Performance Optimization and Long-Term Strength of Basic Magnesium Sulfate Cement Prepared with Accelerated Carbonated Boron Mud
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
Magnesium Oxide Activity Detection Method
2.2. Test and Characterization Methods
2.2.1. Preparation of Boron Mud Carbonation
2.2.2. Specimen Preparation of BMSC Sample
2.2.3. Macroscopic Characterization of Mechanical Properties Analysis
2.2.4. Microscopic Characterization
3. Results
3.1. Theoretical and Actual CO2 Fixation Analysis of Boron Mud
3.2. Effects of Uncarbonized and Carbonated Boron Mud on the Compressive Strength of BMSC
3.3. XRD Analysis
3.4. TG Analysis
3.5. FTIR Analysis
3.6. Hydration Heat Analysis
3.7. SEM Analysis
4. Conclusions
- Rapid carbonation treatment improved the reactivity of boron mud to some extent. Originally low-reactivity magnesium-rich minerals, such as magnesite, dolomite, and enstatite, underwent partial transformation into potentially reactive carbonate-containing phases, as suggested by XRD, FTIR, and TG–DTG analyses. These analytical results consistently indicated an increased carbonate content, supporting the occurrence of in situ CO2 fixation in the carbonated boron mud.
- The incorporation of CBM appeared to influence the phase development within the BMSC system. The carbonate ions present in CBM possibly interacted preferentially with MgO, likely reducing the formation of excessive magnesium hydroxide (Mg(OH)2)—a phase known to negatively influence mechanical properties and volumetric stability. This alteration in hydration pathways may have facilitated the formation of relatively stable hydromagnesite and the structurally beneficial 5·1·7 phase (5Mg(OH)2·MgSO4·7H2O), as evidenced by quantitative XRD and SEM-EDS characterization.
- CBM-modified specimens exhibited improved mechanical properties compared with those incorporating RBM, with an optimal mechanical performance observed at a CBM dosage of approximately 30%. This enhancement in compressive strength could be attributed to a potentially refined microstructure and more regulated hydration kinetics. Calorimetric analyses suggested delayed and moderated heat release behavior, which may have contributed to reduced early-age microcracking risks, thereby possibly supporting long-term durability.
- SEM indicated that CBM incorporation resulted in a relatively denser and more homogeneous cementitious matrix, characterized by reduced porosity and potentially enhanced interfacial bonding. Elemental distribution analyses also provided supporting evidence for increased formation of stable carbonate phases, correlating well with the observed mechanical improvements in CBM-modified specimens.
- The inclusion of CBM introduced an opportunity for in situ CO2 sequestration within the BMSC system. By integrating solid waste recycling with potential carbon fixation, the proposed CBM–BMSC system may not only enhance the material properties but could also contribute positively to environmental sustainability and resource efficiency.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BM | Untreated boron mud |
CBM | Carbonized boron mud |
BMSC | Basic magnesium sulfate cement |
CS | Control sample |
MOS | magnesium oxysulfate cement |
DTG | Derivative thermogravimetry analysis |
SEM | Scanning electron microscope |
EDS | Energy-dispersive X-ray spectroscopy |
FTIR | Fourier transform infrared spectroscopy |
TG | Thermogravimetry analysis |
MPA | Most probable pore diameter |
XRD | X-ray diffractometer |
XRF | X-ray fluorescence |
MPC | Magnesium phosphate cement |
References
- Liu, Y.; Zhang, T.; Wang, B.; Hu, J. Preparation of environment-friendly SiO2 aerogel based on waste boron mud and its adsorption behavior for toluene. Water Sci. Technol. 2023, 87, 469–491. [Google Scholar] [CrossRef]
- Cengeloglu, Y.; Tor, A.; Arslan, G.; Ersoz, M.; Gezgin, S. Removal of boron from aqueous solution by using neutralized red mud. J. Hazard. Mater. 2007, 142, 412–417. [Google Scholar] [CrossRef]
- Wen, J.; Sui, H.; Jiang, T.; Li, L.; An, X. High-value utilization of boron mud waste: Preparation of magnesium oxysulfate cement after primary blank roasting and secondary (NH4)2SO4 roasting. Process Saf. Environ. Prot. 2024, 188, 1376–1384. [Google Scholar] [CrossRef]
- Chen, Y.; Han, D.; Kong, G.; Chen, G.; Chen, L. Effect of artificial aggregate (AACSBMS) hydrothermal solidified with carbide slag, boron mud and sludge on shrinkage and hydration characteristics of concrete. Constr. Build. Mater. 2025, 470, 140558. [Google Scholar] [CrossRef]
- Fang, C.; Liu, H.; Chen, X.; Ren, C.; Zhao, X.; Jing, Y.; Cheng, D.; Zhang, J. Enhancement of nitrogen removal in constructed wetlands through boron mud and elemental sulfur addition: Regulation of sulfur and oxygen cycling. Chem. Eng. J. 2024, 497, 154544. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, M.; Chen, H. Preparation of low ratio magnesium cement by acid leaching treatment of boron mud. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2025, 40, 120–129. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, Y.; Lv, F.; Tong, W.; Xin, H.; Meng, Z.; Wang, X.; Chu, P.K. Preparation of layered double hydroxides using boron mud and red mud industrial wastes and adsorption mechanism to phosphate. Water Environ. J. 2017, 31, 145–157. [Google Scholar] [CrossRef]
- Ma, X.; Ma, H.; Jiang, X.; Jiang, Z. Preparation of magnesium hydroxide nanoflowers from boron mud via anti-drop precipitation method. Mater. Res. Bull. 2014, 56, 113–118. [Google Scholar] [CrossRef]
- Ning, Z.; Zhai, Y.; Xie, H.; Song, Q.; Yu, K. Recovery of silica from sodium silicate solution of calcined boron mud. Rare Met. 2016, 35, 204–210. [Google Scholar] [CrossRef]
- Han, D.; Chen, Y.; Kong, G.; Chen, G.; Huang, H. Durability and deterioration mechanism of autoclaved materials from carbide slag, boron mud and sludge (CS-bM-S) by hydrothermal solidification exposed to dry-wet cycles. J. Sustain. Cem.-Based Mater. 2025, 14, 2012–2028. [Google Scholar] [CrossRef]
- Bo, J.; Zhang, Y.; Zhang, Y. Leaching magnesium oxide in boron mud by water with pressurized CO2. Hydrometallurgy 2017, 171, 142–148. [Google Scholar] [CrossRef]
- Chang, J.; Ning, Z.; Xie, H.; Song, Q. Leaching kinetics of magnesium extraction from boron mud in ammonium bisulphate solutions. Can. J. Chem. Eng. 2023, 101, 6764–6773. [Google Scholar] [CrossRef]
- Ning, Z.; Song, Q.; Zhai, Y.; Xie, H.; Yu, K. Desilication kinetics of calcined boron mud in molten sodium hydroxide media. J. Cent. South Univ. 2016, 23, 2191–2198. [Google Scholar] [CrossRef]
- Yu, J.; Lin, L.; Qian, J.; Jia, X.; Wang, F. Preparation and properties of a low-cost magnesium phosphate cement with the industrial by-products boron muds. Constr. Build. Mater. 2021, 302, 124400. [Google Scholar] [CrossRef]
- Wang, Y.; Zhen, Z. Properties of red-mud-modified basic magnesium sulfate cement. Materials 2024, 17, 4085. [Google Scholar] [CrossRef]
- Ruan, W.; Zhang, Z.; Tang, H.; Liu, J.; Jiao, Y.; He, X.; Guo, Y. Effect of red mud on water resistance of magnesium phosphate cement and its hydration mechanism. J. Build. Eng. 2025, 103, 112242. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, G.; Hou, D.; Wang, Z. Nanoscale insight on the durability of magnesium phosphate cement: A molecular dynamics study. RSC Adv. 2020, 10, 40180–40195. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhang, A.; Cao, J.; Ye, Q.; Zhao, Z.; Zhou, W.; Li, C.; Li, J. Performance improvement of magnesium oxysulfate cement by the combination of additives. Constr. Build. Mater. 2023, 408, 133683. [Google Scholar] [CrossRef]
- Liu, X.; Wen, J.; Chang, C.; Zheng, W.; Liu, Q.; Xiao, X.; Dong, J. Effects of calcination process of salt lake magnesium slag on the properties of magnesium oxysulfide cement. Adv. Cem. Res. 2022, 34, 225–234. [Google Scholar] [CrossRef]
- Yu, J.; Qian, J.; Wang, F.; Li, Z.; Jia, X. Preparation and properties of a magnesium phosphate cement with dolomite. Cem. Concr. Res. 2020, 138, 106235. [Google Scholar] [CrossRef]
- Bouaoun, I.; Hammi, H.; Aït-Mokhtar, A.; Hamami, A.E.A.; M’nif, A. Effect of calcination temperature of magnesium silicate on the properties of magnesium phosphate cement. J. Aust. Ceram. Soc. 2017, 53, 351–359. [Google Scholar] [CrossRef]
- Lu, B.; Zhou, Y.; Jiang, L.; Liu, Z.; Hou, G. High-purity vaterite CaCO3 recovery through wet carbonation of magnesium slag and leaching residue utilization in cement. Cem. Concr. Compos. 2024, 145, 105353. [Google Scholar] [CrossRef]
- Ding, X.; Li, W.; Chang, J. Preparation of aragonite from calcium carbonate via wet carbonation to improve properties of steel slag building materials. Constr. Build. Mater. 2024, 451, 138763. [Google Scholar] [CrossRef]
- Peng, Y.; Unluer, C. Interpretable machine learning-based analysis of hydration and carbonation of carbonated reactive magnesia cement mixes. J. Clean. Prod. 2024, 434, 140054. [Google Scholar] [CrossRef]
- You, J.; Zhang, Y.; Yang, C.; Song, Q.; Sun, Y. Hierarchical pore structure for enhanced carbonation in basic magnesium sulfate cement: Mechanisms from modification to post-carbonation evolution. Cem. Concr. Res. 2025, 193, 107876. [Google Scholar] [CrossRef]
- Xiang, J.; Qiu, J.; Zhao, Y.; Zheng, P.; Peng, H.; Fei, X. Rheology, mechanical properties, and hydration of synergistically activated coal gasification slag with three typical solid wastes. Cem. Concr. Compos. 2024, 147, 105418. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, K.; Chen, L.; Yuan, Q. Review on accelerated carbonation of calcium-bearing minerals: Carbonation behaviors, reaction kinetics, and carbonation efficiency improvement. J. Build. Eng. 2024, 86, 108826. [Google Scholar] [CrossRef]
- Kashef-Haghighi, S.; Ghoshal, S. CO2 sequestration in concrete through accelerated carbonation curing in a flow-through reactor. Ind. Eng. Chem. Res. 2010, 49, 1143–1149. [Google Scholar] [CrossRef]
- Tian, R.; Sun, Q.; Han, X.; Jin, C.; Liu, J. Effects of titanium carbide on modified magnesium oxysulfate cement: Microstructure and mechanical properties. Ceram. Int. 2025, 51, 3320–3342. [Google Scholar] [CrossRef]
- Gu, X.; Wang, S.; Liu, J.; Zhu, Z.; Wang, H.; Ge, X.; Hu, Z.; Xu, X.; Nehdi, M.L. Improving physical properties, microstructure and actual carbon sequestration of steel slag based autoclaved aerated concrete by accelerated carbonation. J. Build. Eng. 2024, 94, 110045. [Google Scholar] [CrossRef]
- Dong, M.; Zhou, S.; Ying, L.; Yang, H.; Xue, X.; Hsu, S.-C. From waste to defense: Cost-efficient upcycling of boron mud to nuclear radiation shielding. Resources, Conserv. Recycl. 2024, 211, 107884. [Google Scholar] [CrossRef]
- Zhang, C.; Guan, X.; Zhu, J.; Liu, S.; Zhao, R. Investigation of curing behavior of γ-C2S and MgO under varying CO2 concentrations. Constr. Build. Mater. 2024, 455, 139176. [Google Scholar] [CrossRef]
- Cheng, L.; Jin, H.; Zhang, W.; Xie, G.; Liu, J.; Xing, F. Influence of municipal solid waste incineration bottom ash on the hydration and carbonation behavior of reactive magnesia cement. Chem. Eng. J. 2024, 502, 158059. [Google Scholar] [CrossRef]
- Li, J.; Gu, X.; Wang, S.; Hu, Z.; Hu, Z.; Li, X. Study on the Preparation and Compressive Strength of Boron Mud-Based Basic Magnesium Sulfate Cement. Materials 2024, 17, 3301. [Google Scholar] [CrossRef]
- GB/T 9855-2008; Chemical Reagent-Citric Acid Monohydrate. Administration of the People’s Republic of China: Beijing, China, 2008.
- WB/T 1019-2002; Caustic Burned Magnesia for Magnesium Oxychloride Cement Products. Administration of the People’s Republic of China: Beijing, China, 2002.
- JG/T 247-2009; Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Carbonation Test Chamber of Concrete. China Architecture & Building Press: Beijing, China, 2009.
- Wang, J.; Xu, H.; Xu, D.; Du, P.; Zhou, Z.; Yuan, L.; Cheng, X. Accelerated carbonation of hardened cement pastes: Influence of porosity. Constr. Build. Mater. 2019, 225, 159–169. [Google Scholar] [CrossRef]
- GB/T 175-2023; Common Portland Cement. Administration of the People’s Republic of China: Beijing, China, 2023.
- GB/T 17671-2021; Test method of Cement Mortar Strength (ISO Method). Administration of the People’s Republic of China: Beijing, China, 2021.
- GB/T 9724-2007; Chemical Reagent-General Rule for the Determination of ph. Administration of the People’s Republic of China: Beijing, China, 2007.
- Fu, X.; Chu, M.; Zhao, J.; Chen, S.; Liu, Z.; Wang, S.-Y. Experimental study on application of boron mud secondary resource to oxidized pellets production. High Temp. Mater. Process. 2017, 36, 649–655. [Google Scholar] [CrossRef]
- Hu, F.; Fu, L.; Zhang, Q.; Xu, G.; Bai, D. Efficient synthesis of forsterite via high-temperature thermochemical reactions from boron mud waste without briquetting. Particuology 2024, 87, 124–132. [Google Scholar] [CrossRef]
- Liu, P.; Yu, Z.; Chen, Y. Carbonation depth model and carbonated acceleration rate of concrete under different environment. Cem. Concr. Compos. 2020, 114, 103736. [Google Scholar] [CrossRef]
- Runčevski, T.; Wu, C.; Yu, H.; Yang, B.; Ehm, L. Structural characterization of a new magnesium oxysulfate hydrate cement phase and its surface reactions with atmospheric carbon dioxide. J. Am. Ceram. Soc. 2013, 96, 3609–3616. [Google Scholar] [CrossRef]
- Zhang, D.; Cai, X.; Jaworska, B. Effect of pre-carbonation hydration on long-term hydration of carbonation-cured cement-based materials. Constr. Build. Mater. 2020, 231, 117122. [Google Scholar] [CrossRef]
- Chen, Z.; Li, R.; Liu, J. Preparation and properties of carbonated steel slag used in cement cementitious materials. Constr. Build. Mater. 2021, 283, 122667. [Google Scholar] [CrossRef]
- Wang, N.; Yu, H.; Bi, W.; Tan, Y.; Zhang, N.; Wu, C.; Ma, H.; Hua, S. Effects of sodium citrate and citric acid on the properties of magnesium oxysulfate cement. Constr. Build. Mater. 2018, 169, 697–704. [Google Scholar] [CrossRef]
- Mi, T.; Li, Y.; Yang, E.; Unluer, C. Use of sludge produced from reject brine as a supplementary cementitious material with enhanced carbonation capability. Cem. Concr. Compos. 2025, 160, 106051. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, P.; Yang, Q.; Zhang, N. Effect of packaging method and storage environment on activity of magnesium oxide and mechanical properties of basic magnesium sulfate cement. Materials 2024, 17, 3628. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yue, Y.; Qian, J. Effect of carbonation on the corrosion behavior of steel rebar embedded in magnesium phosphate cement. Compos. Part B Eng. 2024, 268, 111088. [Google Scholar] [CrossRef]
- Seo, J.; Park, S.; Kim, G.; Park, S. Exploring natural and accelerated carbonation of alkali-activated slag. Constr. Build. Mater. 2024, 432, 136459. [Google Scholar] [CrossRef]
- Han, W.; Chen, H.; Song, S. Thermodynamical analysis of the effects of modifiers and carbonation on the phase assemblages of magnesium oxychloride cement. Cem. Concr. Compos. 2023, 143, 105274. [Google Scholar] [CrossRef]
- Grünhäuser, E.; Castro-Gomes, J. Carbonation curing influencing factors of carbonated reactive magnesia cements (CRMC)—A review. J. Clean. Prod. 2021, 305, 127210. [Google Scholar] [CrossRef]
- Chen, H.; Ning, X.; Wu, C. Effects of raw material ratio, curing temperature and magnesium oxide activity on the hydration of basic magnesium sulfate cement. Ceram.-Silikáty 2022, 66, 374–383. [Google Scholar] [CrossRef]
- Xu, X.; Xu, Y.; Duan, L. Effect of fineness and components of CFBC ash on performance of basic magnesium sulfate cement. Constr. Build. Mater. 2018, 170, 801–811. [Google Scholar] [CrossRef]
- Al-Mufti, A.T.; Kwasny, J.; Russell, M.; McPolin, D.; Bagnall, L. Effect of partial MgO replacement on the properties of magnesium oxychloride cement. Cem. Concr. Compos. 2022, 134, 104791. [Google Scholar] [CrossRef]
- Sun, Q.; Ba, M.; Zhang, D.; Zhou, S.; Zhang, N.; Wang, F. Effects of citrate acid, solidum silicate and their compound on the properties of magnesium oxysulfate cement under carbonation condition. Constr. Build. Mater. 2022, 330, 127136. [Google Scholar] [CrossRef]
- Azevedo, A.G.S.; Savastano, H. Assessment of carbonation as a complementary strategy to increase the durability of magnesium oxysulfate (MOS)-based fiber cement boards. Constr. Build. Mater. 2024, 438, 137086. [Google Scholar] [CrossRef]
- Yu, H.; Yang, D.; Tan, Y. Impact of lead on the hydration and microstructure of novel magnesia-based cement for immobilization. Constr. Build. Mater. 2024, 443, 137803. [Google Scholar] [CrossRef]
- Liang, Y.; Guan, Y.; Bi, W. The effect of alcohol compound on the solidification of magnesium oxysulfate cement-boron mud blends. Materials 2022, 15, 1446. [Google Scholar] [CrossRef]
- Drouet, E.; Poyet, S.; Le Pape, Y.; Torrenti, J.M.; Bourbon, X. Carbonation of hardened cement pastes: Influence of temperature. Cem. Concr. Res. 2019, 115, 445–459. [Google Scholar] [CrossRef]
- Unluer, C.; Al-Tabbaa, A. The role of brucite, ground granulated blastfurnace slag, and magnesium silicates in the carbonation and performance of MgO cements. Constr. Build. Mater. 2015, 94, 629–643. [Google Scholar] [CrossRef]
- Pang, X.; Liu, H.; Chen, L.; Yuan, Y.; Liu, X.; Pang, X.; Liu, Y. Isothermal calorimetry study of the effect of citric acid on the hydration kinetics of magnesium oxysulfate cement. Constr. Build. Mater. 2023, 365, 130041. [Google Scholar] [CrossRef]
- Wang, H.; Liang, S.; Zhou, X.; Hou, P.; Cheng, X. Regulating hydration and microstructure development of reactive MgO cement by citric acids. Cem. Concr. Compos. 2025, 155, 105832. [Google Scholar] [CrossRef]
- Cui, P.; Wu, C.; Chen, J.; Luo, F.; Kou, S. Preparation of magnesium oxysulfate cement as a 3D printing material. Constr. Build. Mater. 2021, 282, 122677. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Zhu, Z.; Ma, L. Evaluation of waste concrete recycled powder (WCRP) on the preparation of low-exothermic cement. J. Build. Eng. 2022, 53, 104511. [Google Scholar] [CrossRef]
- Du, H.; Li, J.; Ni, W.; Hou, C.; Liu, W. The hydration mechanism of magnesium oxysulfate cement prepared by magnesium desulfurization byproducts. J. Mater. Res. Technol. 2022, 17, 1211–1220. [Google Scholar] [CrossRef]
- Liu, Z.; Lai, Z.; Luo, X.; Xiao, R.; Chen, J.; Lu, Z. Properties of magnesium phosphate cement reinforced with natural brucite fiber. Constr. Build. Mater. 2023, 393, 132057. [Google Scholar] [CrossRef]
- Hu, Z.; Chang, J.; Chen, X.; Guan, Y.; Bi, W. Preparation of magnesium oxysulfate cement with semidry carbonation high calcium content light-burned magnesium (Ca-LBM). Constr. Build. Mater. 2023, 408, 133664. [Google Scholar] [CrossRef]
- Dionisio, A.K.; Gomes, C.M. Behaviour of autoclaved magnesium oxysulfate cement pastes. J. Build. Eng. 2023, 76, 107263. [Google Scholar] [CrossRef]
- Chu, Y.; Wang, A.; Zhu, Y.; Wang, H.; Liu, K.; Ma, R.; Guo, L.; Sun, D. Enhancing the performance of basic magnesium sulfate cement-based coral aggregate concrete through gradient composite design technology. Compos. Part B Eng. 2021, 227, 109382. [Google Scholar] [CrossRef]
- Miao, M.; Wu, C.; Tan, Y.; Yu, H. Mechanistic study of the effects of magnesia reactivity on setting and hardening of basic magnesium sulfate cement. J. Adv. Concr. Technol. 2020, 18, 678–688. [Google Scholar] [CrossRef]
- Ba, M.; Xue, T.; He, Z.; Wang, H.; Liu, J. Carbonation of magnesium oxysulfate cement and its influence on mechanical performance. Constr. Build. Mater. 2019, 223, 1030–1037. [Google Scholar] [CrossRef]
- Zeng, T.; Hu, Z.; Huang, C.; Chang, J. Influence of carbonation on the properties of steel slag–magnesium silicate hydrate (MSH) cement. Materials 2023, 16, 6737. [Google Scholar] [CrossRef]
- Fernandez, M.; Simons, S.J.R.; Hills, C.D.; Carey, P.J. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J. Hazard. Mater. 2004, 112, 193–205. [Google Scholar] [CrossRef]
Component | MgO | SiO2 | Fe2O3 | Al2O3 | P2O5 |
---|---|---|---|---|---|
Content (wt %) | 73.51% | 13.62% | 10.2% | 2.44% | 0.23% |
Component | MgO | CaO | SiO2 | Fe2O3 |
---|---|---|---|---|
Content (wt %) | 83.3% | 1.7% | 6.34% | 0.42% |
Sample Types | Boron Mud (g) | MgO (g) | MgSO4 (g) | Citric Acid (g) | H2O (g) |
---|---|---|---|---|---|
CS-BMSC | - | 625 g | 191.875 g | 6.25 g | 193.75 g |
CBM10-BMSC | 62.5 g | 562.5 g | - | - | - |
CBM20-BMSC | 125 g | 500 g | - | - | - |
CBM30-BMSC | 187.5 g | 437.5 g | - | - | - |
CBM40-BMSC | 250 g | 375 g | - | - | - |
BM10-BMSC | 62.5 g | 562.5 g | - | - | - |
BM20-BMSC | 125 g | 500 g | - | - | - |
BM30-BMSC | 187.5 g | 437.5 g | - | - | - |
BM40-BMSC | 250 g | 375 g | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Gu, X.; Yang, B.; Wang, S.; Hu, Z.; Hu, Z.; Ge, X. Performance Optimization and Long-Term Strength of Basic Magnesium Sulfate Cement Prepared with Accelerated Carbonated Boron Mud. Materials 2025, 18, 4231. https://doi.org/10.3390/ma18184231
Li J, Gu X, Yang B, Wang S, Hu Z, Hu Z, Ge X. Performance Optimization and Long-Term Strength of Basic Magnesium Sulfate Cement Prepared with Accelerated Carbonated Boron Mud. Materials. 2025; 18(18):4231. https://doi.org/10.3390/ma18184231
Chicago/Turabian StyleLi, Jiankun, Xiaowei Gu, Bohan Yang, Shenyu Wang, Zhihang Hu, Ziyang Hu, and Xiaowei Ge. 2025. "Performance Optimization and Long-Term Strength of Basic Magnesium Sulfate Cement Prepared with Accelerated Carbonated Boron Mud" Materials 18, no. 18: 4231. https://doi.org/10.3390/ma18184231
APA StyleLi, J., Gu, X., Yang, B., Wang, S., Hu, Z., Hu, Z., & Ge, X. (2025). Performance Optimization and Long-Term Strength of Basic Magnesium Sulfate Cement Prepared with Accelerated Carbonated Boron Mud. Materials, 18(18), 4231. https://doi.org/10.3390/ma18184231