Transparent Wood Fiber-Reinforced Epoxy-Resin Electromagnetic-Shielding Materials with Superior Mechanical Strength and Thermal Insulation Performance
Abstract
1. Introduction
2. Experiment
2.1. Experimental Materials
2.2. Preparation Method
- (1)
- A predetermined quantity of wood powder fibers was accurately weighed using a precision electronic balance and immersed in anhydrous ethanol for subsequent processing.
- (2)
- The ethanol was carefully expelled, leaving the wood fibers in a slightly damp state. The fibers were then thoroughly mixed with the corresponding proportion of epoxy resin component A through mechanical stirring with a glass rod, followed by ultrasonic treatment to ensure homogeneous dispersion.
- (3)
- The resulting mixture was placed in a vacuum drying oven and evacuated for 10 min to achieve complete ethanol evaporation.
- (4)
- A predetermined amount of electromagnetic-shielding filler powder and the corresponding proportion of curing agent B were incorporated into the mixture. The components were thoroughly blended using mechanical stirring and ultrasonic treatment to ensure uniform distribution throughout the matrix.
- (5)
- The homogenized mixture was cast into a designated mold and placed in a vacuum drying oven. Curing was performed at 45 °C for 6 h to obtain the final wood fiber-reinforced epoxy-resin electromagnetic-shielding transparent composite.
2.3. Performance Characterization Methods
3. Results
3.1. Structure and Performance Characterization
3.2. Analysis of Absorption Performance
3.3. Electromagnetic Shielding Effectiveness Analysis
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- AEberbert, L.K. Biolgic Effect of Environmental Electromagnetism; Springer: New York, NY, USA, 1981. [Google Scholar]
- Zhang, T.M. Indoor electromagnetic environmental pollution in buildings and its protection. China Build. Mater. Sci. Technol. 2019, 28, 93–97. [Google Scholar]
- Han, R.J.; Cheng, Z.Q.; Lu, Y.J. Research Progress of Electromagnetic Shielding Materials for Buildings. Build. Mater. World 2018, 39, 29–32. [Google Scholar]
- Chen, Z.; Xu, C.; Ma, C.; Ren, W.; Cheng, H.-M. Lightweight and flexible graphene foam composites for high performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–1300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, Y.; Chen, H.; Huang, Z.; Yang, Y.; Xiao, P.; Zhou, Y.; Chen, Y. Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 2016, 105, 438–447. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, R.; Gu, J.; Liu, H.; Liu, C.; Luo, C.; Kong, J.; Shao, Q.; Wang, N.; Guo, Z.; et al. Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 2018, 139, 1126–1135. [Google Scholar] [CrossRef]
- Wang, C.; Murugadoss, V.; Kong, J.; He, Z.; Mai, X.; Shao, Q.; Chen, Y.; Guo, L.; Liu, C.; Angaiah, S.; et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 2018, 140, 696–733. [Google Scholar] [CrossRef]
- Song, J.; Chen, C.; Zhu, S.; Zhu, M.; Dai, J.; Ray, U.; Li, Y.; Kuang, Y.; Li, Y.; Quispe, N.; et al. Processing bulk natural wood into a high-performance structural material. Nature 2018, 554, 224–228. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, D.; Chu, F. Wood-Derived Functional Polymeric Materials. Adv. Mater. 2021, 33, 2001135. [Google Scholar] [CrossRef]
- Li, Y.; Vasileva, E.; Sychugov, I.; Popov, S.; Berglund, L. Optically Transparent Wood: Recent Progress, Opportunities, and Challenges. Adv. Opt. Mater. 2018, 6, 1800059. [Google Scholar] [CrossRef]
- Zhu, M.; Li, T.; Davis, C.S.; Yao, Y.; Dai, J.; Wang, Y.; AlQatari, F.; Gilman, J.W.; Hu, L. Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 2016, 26, 332–339. [Google Scholar] [CrossRef]
- Mi, R.; Li, T.; Dalgo, D.; Chen, C.; Kuang, Y.; He, S.; Zhao, X.; Xie, W.; Gan, W.; Zhu, J.; et al. A Clear, Strong, and Thermally Insulated Transparent Wood for Energy Efficient Windows. Adv. Funct. Mater. 2020, 30, 1907511. [Google Scholar] [CrossRef]
- Li, Y.; Yu, S.; Veinot, J.G.C.; Linnros, J.; Berglund, L.; Sychugov, I. Luminescent Transparent Wood. Adv. Opt. Mater. 2017, 5, 1600834. [Google Scholar] [CrossRef]
- Zhang, J.; Koubaa, A.; Tao, Y.; Li, P.; Xing, D. The emerging development of transparent wood: Materials, characteristics, and applications. Curr. Forestry Rep. 2022, 8, 333–345. [Google Scholar] [CrossRef]
- Cho, S.S.; Song, S.H.; Hong, I.P. Analysis of the electromagnetic properties of eco-friendly transparent wood. Microw. Opt. Technol. Lett. 2021, 63, 2237–2241. [Google Scholar] [CrossRef]
- Fu, Q.; Yan, M.; Jungstedt, E.; Yang, X.; Li, Y.; Berglund, L.A. Transparent plywood as a load-bearing and luminescent biocomposite. Compos. Sci. Technol. 2018, 164, 296–303. [Google Scholar] [CrossRef]
- Gan, W.; Gao, L.; Xiao, S.; Zhang, W.; Zhan, X.; Li, J. Transparent magnetic wood composites based on immobilizingFe3O4 nanoparticles into a delignified wood template. J. Mater. Sci. 2017, 52, 3321–3329. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Ning, G.Y. Research progress of wood-based conductive electromagnetic shielding materials. Mater. Rep. 2018, 32, 2320–2328. [Google Scholar]
- Gao, J.; Wang, X.; Tong, J.; Kuai, B.; Wang, Z.; Zhang, Y.; Li, G.; Huang, Z.; Cai, L. Large size translucent wood fiber reinforced PMMA porous composites with excellent thermal, acoustic and energy absorption properties. Compos. Commun. 2022, 30, 101059. [Google Scholar] [CrossRef]
- Gao, J.; Wang, X.; Xu, Q.; Kuai, B.; Wang, Z.; Cai, L.; Ge, S.; Zhang, Y.L.; Li, G. Efficient preparation and properties of wood fiber transparent materials with powdered wood. Ind. Crops Prod. 2023, 193, 116291. [Google Scholar] [CrossRef]
- Xu, Y.D. Electromagnetic Interference Shielding Polymer Composites: Structural Design and Performance Research; North University of China: Taiyuan, China, 2019. [Google Scholar]
- Yao, P. Microwave Absorption and Shielding Properties of MAX Phase Ceramics and Their Composites with SiC; University of Science and Technology of China: Hefei, China, 2022. [Google Scholar]
- Peng, M.; Qin, F. Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. 2021, 130, 225108. [Google Scholar] [CrossRef]
- Lim, K.; Kim, M.; Lee, K.; Park, C.G. Electromagnetic wave absorption properties of amorphous alloyferrite-epoxy composites in quasi-microwave band. IEEE Trans. Magn. 2003, 39, 1836–1841. [Google Scholar] [CrossRef]
- Wang, T.; Chen, G.; Zhu, J.; Gong, H.; Zhang, L.; Wu, H. Deep understanding of impedance matching and quarter wavelength theory in electromagnetic wave absorption. J. Colloid Interface Sci. 2021, 595, 1–5. [Google Scholar] [CrossRef]
- Cheng, M.; Ying, M.; Zhao, R.; Ji, L.; Li, H.; Liu, X.; Zhang, J.; Li, Y.; Dong, X.; Zhang, X. Transparent and Flexible Electromagnetic Interference Shielding Materials by Constructing Sandwich AgNW @ MXene/Wood Composites. ACS Nano 2022, 16, 16996–17007. [Google Scholar] [CrossRef] [PubMed]
Influence Factor | Magnetic Factor Components | Magnetic Factor Mass Fraction [%] | Wood Fiber Mass Fraction [%] | |
---|---|---|---|---|
Level | ||||
1 | C | 0.5 | 2.5 | |
2 | SiC | 0.3 | 5 | |
3 | C:SiC = 1:1 | 0.1 | 10 |
Influence Factor | Magnetic Factor Mass Fraction [%] | Magnetic Factor Components | Wood Fiber Mass Fraction [%] | ||
---|---|---|---|---|---|
Experiment Number | |||||
Orthogonal Experiment | CEO-1 | 1 | 1 | 1 | |
CEO-2 | 1 | 2 | 2 | ||
CEO-3 | 1 | 3 | 3 | ||
CEO-4 | 2 | 1 | 2 | ||
CEO-5 | 2 | 2 | 3 | ||
CEO-6 | 2 | 3 | 1 | ||
CEO-7 | 3 | 1 | 3 | ||
CEO-8 | 3 | 2 | 1 | ||
CEO-9 | 3 | 3 | 2 | ||
TiO2 supplementary experiment | CET-1 | 0.1% | TiO2 | 5% | |
CET-2 | 0.3% | TiO2 | 5% | ||
CET-3 | 0.5% | TiO2 | 5% |
Treatment Number | Transmittance | Haze | ||||
---|---|---|---|---|---|---|
Magnetic Factor Mass Fraction | Magnetic Factor Components | Wood Fiber Mass Fraction | Magnetic Factor Mass Fraction | Magnetic Factor Components | Wood Fiber Mass Fraction | |
K 1j | 155.30 | 78.80 | 154.70 | 162.03 | 194.64 | 170.07 |
K 2j | 98.70 | 171.80 | 197.40 | 223.36 | 159.18 | 137.19 |
K 3j | 159.10 | 162.50 | 61.00 | 137.82 | 169.38 | 215.94 |
κ 1j | 51.77 | 26.27 | 51.57 | 54.01 | 64.88 | 56.69 |
κ 2j | 32.90 | 57.27 | 65.80 | 74.45 | 53.06 | 45.73 |
κ 3j | 53.03 | 54.17 | 20.33 | 45.94 | 56.46 | 71.98 |
Range | 20.13 | 31.00 | 45.47 | 28.51 | 11.82 | 26.25 |
Factor importance | 3 | 2 | 1 | 1 | 3 | 2 |
Optimal solution | 3 | 2 | 2 | 2 | 1 | 3 |
Treatment Number | Magnetic Factor Components | Magnetic Factor Mass Fraction [%] | Wood Fiber Mass Fraction [%] |
---|---|---|---|
K 1j | 176.63 | 169.94 | 204.37 |
K 2j | 173.74 | 177.051 | 179.58 |
K 3j | 167.06 | 170.44 | 133.49 |
κ 1j | 58.88 | 56.65 | 68.12 |
κ 2j | 57.91 | 59.02 | 59.86 |
κ 3j | 55.69 | 56.82 | 44.50 |
Range | 3.19 | 2.37 | 23.63 |
Factor importance | 2 | 3 | 1 |
Optimal solution | 1 | 2 | 1 |
Treatment Number | Magnetic Factor Mass Fraction | Magnetic Factor Components | Wood Fiber Mass Fraction |
---|---|---|---|
K 1j | 42.09 | 45.13 | 33.87 |
K 2j | 20.46 | 17.85 | 22.45 |
K 3j | 23.29 | 22.86 | 29.52 |
κ 1j | 14.03 | 15.04 | 11.29 |
κ 2j | 6.82 | 5.95 | 7.48 |
κ 3j | 7.76 | 7.62 | 9.84 |
Range | 7.21 | 9.09 | 3.80 |
Factor importance | 2 | 1 | 3 |
Optimal solution | 1 | 1 | 1 |
Optimization Parameters * | Magnetic Factor Mass Fraction | Magnetic Factor Components | Wood Fiber Mass Fraction | |
---|---|---|---|---|
Performance Parameters | ||||
Transmittance | 3 | 2 | 2 | |
Haze | 2 | 1 | 3 | |
Thermal conductivity | 3 | 2 | 1 | |
Strength | 1 | 2 | 1 | |
Reflective loss | 1 | 1 | 1 | |
Electromagnetic-shielding effectiveness | 1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Wu, Z.; Zhu, L.; Gao, Y.; Cai, L.; Zhu, Z.; Zhang, Y. Transparent Wood Fiber-Reinforced Epoxy-Resin Electromagnetic-Shielding Materials with Superior Mechanical Strength and Thermal Insulation Performance. Materials 2025, 18, 4262. https://doi.org/10.3390/ma18184262
Gao J, Wu Z, Zhu L, Gao Y, Cai L, Zhu Z, Zhang Y. Transparent Wood Fiber-Reinforced Epoxy-Resin Electromagnetic-Shielding Materials with Superior Mechanical Strength and Thermal Insulation Performance. Materials. 2025; 18(18):4262. https://doi.org/10.3390/ma18184262
Chicago/Turabian StyleGao, Jingshu, Zhen Wu, Ling Zhu, Yue Gao, Liping Cai, Zunling Zhu, and Yaoli Zhang. 2025. "Transparent Wood Fiber-Reinforced Epoxy-Resin Electromagnetic-Shielding Materials with Superior Mechanical Strength and Thermal Insulation Performance" Materials 18, no. 18: 4262. https://doi.org/10.3390/ma18184262
APA StyleGao, J., Wu, Z., Zhu, L., Gao, Y., Cai, L., Zhu, Z., & Zhang, Y. (2025). Transparent Wood Fiber-Reinforced Epoxy-Resin Electromagnetic-Shielding Materials with Superior Mechanical Strength and Thermal Insulation Performance. Materials, 18(18), 4262. https://doi.org/10.3390/ma18184262