Behavior of Defective Aluminum Panels Under Shear Forces Patched with Composite Plates—A New Engineering Approach
Abstract
1. Introduction
1.1. Background
- Leave it as it is—when the structural damage is insignificant from the static strength perspective.
- A cosmetic repair—when the damage is insignificant from the static strength perspective, but the relevant part requires a refined aerodynamic finish.
- Temporary repair—a damage repair that does not pose a problem to the structural durability of the relevant part, but it might lead to damage over time depending on the load.
- Structural/permanent repair—when the damage threatens the immediate structural integrity (not only from the fatigue point of view), then a permanent fixture is required, usually by a repair patch applied on the damaged part.
- Replacement—if the process of repairing the damaged component turns out to be not economically or workable, the damaged part should be substituted.
1.2. Literature Review
2. Methods and Materials
2.1. The Finite Element Analysis (FEA)
2.2. Materials and Properties
2.3. Boundary Conditions
2.4. Loading
2.5. Convergence of FEA Model
2.6. FEA of the Experimental Test Set-Up
3. Results
3.1. Study Cases
3.2. Aluminum Repair Patch Analysis Results
3.3. Composite Repair Patch Design and Analysis Results
- Figure 17—Required patch overlap vs. damage size
3.4. Buckling Analysis Results
3.5. Test Program and Results
3.5.1. Original Panel and Panel with a Hole Test Results
3.5.2. Composite Patch Repair [0°, 45°, 45°, 0°] Test Results
3.5.3. Composite Patch Repair [45°, 0°, 0°, 45°] Test Results
4. Discussion
- Metallic panels under shear load must be verified for both stress and buckling. As for buckling, it depends directly on geometry and less on strength properties; this issue must be first verified. Nevertheless, from the performed analysis, it may be concluded that designing a composite repair patch for an actual aircraft panel (heat-treated, having higher strength properties as opposed to annealed O treatment) covers the design requirements for buckling. In our analysis, verified by an experiment, we encountered the buckling phenomena due to usage of untreated aluminum.
- Parametrically studying the effect of the ply application sequence, based on analysis and verified in the experiment, it was found out that application of a ply at 0° (along load application) decreases the stress amplification factor on the damage edge, allegedly enabling later failure, compared to a patch, applied at 45° to the applied load direction. Corresponding to the previous statement, the experiment demonstrated buckling later (higher load of buckling) for the patch applied in the load direction (0°). Thus, 0° plies should be used when adding extra repair plies to increase carrying load capability.
- A parametric method, based on a finite element model, designed by a new approach of connecting shell elements with 3D elements, was performed. Based on the performed tests on four representative specimens, the finite element model was substantiated in all sampling points of buckling load and strain measurement locations. It was found that the finite element model is forever conservative by a maximum of 10% apart from only one strain measurement of one of the composite patches. In that patch, a lack of smoothness may be noticed due to insufficiently proper sealing of the damage.
- As a result of analysis validation, it may be concluded that a wet layup patch repair effectively restores the loss of strength caused by structural damage. The best solution would be to bond patches at both sides of the damaged plate; however, the approach presented throughout the present study to apply a single patch due to operational access constraints to the damaged plate was shown to be feasible both numerically and experimentally.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
2D | Two-dimensional |
AL | Allowed |
BF | Buckling factor |
FEM | Finite element method |
FOD | Foreign Object Damage |
OML | Outer Mold Line |
MRO | Maintenance and Repair Operations |
R3 | Three-point method in SimXpert 2013 code |
RBE2 | Rigid body elements in SimXpert 2013 code |
SAF | Stress amplification factor |
SG | Strain gage |
SRM | Structural Repair Manual |
UTS | Ultimate tensile stress |
USS | Ultimate shear stress |
VM | von Mises |
Appendix A
Appendix B. Specimen Manufacturing
Appendix B.1. Filler Insertion
Appendix B.2. Surface Preparation
Appendix B.3. Surface Preparation QA (Quality Assurance)
Appendix B.4. Plies Fabrication
Appendix B.5. Curing Process
Appendix C
References
- Kiat, L.C. A Study of Composite Wet-Layup Bonded Repair for Aircraft. Master’s Thesis, National University of Singapore, Singapore, 2013. [Google Scholar]
- Baker, A.A.; Rose, L.R.F.; Jones, R. Advances in the Bonded Composite Repair of Metallic Aircraft Structure; Elsevier: Amsterdam, The Netherlands, 2002; Volume 1, pp. 137–163, 177–205. [Google Scholar]
- Da Silva, L.F.M.; Lima, R.F.T.; Teixeira, R.M.S.; Puga, A.T. Development of the software for the design of adhesive joints. J. Adhes. 2009, 85, 889–918. [Google Scholar] [CrossRef]
- Volkersen, O. Nietkraftverteiligung in zugbeanspruchten nietverbindungen mit konstanten laschenquerschnitten (Rivet force distribution in tensile riveted joints with constant tab cross-section). Luftfahrtforschung 1938, 1, 15–41. [Google Scholar]
- Rodriguez, R.Q.; Sollero, P.; Rodriguez, M.B.; de Albuquerque, É.L. Stress analysis and failure criteria of adhesive bonded single lap joints. In Proceedings of the 21st International Congress of Mechanical Engineering, Natal, RN, Brazil, 24–28 October 2011; 10p. [Google Scholar]
- Goland, M.; Reissner, E. The stresses in cemented joints. J. Appl. Mech. 1944, 11, A1–A27. [Google Scholar] [CrossRef]
- Hart-Smith, L.J. Adhesive-Bonded Double Lap Joints; NASA-CR-112235; NASA: Washington, DC, USA, January 1973; 106p. [Google Scholar]
- Hart-Smith, L.J. Adhesive-Bonded Single Lap Joints; NASA-CR-112236; NASA: Washington, DC, USA, January 1973; 114p. [Google Scholar]
- Harman, A.B.; Wang, C.H. Improved design methods for scarf repairs to highly strained composite aircraft structure. Compos. Struct. 2006, 75, 132–144. [Google Scholar] [CrossRef]
- Sayman, O.A. Elasto-plastic stress analysis in an adhesively bonded single-lap. Compos. Part B 2011, 43, 204–209. [Google Scholar] [CrossRef]
- Odi, R.A.; Friend, C.M. A comparative study of finite element models for the bonded repair of composite structures. J. Reinf. Plast. Compos. 2002, 21, 311–332. [Google Scholar] [CrossRef]
- Naboulsi, S.; Mall, S. Modelling of a cracked metallic structure with bonded composite patch using the three layer technique. Compos. Struct. 1996, 35, 295–308. [Google Scholar] [CrossRef]
- Naboulsi, S.; Mall, S. Characterization of fatigue crack growth in aluminium panels with a bonded composite patch. Compos. Struct. 1997, 37, 321–334. [Google Scholar] [CrossRef]
- Schubbe, J.J.; Mall, S. Modelling of cracked thick metallic structure with bonded composite patch repair using three-layer technique. Compos. Struct. 1999, 45, 185–193. [Google Scholar] [CrossRef]
- Naboulsi, S.; Mall, S. Nonlinear analysis of bonded composite patch repair of cracked aluminum panels. Compos. Struct. 1998, 41, 303–313. [Google Scholar] [CrossRef]
- Da Silva, L.F.M.; Campilho, R.D.S.G. Advances in Numerical Modelling of Adhesive Joints. In Springer Briefs in Applied Sciences and Technology: Computational Mechanics; Springer: Berlin/Heidelberg, Germany, 2012; pp. 3–83. [Google Scholar]
- Rose, L.R.F. An application of the inclusion analogy for bonded reinforcements. Int. J. Solids Struct. 1981, 17, 827–838. [Google Scholar] [CrossRef]
- Rose, L.R.F. A cracked plate repaired by bonded reinforcements. Int. J. Fract. 1982, 18, 135–144. [Google Scholar] [CrossRef]
- Baker, A.; Jones, R. Bonded Repair of Aircraft Structures, 1st ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1988; 224p. [Google Scholar]
- Achour, T.; Bouiadjro, B.B.; Serier, B. Numerical analysis of the performances of the bonded composite patch for reducing stress concentration and repairing cracks at notch. Comput. Mater. Sci. 2003, 28, 41–48. [Google Scholar] [CrossRef]
- Rachid, M.; Serier, R.; Bouiadjra, B.B.; Belhouari, M. Numerical analysis of patch shape effects on the performances of bonded composite repair in aircraft structures. Compos. Part B Eng. 2012, 43, 391–397. [Google Scholar] [CrossRef]
- Wang, C.H.; Rose, L.R.F. Bonded repair of cracks under mixed mode loading. Int. J. Solids Struct. 1998, 35, 2749–2773. [Google Scholar] [CrossRef]
- Kumar, A.M.; Hakeem, S.A. Optimum design of symmetric composite patch repair to centre cracked metallic sheet. Compos. Struct. 2000, 49, 285–292. [Google Scholar] [CrossRef]
- Klug, J.C.; Maley, S.; Sun, C.T. Characterization of fatigue behavior of bonded composite repairs. J. Aircr. 1999, 36, 1016–1022. [Google Scholar] [CrossRef]
- Okafor, A.C.; Singh, N.; Enemuoh, U.E.; Rao, S.V. Design, analysis and performance of adhesively bonded patch repair of cracked aluminum aircraft panels. Compos. Struct. 2005, 71, 258–270. [Google Scholar] [CrossRef]
- Zhang, M. Composite Patches for Enhancing Application of Civil Infrastructures. Ph.D. Thesis, University of Lyon, Lyon, France, 18 December 2020; 159p. [Google Scholar]
- Zhou, W.; Ji, X.-L.; Yang, S.; Liu, J.; Ma, L.-H. Review on the performance improvements and non-destructive testing of patches repaired composites. Compos. Struct. 2021, 263, 113659. [Google Scholar] [CrossRef]
- Mohammadi, S.; Yousefi, M.; Khazaei, M. A review on composite patch repairs and the most important parameters affecting its efficiency and durability. J. Reinf. Plast. Compos. 2021, 40, 3–15. [Google Scholar] [CrossRef]
- Zulkifli, M.A.A.; Mahmud, J. Failure analysis of boron/glass hybrid laminates under biaxial tension. Mater. Today Proc. 2021, 41, 72–76. [Google Scholar] [CrossRef]
- Luo, G.-M.; Liang, C.-H. Strength verification of a carbon-fibre-reinforced plastic patch used to repair a cracked aluminium alloy plate. Appl. Compos. Mater. 2023, 31, 265–289. [Google Scholar] [CrossRef]
- Yousefi, A.; Jolaiy, S.; Hedayati, R.; Serjouei, A.; Bodaghi, M. Fatigue life improvement of cracked aluminum 6061-T6 plates repaired by composite patches. Materials 2021, 14, 1421. [Google Scholar] [CrossRef]
- Chaib, M.; Slimane, A.; Slimane, S.A.; Lahouel, A.A.; Djafar, A.K.; Bahram, K.; Achache, H.; Ziadi, A.; Bouchouicha, B. Investigating the impact of internal fatigue crack propagation in aluminum alloy plates repaired with a composite patch. Int. J. Adv. Manuf. Technol. 2024, 130, 5999–6009. [Google Scholar] [CrossRef]
- Bahram, K.; Chaib, M.; Slimane, A.; Bouchoulcha, B. Impact of composite patch stiffness, adhesive type, and material of the fatigue life of repaired aluminum alloy, 6061-T51 plates. Int. J. Adv. Manuf. Technol. 2025, 136, 1409–1419. [Google Scholar] [CrossRef]
- Ashid, A.; Ibrahim, Y.E.; Hrairi, M.; Ali, J.S.M. Optimization of structural damage repair with single and double-sided composite patches through the finite element analysis and Taguchi method. Materials 2023, 16, 1581. [Google Scholar] [CrossRef] [PubMed]
- Xing, R.; Wang, F.; Yang, Y.; Li, G. Optimization of composite material patch shape based on strength analysis. Appl. Sci. 2024, 14, 4397. [Google Scholar] [CrossRef]
- Yashiro, S.; Akada, A.; Onodera, S. Variable stiffness composite patch for single-sided bonded repair of composite structures. Adv. Compos. Mater. 2025, 34, 495–512. [Google Scholar] [CrossRef]
- Birnie, J.; Falaschetti, M.P.; Troiani, E. Comparative analysis and modelling approaches for the simulation of fatigue disbanding with cohesive zone models. Aerospace 2025, 12, 139. [Google Scholar] [CrossRef]
- Siciliani, V.; Pelaccia, R.; Alfano, M.; Castagnetti, D.; Raimondi, L.; Zanchi, A.; Donati, L.; Orazi, L. Effect of surface preparation on adhesive bonding of CFRP compression molding laminates. Mater. Res. Proc. 2025, 54, 2193–2202. [Google Scholar]
- SimXpert 2013, MSC Software. Available online: https://www.yumpu.com/en/document/view/13888967/simxpert-msc-software#google_vignette (accessed on 14 July 2015).
- Henkel Adhesives, LOCTITE EA 9396 6MD. Available online: https://www.henkel-adhesives.com/vn/en/product/industrial-adhesives/loctite_ea_9396_6md.html (accessed on 30 September 2016).
- Timoshenko, S. Einge Stabilitätsprobleme der Elastizitätstheorie (Some stability problems of elastic theory). Z. Math. Phys. 1910, 58, 337–387. (In German) [Google Scholar]
- Kyowa Electronic Instruments, KFGS Strain Gages. Available online: https://product.kyowa-ei.com/en/products/strain-gages/type-kfgs (accessed on 30 September 2016).
- Abramovich, H.; Simanovsky, Y. Damaged aluminum panel reinforced by composite patches under shear loads—A Numerical and Experimental Investigation. In Proceedings of the 21st International Conference on Composite Materials (ICCM-21), Xi’an, China, 20–25 August 2017. [Google Scholar] [CrossRef]
Property | Notation | Carbon 3K-70/Epoxy EA9396 | |
---|---|---|---|
Main Young’s modulus | E11 | 4995 [kg/mm2] 1 | 48.98 [GPa] |
Minor Young’s modulus | E22 | 4995 [kg/mm2] | 48.98 [GPa] |
Main Poisson’s ratio | 0.08 | 0.08 | |
Allowable tensile stress in the 11 dir. | 45 [kg/mm2] | 0.44 [GPa] | |
Allowable tensile stress in the 22 dir. | 45 [kg/mm2] | 0.44 [GPa] | |
Allowable compression stress in the 11 dir. | 32 [kg/mm2] | 0.314 [GPa] | |
Allowable compression stress in the 22 dir. | 32 [kg/mm2] | 0.314 [GPa] |
No of Plies | Lamination Sequence | dhole = 80 mm | BF |
---|---|---|---|
0 | ------- | No patch d = 0 mm | 0.506 |
3 | 45°, 0°, 45° | d = 160 | 0.598 |
3 | 0°, 45°, 0° | d = 160 | 0.614 |
3 | 45°, 45°, 45° | d = 160 | 0.573 |
3 | 0°, 0°, 0° | d = 160 | 0.6166 |
4 | 45°, 0°, 0°, 45° | d = 160 | 0.676 |
4 | 0°, 45°, 45°, 0° | d = 160 | 0.6935 |
4 | 45°, 45°, 45°, 45° | d = 160 | 0.6246 |
4 | 0°, 0°, 0°, 0° | d = 160 | 0.7125 |
5 | 45°, 0°, 0°, 0°, 45° | d = 160 | 0.77345 |
5 | 45°, 0°, 45°, 0°, 45° | d = 160 | 0.7593 |
5 | 0°, 45°, 45°, 45°, 0° | d = 160 | 0.7805 |
5 | 0°, 45°, 0°, 45°, 0° | d = 160 | 0.7955 |
5 | 45°, 45°, 45°, 45°, 45° | d = 160 | 0.6958 |
5 | 0°, 0°, 0°, 0°, 0° | d = 160 | 0.8193 |
7 | 45°, 0°, 45°, 0°, 45°, 0°, 45° | d = 160 | 1 |
7 | 45°, 45°, 0°, 0°, 0°, 45°, 45° | d = 160 | 0.9822 |
7 | 0°, 45°, 45°, 0°, 45°, 45°, 0° | d = 160 | 1.03 |
7 | 0°, 45°, 0°, 45°, 0°, 45°, 0° | d = 160 | 1.0459 |
7 | 0°, 0°, 45°, 45°, 45°, 0°, 0° | d = 160 | 1.0612 |
7 | 45°, 0°, 0°, 45°, 0°, 0°, 45° | d = 160 | 1.0177 |
7 | 45°, 0°, 0°, 0°, 0°, 0°, 45° | d = 160 | 1.0259 |
7 | 0°, 45°, 0°, 0°, 0°, 45°, 0° | d = 160 | 1.0542 |
7 | 0°, 0°, 45°, 0°, 45°, 0°, 0° | d = 160 | 1.0694 |
7 | 0°, 45°, 45°, 45°, 45°, 45°, 0° | d = 160 | 1.011 |
7 | 45°, 0°, 45°, 45°, 45°, 0°, 45° | d = 160 | 0.9858 |
7 | 45°, 45°, 0°, 45°, 0°, 45°, 45° | d = 160 | 0.9689 |
7 | 45°, 45°, 45°, 45°, 45°, 45°, 45° | d = 160 | 0.8968 |
Test # | Hole Diam. [mm] | No of Repair Plies | Orientation | Buckling Load [kN] | Strain [μ] at Edge of Damage (x,y) | Strain [μ] at Center (Panel or Repair) (x,y) | Collapse Load [kN] | ||
---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | --------- | 14.71 | 507 | 507 | 507 | 507 | 29.11 |
2 | 80 | 0 | --------- | 7.63 | 238 | 188 | --------- | --------- | 26.23 |
3 | 80 | 4 | [45°, 0°, 0°, 45°] | 9.954 | 394 | 288 | 665 | 666 | 29.12 |
4 | 80 | 4 | [0°, 45°, 45°, 0°] | 10.10 | 417 | 316 | 670 | 674 | 29.12 |
Panel [x Dir.] | Panel [y Dir.] | Repair [x Dir.] | Repair [y Dir.] | |
---|---|---|---|---|
Test [μs] | 378.5 | 311 | 664.5 | 516.5 |
Prediction [μs] | 417 | 316 | 670 | 674 |
Error [%] | 9.2 | 1.6 | 1 | 30 |
Panel [x Dir.] | Panel [y Dir.] | Repair [x Dir.] | Repair [y Dir.] | |
---|---|---|---|---|
Test [μs] | 370.5 | 286.5 | 649 | 649 |
Prediction [μs] | 394 | 288 | 665 | 666 |
Error [%] | 6.3 | 0.5 | 2.5 | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simanovskii, Y.; Abramovich, H. Behavior of Defective Aluminum Panels Under Shear Forces Patched with Composite Plates—A New Engineering Approach. Materials 2025, 18, 4138. https://doi.org/10.3390/ma18174138
Simanovskii Y, Abramovich H. Behavior of Defective Aluminum Panels Under Shear Forces Patched with Composite Plates—A New Engineering Approach. Materials. 2025; 18(17):4138. https://doi.org/10.3390/ma18174138
Chicago/Turabian StyleSimanovskii, Yuri, and Haim Abramovich. 2025. "Behavior of Defective Aluminum Panels Under Shear Forces Patched with Composite Plates—A New Engineering Approach" Materials 18, no. 17: 4138. https://doi.org/10.3390/ma18174138
APA StyleSimanovskii, Y., & Abramovich, H. (2025). Behavior of Defective Aluminum Panels Under Shear Forces Patched with Composite Plates—A New Engineering Approach. Materials, 18(17), 4138. https://doi.org/10.3390/ma18174138