gold (P.F.G.) (Myeso X Yesbiogold, Republic of Korea) | n = 4 | Pre-osteoblast cell line (MC3T3-E1 ATCC, Manassas, VA, USA) | - CLSM (actin and nuclei) - MTS assay - ALP activity assay | - 6 h - 24 h - 5 days - 14 days | Sufficient cytocompatibility of P.F.G, IPS e.max Press, ZenostarT and Co-Cr | Cells were not able to spread out on Ni-Cr (VeraBond 2V). Cell adhesion, proliferation, and differentiation were better in dental ceramic materials and Co-Cr. |
Aydin 2020 [24] | 1. Vita Enamic (Vita Zahnfabrik, Bad Säckingen, Germany) 2. Cerasmart (GC, Luzern, Switzerland) 3. Grandio Blocs (VOCO, Cuxhaven, Germany) 4. Brilliant Crios (Coltene, Altstatten, Switzerland) 5. Celtra Dou (Dentsply Sirona, Bensheim, Germany) | n = 4 | Human gingival keratinocytes (source not defined) | - MTT assay | - 1 day - 3 days - 7 days | Vita Enamic prepared by the PINC method showed the lowest cell toxicity. All the CAD/CAM blocks showed cell viability above the level acceptable by ISO (70%). | ZLS (Celtra Dou) showed the lowest cell viability. All CAD/CAM blocks showed cell viability above the acceptable level (70%). |
Campaner 2020 [38] | 1. HPAR- acrylic resin (Vipi, Pirassununga-SP, Brazil) 2. APR (Alike, Reliance Dental Mfg CO, Worth, IL, USA) 3. Protemp 4 (3M ESPE, Seefeld, Germany) 4. Lava Ultimate (3M ESPE, Seefeld, Germany) 5. Telio CAD (Ivoclar Vivadent, Schaan, Liechtenstein) | n = 120 | Mouse gingival fibroblasts (non-commercial) | - MTT assay - Alamar Blue assay - ELISA (levels of cytokines) | - 24 h - 48 h - 72 h | CAD/CAM materials were less cytotoxic than auto-polymerized acrylic resin (Alike) and bisacrylic resin (Protemp 4). | Acrylic resin (Alike) and bisacrylic resin (Protemp 4) showed the lowest cell viability as well as increased IL-6, IL-1β and TNF-α levels. |
Cui 2020 [46] | Experimental PICN Concentrations of 1, 2, 3, and 4 wt% (referring to nano- hydroxyapatite powders) | n = 24 | Rat bone marrow mesenchymal stem cells (rBMSCs) (source not specified) | - CCK-8 assay - SEM | - 1 day - 3 days - 5 days | The bio- compatibility of PICNs can be improved by the addition of hydroxyapatite nano-powders. | PICNs without hydroxyapatite show poor cell proliferation The addition of hydroxy-apatite can improve the proliferation and attachment of rBMSCs for both porous ceramics and PICNs. |
Souza 2020 [39] | 1. Dencôr (Dental Articles LTDA) 2. Protemp 4 (3M ESPE, Seefeld, Germany) 3. Vipiblock (Vipi, Pirassununga-SP, Brazil) | n = 48 | Normal oral keratinocites (NOK—SI cell line) (source not specified) | - Alamar Blue assay - LIVE/DEAD assay - ELISA (epidermal growth factor synthesis) - Immunofluorescence staining (actin and nuclei) - SEM | - 24 h | CAD-CAM-type resin (Vipi block) showed the lowest cytotoxicity. | Conventional acrylic resin (Dencôr color 66) and bis-acrylic resin (Protemp 4) showed lower cell viability and adhesion, as well as epidermal growth factor (EGF) synthesis, than CAD/CAM-type resin. |
Pantea 2021 [27] | 1. Telio CAD (Ivoclar Vivadent AG, Schaan, Liechtenstein) 2. NextDent C&B MFH (3D Systems, Soesterberg, The Netherlands) 3. SR Chromasit (Ivoclar Vivadent AG, Schaan, Liechtenstein) 4. Superpont C+B (Spofa Dental, KaVo Kerr Group, Jicin, Czech Republic) | n = 12 | Saliva samples | - Uric acid, GGT, OXSR-1, TAC, TNFα and IL-6 measured using analyzing kits | - 12 h | The obtained biochemical data showed that the tested materials did not significantly modify the antioxidant capacity of the incubated saliva as well as the salivary inflammatory status. | No side effects detected. |
Chen 2022 [47] | Hybrid Polymer–Ceramic Material (non-commercial) | n = 12 | Human gingival fibroblast (Wuhan Biotower Biotechnology, Wuhan, China) | - MTT assay immunofluorescence staining (cytoskeleton and nuclei) | - 48 h - 72 h | Short-term exposure of human gingival fibroblasts to the hybrid polymer–ceramic material does not cause cytotoxicity. | No side effects detected. |
Mavriqi 2022 [28] | 1. IPS EMax-CAD (Ivoclar Vivadent, Schaan, Lichtenstein) 2. Vita Suprinity PC (VITA Zahnfabrik, Bad Säckingen, Germany) 3. Celtra Duo (Dentsply Sirona, Bensheim, Germany) | n = 3 | Human periodontal ligament stem cells—hPDLSC (non-commercial) | - SEM | - 21 days | Lower cytotoxicity if CAD/CAM materials are properly crystallized. Better biocompatibility of lithium disilicate (IPS e.max CAD) than two zirconia reinforced lithium silicates. | Human periodontal ligament stem cells better adhere onto CAD/CAM lithium disilicate than onto ZLS surfaces. |
Nakai 2022 [29] | 1. Katana Avencia Block (Kuraray Noritake Dental, Tokyo, Japan) 2. Shofu Block (Shofu, Kyoto, Japan) 3. Artesano (Yamahachi Dental, Gamagori, Japan) 4. VITABLOCS Mark II (VITA Zahnfabrik, Bad Säckingen, Germany) 5. IPS Empress CAD (Ivoclar Vivadent, Schaan, Lichtenstein) | n = 15 | Mouse-derived fibroblast-like cells (Balb/c 3T3 cells) (Riken BioResource Research Center, Ibaraki, Japan) fetal rat skin-derived keratinocytes (FRSK cells) (JCRB cell bank (Osaka, Japan)) | - Oxidative stress (ROS assay) - MTT assay - SEM - Apoptosis determined by Annexin-V/PI staining and analyzed by flow cytometry - Hematoxylin and eosin staining | - 24 h | Slightly more toxic resin-based materials (Katana, Shofu Block, Artesano) compared to ceramic (Vitablocks Mark II, IPS EmpressCAD). | Resin materials were more toxic than ceramics. |
Wei 2022 [40] | 1. Vertexacrylic resin (Vertex, Soesterberg, The Netherlands) 2. Organic PMMA (Organical CAD/CAM, Berlin, Germany) 3. Protemp 4 (3M ESPE, Seefeld, Germany) 4. Aidite CAD/CAM polymer (Aidite Technology Co., Qinhuangdao, Hebei, China) | n = 540 | Human gingival fibroblasts (non-commercial) | - CCK-8 - Apoptosis determined by Annexin-V/PI staining and analyzed by flow cytometry - Apoptosis-related gene expression (RT-qPCR) - Apoptosis-related protein expression (Western blot) - Levels of inflammatory cytokines (ELISA) | - 72 h | CAD/CAM dental polymers (Organic PMMA, Aidite CAD/CAM) have favorable biocompatibility. | The biocompatibility of CAD/CAM polymers was significantly better than conventional polymers. Conventional bis-acrylic composite resin (Protemp 4) can affect cell proliferation through the intrinsic mitochondrial apoptosis. |
Wuersching 2022 [50] | 1. VarseoSmile Crown plus (BEGO, Bremen, Germany) 2. NextDent C&B MFH (NextDent, Soesterberg, The Netherlands) 3. VarseoSmile Temp (BEGO, Bremen, Germany) 4. Temp PRINT (GC, Luzern, Switzerland) 5. Tetric CAD (Ivoclar Vivadent, Schaan, Lichtenstein) 6. Telio CAD (Ivoclar Vivadent, Schaan, Lichtenstein) 7. Tetric EvoCeram (Ivoclar Vivadent, Schaan, Lichtenstein) 8. Protemp 4 (3M ESPE, Seefeld, Germany) 9. P Pro Crown & Bridge (Straumann, Basel, Switzerland) | n = 135 | Human gingival fibroblast hGF-1 (LGC Standards, Wesel, Germany) | - Cell viability (RealTime-Glo® MT Cell Viability Assay) - Inflammatory response -levels of IL-6 and PGE2 (ELISA) - Oxidative stress (GSH/GSSG-Glo™ Assay - Induction of apoptosis (RealTime-Glo™ Annexin V Apoptosis and Necrosis Assay) | - 24 h - 72 h | Tetric CAD and Telio CAD were slightly toxic. All other resins were moderately to severely cytotoxic. | VarseoSmile Crown plus and P Pro Crown & Bridge significantly enhanced PGE2 levels. Higher concentrations of oxidized gluthatione were determined in the presence of Telio CAD, VarseoSmile Temp, and P Pro Crown & Bridge. All printable resins slightly induced apoptosis. |
Aydin 2023 [41] | 1. Crowntec (Saremco Dental AG, Rebstein, Switzerland) 2. Permanent Crown (Formlabs, Somerville, MA, USA) 3. Vita Enamic (VITA Zahnfabrik, Bad Säckingen, Germany) 4. Brilliant Crios (Crios, Coltene, Altstatten, Switzerland) 5. Clearfill Majesty Posterior (Clearfil Kururay, Tokyo, Japan) | No data | L-929 mouse fibroblasts (source not specified) Human gingival fibroblast (HGF-1, ATCC, Manassas, VA, USA) | - MTT assay | - 24 h - 72 h | 3D-printed permanent restoration resins (Crowntec and Permanent Crown) showed similar cell viability on HGF-1 and L929 cells to resin-based CAD/CAM blocks (Vita Enamic, Brilliant Crios) and composite resin (Clearfill Majesty Posterior), | No significant side effects detected. |
Ille 2023 [30] | 1. Cerasmart (GC, Luzern, Switzerland) 2. Straumann Nice (Nice Straumann, Freiburg, Germany) 3. TetricCAD (Ivoclar Vivadent, Schaan, Liechtenstein) | No data | Normal human fibroblasts (BJ cell line, ATCC, Manassas, VA, USA) Normal human keratinocytes (HaCaT cell line, CLS—Cell Line Services) | - MTT assay - LDH assay - Nitric oxide production (Griess assay) - SEM | - 24 h | CAD/CAM (Cerasmart, Straumann Nice, Tetric CAD) restorative materials tested are biocompatible, | The restorative materials tested ranged from moderately cytotoxic to slightly cytotoxic to noncytotoxic on the growth of human fibroblasts. The samples tested can be considered slightly cytotoxic and noncytotoxic, with the exception of SN_B (Straumann Nice), which recorded a reduced mitochondrial activity of keratinocytes. |
Kim 2023 [31] | 1. IPS e.max CAD (Ivoclar Vivadent, Schaan, Liechtenstein) 2. Celtra Duo (Dentsply Sirona, Bensheim, Germany) 3. Vita Enamic (VITA Zahnfabrik, Bad Säckingen, Germany) 4. Cerasmart (GC, Luzern, Switzerland) 5. Lava Plus Zirconia (3M ESPE, Seefeld, Germany) | n = 225 | Human gingival fibroblasts (non-commercial) | - LIVE/DEAD assay (fluorescence microscope) - CCK-8 assay - Immunocytochemistry of cell spreading (staining of actin and nuclei) and focal adhesion (Talin 1 and vinculin) | - 24 h | Zirconia-reinforced lithium silicate (Celtra Duo) exhibited significantly lower cell viability compared to other materials. | Zirconia-reinforced lithium silicate (Celtra Duo) exhibited significantly lower cell viability compared to other materials. |
Ko 2023 [42] | 1. Temp Basic 95H16, (Zirkonzahn, Gais, Italy) 2. Vertex Self Curing (Vertex, Soesterberg, The Netherlands) | n = 10 | L929 fibroblast cell line (source not defined) | WST assay | - 24 h | Both hand-mixed self-curing resin and CAD/CAM polymer (Temp Basic) showed low cytotoxicity | No side effects detected. |
Matsuura 2023 [32] | 1. Aeliteflo (BISCO, Schaumburg, IL, USA) 2. Aelite Aesthetic Enamel (BISCO, Schaumburg, IL, USA) 3. Vivid PMMA Disc Pearson (Dental Supply Co., Sylmar, CA, USA) | n = 120 | Human gingival fibroblasts (ScienCell Research Laboratories, Carlsbad, CA, USA) | - Fluorescence microscopy (staining of actin and nuclei) - Collagen production (Picrosirius-red staining) | - 2 days - 4 days - 6 days | CAD/CAM polymer (Vivid PMMA Disc Pearson) showed lower cytotoxicity. | No cells survived and attached to or around the flowable composite (Aeliteflo™), regardless of cure time. No cells attached to the bulk-fill composite (Aelite™ Aesthetic Enamel), but some cells survived around the material, and the number increased with longer cure times. Milled acrylic (Vivid PMMA) was the most biocompatible. |
Ozverel 2023 [33] | 1. IPS e.max CAD (Ivoclar Vivadent, Schaan, Liechteinstein) 2. LavaUltimate (3M ESPE Seefeld Germany) 3. TetricCAD (Ivoclar Vivadent, Schaan, Liechteinstein) | n = 432 | Human embryonic kidney epithelial cells HEK293 (source not defined) | - MTT assay | - 5 days - 10 days - 15 days | All restorative materials decreased the viability of cells. | All the restorative materials decreased the viability of cells. |
Rodríguez-Lozano 2023 [48] | 1. Milled yttria-stabilized tetragonal zirconia polycrystal disks (Priti multidisc ZrO 2monochrome; Pritidenta) 2. Y-TZP zirconia material (LithaCon 3Y 210; Lithoz, Troy, NY, USA) for lithography-based ceramic additive manufacturing | n = 20 | Normal human osteoblasts (NHOsts; Lonza, Basel, Switzerland | - Resazurin-based viability assay - Wound healing assay - Confocal microscopy (immunofluorescence staining of actin and nuclei) - SEM | - 24 h - 48 h - 72 h | Lithography-based zirconia showed similar cytocompatibility when compared with the milled zirconia. | No side effects were detected. Lithography-based zirconia showed similar cytocompatibility when compared with the milled zirconia. |
Wei 2023 [43] | 1. BioHPP CAD/CAM (Bredent, Senden, Germany) 2. Conventional bioHPP (Bredent, Senden, Germany) | No data | Human gingival fibroblasts (non-commercial) | - CCK-8 assay - Apoptosis assay determined by AnnexinV-FITC/PI kit and analyzed by flow cytometry - Apoptosis-related gene expression (RT-qPCR) - Apoptosis-related protein expression (Western blot) - Levels of IL-6, IL-1β, and TNF-α (ELISA) | - 24 h - 48 h - 72 h | Fabrication method did not affect the biological properties of modified PEEK; both press and CAD/CAM milled materials were biocompatible. | Culturing of HGFs with the eluates from both materials increased the mRNA expression levels of Bax and Caspase-3 and downlegulated the level of Bcl-2 gene expression. |
Kim 2024 [49] | 1. Experimental Nano-crystalline ceramic and polymer (NCP) with 2-methacryloyloxyethyl phosphorylcholine (MPC) and sulfobetaine methacrylate (SBMA)(MS) 0.15 wt% 2. Experimental Nano-crystalline ceramic and polymer with 2-methacryloyloxyethyl phosphorylcholine (MPC) and sulfobetaine methacrylate (SBMA) 0.45 wt% | n = 13 | Human gingival fibroblasts HGF-1 (source not specified) | - MTT assay - Anaerobic bacterial attachment resistance analyses (SEM) - Live/dead bacterial staining (CLSM) | - 24 h - 48 h - 72 h | NCP containing 0.15% MS can effectively reduce adhesion of bacteria and shows low cytotoxicity. | No side effects detected. |
Saramet 2024 [34] | 1. Dental Sand (HARZLabs LLC, Moscow, Russian Federation) resin for 3D printing 2. HUGE dental PMMA blocks (MedNet EC-REP, Munster, Germany) | n = 50 | Human gingival fibroblasts HGF-1 (American Type Culture Collection ATCC, Manassas, VA, USA) | - MTT assay - Nitric oxide level (Griess assay) - LDH assay - LIVE/DEAD™ Viability/Cytotoxicity Kit - ROS and GSH level (DCFDA and CMFDA assay) - Intracellular activity of caspase 3/7 - Analysis of autophagy (Autophagy Sensors LC3B) - MMP-2 Assay | - 2 h - 24 h | CAD/CAM samples (HUGE dental PMMA blocks) displayed good biocompatibility during the 24 h exposure. | 3D-printed materials were less biocompatible than CAD/CAM blocks. A significant decrease in the GSH level was detected in cells after incubation with MA-based 3D-printed samples, which indicated induction of oxidative stress. |
Sultan 2024 [25] | 1. Katana Kuraray (Noritake, Tokyo, Japan) 2. IPSe.maxCAD (Ivoclar Vivadent, Schaan, Liechtenstein) 3. Grandio Disc (VOCO, Cuxhaven, Germany) | No data | Human gingival fibroblasts (American Type Culture Collection ATCC, Manassas, VA, USA) | - MTT assay - Microscopic analysis | - 24 h - 48 h - 72 h | Zirconia (IPS e.maxCAD) emerges as a favorable option due to its minimal cytotoxic effects. Resin-based composites should be used cautiously, considering their higher cytotoxic potential. | Resin-based composites (Voco and Grandio Disc) showed the lower cell viability. |
Outcome Significance | Author and Year | Quality of Evidence (GRADE) |
---|---|---|
No cytotoxicity of CAD/CAM materials | Tete 2014 [19] | +++− moderate due to imprecision |
Grenade 2016 [26] | ++++ high | |
Pabst 2016 [20] | ++++ high | |
Grenade 2017 [44] | ++++ high | |
Lee 2017 [52] | +++− moderate due to risk of bias | |
Wang 2017 [45] | +−−− low due to imprecision and risk of bias | |
Contreras 2018 [21] | ++−− moderate due to imprecision | |
Rizo−Gorrita 2018 [22] | +++− moderate due to indirectness | |
Atay 2019 [36] | ++−− low due to imprecision and indirectness | |
Park 2019 [37] | +++− moderate due to imprecision | |
Aydin 2020 [24] | ++−− moderate due to imprecision and indirectness | |
Campaner 2020 [38] | ++++ high | |
Cui 2020 [46] | ++−− low due to imprecision and indirectness | |
Souza 2020 [39] | ++++ high | |
Chen 2022 [47] | ++++ high | |
Mavriqi 2022 [28] | +++− moderate due to imprecision and indirecness | |
Nakai 2022 [29] | ++−− low due to imprecision and indirectness | |
Wei 2022 [40] | ++++ high | |
Wuersching 2022 [50] | ++++ high | |
Aydin 2023 [41] | +++− moderate due to imprecision and indirecness | |
Ille 2023 [30] | ++−− low due to imprecision, risk of bias and indirectness | |
Kim 2023 [31] | ++−− low due to imprecision and risk of bias | |
Ko 2023 [42] | +++− moderate due to indirectness and risk of bias | |
Matsuura 2023 [32] | +++− moderate due to indirectness | |
Rodríguez−Lozano 2023 [48] | +++− moderate due to indirectness | |
Wei 2023 [43] | +++− moderate due to indirectness | |
Kim 2024 [49] | +++− moderate due to imprecision | |
Pantea 2021 [27] | +++− moderate due to indirectness and imprecision | |
Saramet 2024 [34] | +++− moderate due to indirectness | |
Confirmed cytotoxicity of CAD/CAM materials | Hussain 2017 [35] | +++− moderate due to imprecision |
Shishehian 2018 [23] | ++−− low due to imprecision, risk of bias and indirectness | |
Ozverel 2023 [33] | +++− moderate due to indirectness | |
Sultan 2024 [25] | ++−− low due to imprecision and indirectness |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Małysa, A.; Jenčová, J.; Weżgowiec, J. Biocompatibility of CAD/CAM Milled Dental Restorative Materials: A Systematic Review from In Vitro Studies. Materials 2025, 18, 4323. https://doi.org/10.3390/ma18184323
Małysa A, Jenčová J, Weżgowiec J. Biocompatibility of CAD/CAM Milled Dental Restorative Materials: A Systematic Review from In Vitro Studies. Materials. 2025; 18(18):4323. https://doi.org/10.3390/ma18184323
Chicago/Turabian StyleMałysa, Andrzej, Janka Jenčová, and Joanna Weżgowiec. 2025. "Biocompatibility of CAD/CAM Milled Dental Restorative Materials: A Systematic Review from In Vitro Studies" Materials 18, no. 18: 4323. https://doi.org/10.3390/ma18184323
APA StyleMałysa, A., Jenčová, J., & Weżgowiec, J. (2025). Biocompatibility of CAD/CAM Milled Dental Restorative Materials: A Systematic Review from In Vitro Studies. Materials, 18(18), 4323. https://doi.org/10.3390/ma18184323