Comparative Analysis of Structural Efficiency of Steel Bar Hyperbolic Paraboloid Modules
Abstract
1. Introduction
2. Shaping the Geometry and Topology of the Modules
- Elevation of a single corner (IV), leading to asymmetrical configurations, Figure 1e;
- Elevation of two opposite corners (II and IV), producing either symmetrical or asymmetrical configurations, Figure 1e;
- Elevation of two adjacent corners (III and IV), leading to asymmetrical configurations, Figure 1e.
- Support height at one or two corners of the structural frame, defined by the Z-coordinate, with values ranging from 0.00 to 1.00 m in 0.25 m increments;
- Configuration of internal frame bars, encompassing the method and direction of subdivision, as well as the spacing between individual members (Figure 4).
- Material of structural elements—S235 steel (Figure 5);
- Types of supports and joints;
- Bar loading cases.
2.1. Type 1 Structure Characteristics
2.2. Type 2 Structure Characteristics
2.3. Type 3 Structure Characteristics
2.4. Type 4 Structure Characteristics
3. Structural Analysis and Results
- Frame profile utilization (FU) and grid profile utilization (GU);
- The structure’s mass (M);
- Maximum bar deflections (De);
- Maximum node displacements (Di);
- Maximum internal force values (My, Fx, Fz);
- Maximum normal stresses (Fx/A).
4. Discussion
4.1. Type 1 Structures
4.2. Type 2 Structures
4.3. Type 3 and 4 Structures
4.4. Summary and Comparative Evaluation of All Structural Models
4.5. Influence of Environmental Loads on the Behavior of Structures
- Group G1: RO 63.5 × 4.0 mm;
- Group G2: RO 38.0 × 4.0 mm.
4.6. Practical Applications
5. Conclusions
- There is no universally optimal topology of the structural bar grid suitable for every HP geometry.
- The analysis results indicate that structural efficiency is strongly influenced by the geometry and topology of the internal bar system. For the modules with HP surface subdivisions into non-planar fields, asymmetric geometries were found to be the most effective, whereas for the modules with flat quadrilateral fields, symmetric configurations performed best.
- For low-rise configurations, a non-planar bar mesh proved to be more optimal, whereas for structures with significant vertex height variations, a planar mesh subdivision yields greater efficiency.
- Relatively low bending moments are observed at the nodes of the structural systems based on HP geometry, which positively influence the overall performance of the load-bearing systems.
- The obtained results showed that the observed trends in the behavior of the analyzed HP modules persists under climatic loads for the considered location.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ARSAP | Autodesk Robot Structural Analysis Professional |
ULS | Ultimate Limit States |
SLS | Serviceability Limit States |
FU | Frame profiles utilization |
GU | Grid profiles utilization |
De | Bar deflections |
Di | Node displacements |
References
- Hameed, A.; Al-Alwan, S.H.A.; Oukaili, N. Architectural Potentiality of Free-Form Structures. In Proceedings of the International Structural Engineering and Construction, Conference: EURO MED SEC 3, Limassol, Cyprus, 3–8 August 2020; Volume 7. [Google Scholar]
- Majeed Hoda, A.H.; Al-Alwan, H.; Nazar, K.; Nazar, O. Free-form geometries in contemporary architecture—Dimensional rules of Folded, Blob and Formlessness architecture. In Proceedings of the EURO MED SEC 3—International Structural Engineering and Construction Conference, Limassol, Cyprus, 3–8 August 2020; ISEC Press: Fargo, ND, USA, 2020. [Google Scholar]
- Dzwierzynska, J. Integrated Parametric Shaping of Curvilinear Steel Bar Structures of Canopy Roofs. Buildings 2019, 9, 72. [Google Scholar] [CrossRef]
- Kilian, M.; Monszpart, A.; Niloy Mitra, M.J. String Actuated Curved Folded Surfaces. ACM Trans. Graph. (TOG) 2017, 36, 1–13. [Google Scholar] [CrossRef]
- Rha, C.-S.; Kim, S.-N.; Yu, E. Behavior of Gabled Hyperbolic Paraboloid Shells. J. Asian Archit. Build. Eng. 2015, 14, 159–166. [Google Scholar] [CrossRef]
- Amrutha, J.; Kavitha, P.E. A Study of Hyperbolic-Paraboloidal Concrete Shell Structures. Archit. Sci. Rev. 1980, 23, 90–95. [Google Scholar] [CrossRef]
- Wang, S.; Contreras-Jimenez, J.A.; Jorquera-Lucerga, J.J.; Garlock, M. Structural analysis of Félix Candela’s hexagonal hyperbolic paraboloidal umbrellas. Eng. Struct. 2022, 266, 114577. [Google Scholar] [CrossRef]
- Cassinello, P.; Schlaich, M.; Torroja, J.A.; Candela, F. In memorian (1910–1997). From thin concrete shells to the 21st century’s lightweight structures. Inf. Construcción 2010, 62, 5–26. [Google Scholar] [CrossRef]
- Wang, S.; Garlock, M.; Glisic, B. Geometric and area parameterization of N-edged hyperbolic paraboloidal umbrellas. Eng. Struct. 2022, 250, 113499. [Google Scholar] [CrossRef]
- Wang, S.; Levine, A.; Garlock, M.; Contreras-Jiménez, J.A.; Jorquera-Lucerga, J.J. Structural evaluation of Félix Candela’s 8-sided hyperbolic paraboloidal umbrellas. Eng. Struct. 2020, 222, 111156. [Google Scholar] [CrossRef]
- Vartanian, O. Aesthetics of Architecture: Emerging Insights from the Brain. In Environmental Neuroscience; Springer: Berlin/Heidelberg, Germany, 2024; pp. 153–167. [Google Scholar] [CrossRef]
- Cardoso, F.S.; Zhang, H.; Rasmussen, K.J.R.; Yan, S. Reliability calibrations for the design of cold-formed steel portal frames by advanced analysis. Eng. Struct. 2019, 182, 164–171. [Google Scholar] [CrossRef]
- Sun, W. Analysis of Steel Structure Aesthetic Performance in Architecture and Landscape. Appl. Mech. Mater. 2014, 584–586, 297–300. [Google Scholar] [CrossRef]
- Dzwierzynska, J. Shaping of Curvilinear Steel Bar Structures for Variable Environmental Conditions Using Genetic Algorithms—Moving towards Sustainability. Materials 2021, 14, 1167. [Google Scholar] [CrossRef]
- Dzwierzynska, J. Shaping of Spatial Steel Rod Structures Based on a Hyperbolic Paraboloid. Arch. Civ. Eng. 2018, 64, 309–320. [Google Scholar] [CrossRef]
- Zhan, Y.L.; Chen, Y.; Song, G.J. Engineering application of hyperbolic paraboloid shell roof. Steel Constr. 2011, 26, 23–26. [Google Scholar] [CrossRef]
- Kilian, M.; Pellis, D.; Wallner, J.; Pottmann, H. Material-minimizing forms and structures. ACM Trans. Graph. 2017, 36, 1–12. [Google Scholar] [CrossRef]
- Bouhaya, L.; Baverel, O.; Caron, J.-F. Optimization of gridshell bar orientation using a simplified genetic approach. Struct. Multidiscip. Optim. 2014, 50, 839–848. [Google Scholar] [CrossRef]
- Cao, T.; Kotnik, T.; Schwartz, J. Smooth Poly-hypar Surface Structures: Freeform Shells Based on Combinations of Hyperbolic Paraboloids. Nexus Netw. J. 2023, 25, 439–463. [Google Scholar] [CrossRef]
- Buchert, K.P. Buckling of Hyperbolic Paraboloids. Eng. J. 1972, 9, 70–72. [Google Scholar] [CrossRef]
- Dyvik, S.H.; Manum, B.; Rønnquist, A. Gridshells in Recent Research—A Systematic Mapping Study. Appl. Sci. 2021, 11, 11731. [Google Scholar] [CrossRef]
- Blaauwendraad, J.; Hoefakker, J.H. Hyperbolic- and Elliptic-Paraboloid Roofs. In Structural Shell Analysis; Solid Mechanics and Its Applications; Springer: Berlin/Heidelberg, Germany, 2013; Volume 200, pp. 107–128. [Google Scholar] [CrossRef]
- Fard, M.; Ghaderi, E.; Pourfouladi, M. Free-form grid structure multi-objective optimization associated with integrated design and machine learning. Eng. Struct. 2025, 329, 119827. [Google Scholar] [CrossRef]
- Bazhenov, V.A.; Luk’yanchenko, O.A.; Vorona, Y.V.; Kostina, E.V. Stability of the Parametric Vibrations of a Shell in the Form of a Hyperbolic Paraboloid. Int. Appl. Mech. 2018, 54, 274–286. [Google Scholar] [CrossRef]
- Wang, S.; Garlock, M.; Glisic, B. Kinematics of deployable hyperbolic paraboloid umbrellas. Eng. Struct. 2021, 244, 112750. [Google Scholar] [CrossRef]
- Rizzo, F.; Ricciardelli, F. Design pressure coefficients for circular and elliptical plan structures with hyperbolic paraboloid roof. Eng. Struct. 2017, 139, 153–169. [Google Scholar] [CrossRef]
- Wang, S.; Garlock, M.; Glisic, B. Parametric modeling of depth-limited wave spectra under hurricane conditions with applications to Kinetic Umbrellas against storm surge inundation. Water 2021, 13, 251. [Google Scholar] [CrossRef]
- Rizzo, F.; Sepe, V. Pressure Field Correlation for Buildings with Hyperbolic Paraboloid Roofs: Results of Wind-Tunnel Tests. In Proceedings of the XXIV AIMETA Conference 2019, Rome, Italy, 15–19 September 2019. [Google Scholar] [CrossRef]
- Rizzo, F.; Barbato, M.; Sepe, V. Shape Dependence of Wind Pressure Peak Factor Statistics in Hyperbolic Paraboloid Roofs. J. Build. Eng. 2021, 44, 103203. [Google Scholar] [CrossRef]
- Smith, S.; Mansouri, I.; Garlock, M.E.M.; Wang, S. Predicting maximum deflection of N-edged thin-shelled hyperbolic-paraboloid umbrella using machine learning techniques. Thin-Walled Struct. 2024, 205, 112412. [Google Scholar] [CrossRef]
- Kang, J.; Dong, W.; Huang, Y. A BIM-Based Automatic Design Optimization Method for Modular Steel Structures: Rectangular Modules as an Example. Buildings 2023, 13, 1410. [Google Scholar] [CrossRef]
- Cao, T.; D’Acunto, P.; Castellón, J.J.; Tellini, A.; Schwartz, J.; Zhang, H. Design of prestressed gridshells as smooth poly-hypar surface structures. Structures 2021, 30, 973–984. [Google Scholar] [CrossRef]
- Dzwierzynska, J. Multi-Objective Optimizing Curvilinear Steel Bar Structures of Hyperbolic Paraboloid Canopy Roofs. Buildings 2020, 10, 39. [Google Scholar] [CrossRef]
- Dzwierzynska, J.; Lechwar, P. Performance Assessment and Sustainable Applications of Steel Canopies with Saddle Modules. Sustainability 2024, 16, 10980. [Google Scholar] [CrossRef]
- Lechwar, P. Shaping of modular rod structures of roof coverings based on the surface of a hyperbolic paraboloid. Inżynieria Bud. 2023, 79, 60–64. (In Polish) [Google Scholar]
- Chen, Z.; Liu, C.; Li, D.; Liu, J.; Deng, X.; Luo, C.; Zhou, G. Study on Wind-Induced Dynamic Response and Statistical Parameters of Skeleton Supported Saddle Membrane Structure in Arching and Vertical Direction. Buildings 2024, 14, 1339. [Google Scholar] [CrossRef]
- Dzwierzynska, J.; Lechwar, P. Comparative analysis of steel bar structures of solar canopies composed of hyperbolic paraboloid units using genetic algorithms. J. Build. Eng. 2024, 95, 110225. [Google Scholar] [CrossRef]
- Koźniewski, E. Monge Method in Creating Regular Polyhedrons Models. J. Pol. Soc. Geom. Eng. Graph. 2014, 26, 41–46. [Google Scholar]
- Koźniewski, E. Flat Tessellations in Search of a Dome Shape. Buildings 2025, 15, 453. [Google Scholar] [CrossRef]
- Tyburec, M.; Doškář, M.; Zeman, J.; Kružík, M. Modular-topology optimization of structures and mechanisms with free material design and clustering. Comput. Methods Appl. Mech. Eng. 2022, 395, 114977. [Google Scholar] [CrossRef]
- Available online: https://www.autodesk.com/ (accessed on 1 July 2025).
- EN 1990: Eurocode; Basis of Structural Design. CEN: Brussels, Belgium, 2002; (With National Annex PN-EN 1990).
- EN 1991: Eurocode 1; Actions on Structures. CEN: Brussels, Belgium, 2002; (With National Annex PN-EN 1991).
- EN 1993: Eurocode 3; Design of Steel Structures. CEN: Brussels, Belgium, 2005; (With National Annex PN-EN 1993).
Structure Number | FU [%] | GU [%] | M [kg] | Max De [cm] | Max Di [cm] | Max My [kNm] | Max Fx [kN] | Max Fz [kN] | Max Fx/A [MPa] |
---|---|---|---|---|---|---|---|---|---|
W-1 | 16 | 36 | 138 | 0.7 | 2.0 | 0.43 | 0.00 | 0.57 | 0.00 |
A-1 | 16 | 36 | 139 | 0.4 | 0.3 | 0.45 | 0.06 | 0.59 | 0.24 |
A-2 | 16 | 36 | 140 | 0.4 | 0.3 | 0.45 | 0.08 | 0.57 | 0.28 |
A-3 | 16 | 34 | 140 | 0.4 | 0.3 | 0.44 | 0.13 | 0.56 | 0.33 |
A-4 | 16 | 34 | 142 | 0.4 | 0.3 | 0.44 | 0.17 | 0.55 | 0.42 |
B-1 | 16 | 36 | 139 | 0.4 | 0.3 | 0.44 | 0.04 | 0.57 | 0.10 |
B-2 | 16 | 36 | 139 | 0.4 | 0.3 | 0.44 | 0.07 | 0.57 | 0.19 |
B-3 | 16 | 37 | 140 | 0.4 | 0.3 | 0.45 | 0.11 | 0.57 | 0.29 |
B-4 | 16 | 35 | 141 | 0.4 | 0.3 | 0.45 | 0.15 | 0.58 | 0.39 |
C-1 | 16 | 35 | 141 | 0.4 | 0.3 | 0.45 | 0.15 | 0.57 | 0.41 |
C-2 | 16 | 36 | 141 | 0.4 | 0.3 | 0.49 | 0.16 | 0.57 | 0.51 |
C-3 | 16 | 34 | 141 | 0.4 | 0.3 | 0.44 | 0.17 | 0.56 | 0.43 |
D-1 | 16 | 35 | 139 | 0.4 | 0.3 | 0.44 | 0.08 | 0.57 | 0.21 |
D-2 | 16 | 35 | 140 | 0.4 | 0.3 | 0.44 | 0.12 | 0.57 | 0.31 |
D-3 | 16 | 35 | 140 | 0.4 | 0.3 | 0.44 | 0.12 | 0.56 | 0.33 |
E-1 | 17 | 37 | 140 | 0.4 | 0.3 | 0.45 | 0.12 | 0.58 | 0.31 |
E-2 | 17 | 37 | 140 | 0.4 | 0.3 | 0.45 | 0.13 | 0.58 | 0.33 |
E-3 | 17 | 35 | 140 | 0.4 | 0.3 | 0.45 | 0.14 | 0.58 | 0.36 |
F-1 | 16 | 36 | 139 | 0.4 | 0.3 | 0.44 | 0.07 | 0.57 | 0.17 |
F-2 | 16 | 36 | 140 | 0.4 | 0.3 | 0.45 | 0.09 | 0.57 | 0.24 |
F-3 | 16 | 36 | 140 | 0.4 | 0.3 | 0.45 | 0.10 | 0.57 | 0.27 |
Scheme | FU [%] | GU [%] | M [kg] | Max De [cm] | Max Di [cm] | Max My [kNm] | Max Fx [kN] | Max Fz [kN] | Max F/A [MPa] |
---|---|---|---|---|---|---|---|---|---|
W-2 | 15 | 34 | 136 | 0.5 | 2.0 | 0.42 | 0.00 | 0.55 | 0.00 |
A-1 | 20 | 26 | 136 | 0.2 | 0.3 | 0.20 | 4.05 | 0.3 | 10.83 |
A-2 | 14 | 17 | 137 | 0.1 | 0.1 | 0.17 | 2.39 | 0.26 | 6.36 |
A-3 | 11 | 14 | 138 | 0.1 | 0.1 | 0.16 | 1.72 | 0.24 | 4.63 |
A-4 | 10 | 12 | 139 | 0.1 | 0.1 | 0.15 | 1.40 | 0.23 | 3.76 |
B-1 | 28 | 44 | 136 | 0.2 | 1.0 | 0.27 | 5.43 | 0.38 | 14.65 |
B-2 | 21 | 27 | 136 | 0.2 | 0.3 | 0.20 | 4.11 | 0.30 | 10.95 |
B-3 | 17 | 20 | 137 | 0.2 | 0.1 | 0.18 | 3.11 | 0.27 | 8.16 |
B-4 | 15 | 18 | 138 | 0.1 | 0.1 | 0.17 | 2.50 | 0.26 | 6.59 |
C-1 | 13 | 15 | 138 | 0.1 | 0.1 | 0.16 | 2.08 | 0.25 | 5.44 |
C-2 | 12 | 14 | 138 | 0.1 | 0.1 | 0.16 | 1.77 | 0.25 | 4.68 |
C-3 | 11 | 13 | 138 | 0.1 | 0.1 | 0.15 | 1.56 | 0.24 | 4.16 |
D-1 | 16 | 20 | 136 | 0.2 | 0.1 | 0.18 | 3.04 | 0.27 | 8.03 |
D-2 | 14 | 17 | 137 | 0.1 | 0.1 | 0.17 | 2.44 | 0.26 | 6.43 |
D-3 | 13 | 15 | 137 | 0.1 | 0.1 | 0.16 | 2.02 | 0.25 | 5.36 |
E-1 | 30 | 47 | 138 | 0.3 | 1.0 | 0.28 | 5.68 | 0.39 | 14.95 |
E-2 | 18 | 28 | 137 | 0.1 | 0.4 | 0.13 | 4.04 | 0.18 | 10.67 |
E-3 | 17 | 20 | 137 | 0.2 | 0.1 | 0.18 | 3.19 | 0.27 | 8.31 |
F-1 | 28 | 45 | 136 | 0.2 | 1.0 | 0.28 | 5.50 | 0.28 | 14.74 |
F-2 | 29 | 46 | 137 | 0.2 | 1.0 | 0.28 | 5.58 | 0.39 | 14.84 |
F-3 | 21 | 27 | 137 | 0.2 | 0.3 | 0.20 | 4.19 | 0.30 | 11.04 |
Structure Number | FU [%] | GU [%] | Mass [kg] | Max De [cm] | Max Di [cm] | Max My kNm] | Max Fx [kN] | Max Fz [kN] | Max F/A [MPa] |
---|---|---|---|---|---|---|---|---|---|
W-3 | 26 | 11 | 155 | 1.4 | 1.1 | 1.23 | 0 | 1.58 | 0 |
A-1 | 26 | 11 | 156 | 0.8 | 0.6 | 0.71 | 0.09 | 0.90 | 0.12 |
A-2 | 26 | 11 | 156 | 0.8 | 0.6 | 0.7 | 0.17 | 0.90 | 0.24 |
A-3 | 25 | 11 | 157 | 0.8 | 0.6 | 0.7 | 0.25 | 0.88 | 0.36 |
A-4 | 25 | 11 | 159 | 0.7 | 0.6 | 0.69 | 0.33 | 0.87 | 0.46 |
B-1 | 25 | 11 | 156 | 0.8 | 0.6 | 0.71 | 0.07 | 0.91 | 0.1 |
B-2 | 25 | 11 | 156 | 0.8 | 0.6 | 0.71 | 0.14 | 0.91 | 0.21 |
B-3 | 25 | 11 | 157 | 0.8 | 0.6 | 0.71 | 0.22 | 0.91 | 0.31 |
B-4 | 25 | 11 | 158 | 0.8 | 0.6 | 0.71 | 0.29 | 0.92 | 0.41 |
C-1 | 25 | 11 | 157 | 0.8 | 0.6 | 0.71 | 0.3 | 0.91 | 0.42 |
C-2 | 25 | 11 | 158 | 0.8 | 0.6 | 0.70 | 0.31 | 0.90 | 0.44 |
C-3 | 25 | 11 | 158 | 0.7 | 0.6 | 0.69 | 0.32 | 0.88 | 0.45 |
D-1 | 25 | 11 | 156 | 0.8 | 0.6 | 0.71 | 0.16 | 0.91 | 0.23 |
D-2 | 25 | 11 | 157 | 0.8 | 0.6 | 0.71 | 0.23 | 0.91 | 0.33 |
D-3 | 25 | 11 | 157 | 0.8 | 0.6 | 0.70 | 0.24 | 0.90 | 0.34 |
E-1 | 20 | 8 | 158 | 0.6 | 0.6 | 0.55 | 0.10 | 0.72 | 0.15 |
E-2 | 20 | 8 | 158 | 0.6 | 0.6 | 0.55 | 0.12 | 0.72 | 0.17 |
E-3 | 20 | 8 | 158 | 0.4 | 0.6 | 0.54 | 0.17 | 0.72 | 0.24 |
F-1 | 20 | 8 | 156 | 0.5 | 0.6 | 0.54 | 0.06 | 0.71 | 0.08 |
F-2 | 20 | 8 | 157 | 0.6 | 0.6 | 0.54 | 0.08 | 0.71 | 0.11 |
F-3 | 20 | 8 | 157 | 0.5 | 0.6 | 0.54 | 0.11 | 0.71 | 0.16 |
G-1 | 20 | 8 | 156 | 0.5 | 0.5 | 0.54 | 0.07 | 0.70 | 0.09 |
G-2 | 20 | 7 | 156 | 0.5 | 0.5 | 0.54 | 0.13 | 0.70 | 0.18 |
G-3 | 18 | 9 | 157 | 0.5 | 0.5 | 0.53 | 0.19 | 0.69 | 0.27 |
G-4 | 20 | 8 | 159 | 0.5 | 0.5 | 0.53 | 0.25 | 0.68 | 0.35 |
H-1 | 20 | 8 | 156 | 0.5 | 0.5 | 0.54 | 0.05 | 0.71 | 0.08 |
H-2 | 20 | 8 | 156 | 0.5 | 0.5 | 0.54 | 0.11 | 0.71 | 0.16 |
H-3 | 20 | 8 | 157 | 0.5 | 0.5 | 0.54 | 0.17 | 0.71 | 0.24 |
H-4 | 20 | 8 | 158 | 0.5 | 0.5 | 0.54 | 0.21 | 0.71 | 0.31 |
K-1 | 20 | 8 | 157 | 0.5 | 0.5 | 0.54 | 0.23 | 0.71 | 0.32 |
K-2 | 20 | 8 | 158 | 0.6 | 0.5 | 0.59 | 0.26 | 0.78 | 0.37 |
K-3 | 20 | 8 | 158 | 0.5 | 0.5 | 0.53 | 0.24 | 0.69 | 0.34 |
L-1 | 20 | 8 | 156 | 0.5 | 0.5 | 0.54 | 0.12 | 0.70 | 0.17 |
L-2 | 20 | 8 | 157 | 0.5 | 0.5 | 0.54 | 0.18 | 0.70 | 0.24 |
L-3 | 20 | 8 | 157 | 0.5 | 0.5 | 0.54 | 0.18 | 0.71 | 0.26 |
M-1 | 20 | 8 | 158 | 0.6 | 0.5 | 0.55 | 0.10 | 0.72 | 0.15 |
M-2 | 20 | 8 | 158 | 0.6 | 0.5 | 0.55 | 0.12 | 0.72 | 0.17 |
M-3 | 20 | 8 | 158 | 0.5 | 0.5 | 0.54 | 0.17 | 0.72 | 0.24 |
N-1 | 20 | 8 | 157 | 0.6 | 0.5 | 0.54 | 0.08 | 0.71 | 0.11 |
N-2 | 20 | 8 | 157 | 0.6 | 0.5 | 0.54 | 0.08 | 0.71 | 0.11 |
N-3 | 20 | 8 | 157 | 0.5 | 0.5 | 0.54 | 0.11 | 0.71 | 0.16 |
Structure Number | FU [%] | GU [%] | Mass [kg] | Max De [cm] | Max Di [cm] | Max My [kNm] | Max Fx [kN] | Max Fz [kN] | Max F/A [MPa] |
---|---|---|---|---|---|---|---|---|---|
W-4 | 29 | 11 | 155 | 1.5 | 2.6 | 1.28 | 0 | 1.64 | 0 |
A-1 | 29 | 11 | 156 | 0.8 | 0.7 | 0.79 | 0.10 | 1.04 | 0.14 |
A-2 | 29 | 11 | 156 | 0.8 | 0.7 | 0.79 | 0.19 | 1.03 | 0.27 |
A-3 | 29 | 11 | 157 | 0.8 | 0.7 | 0.78 | 0.28 | 1.01 | 0.4 |
A-4 | 29 | 12 | 159 | 0.7 | 0.7 | 0.77 | 0.36 | 1.00 | 0.51 |
B-1 | 29 | 11 | 156 | 0.8 | 0.7 | 0.80 | 0.08 | 1.04 | 0.12 |
B-2 | 29 | 11 | 156 | 0.8 | 0.7 | 0.80 | 0.16 | 1.04 | 0.23 |
B-3 | 29 | 12 | 157 | 0.8 | 0.7 | 0.80 | 0.24 | 1.03 | 0.35 |
B-4 | 29 | 12 | 158 | 0.8 | 0.7 | 0.80 | 0.32 | 1.03 | 0.46 |
C-1 | 29 | 12 | 157 | 0.8 | 0.7 | 0.79 | 0.33 | 1.02 | 0.47 |
C-2 | 29 | 12 | 158 | 0.8 | 0.7 | 0.79 | 0.34 | 1.01 | 0.49 |
C-3 | 29 | 12 | 157 | 0.8 | 0.7 | 0.79 | 0.33 | 1.02 | 0.47 |
D-1 | 29 | 11 | 156 | 0.8 | 0.7 | 0.79 | 0.18 | 1.03 | 0.25 |
D-2 | 29 | 12 | 157 | 0.8 | 0.7 | 0.79 | 0.26 | 1.03 | 0.36 |
D-3 | 29 | 12 | 157 | 0.8 | 0.7 | 0.79 | 0.27 | 1.02 | 0.38 |
E-1 | 20 | 7 | 157 | 0.5 | 0.5 | 0.55 | 0.18 | 0.70 | 0.26 |
E-2 | 20 | 8 | 157 | 0.5 | 0.5 | 0.54 | 0.20 | 0.71 | 0.28 |
E-3 | 20 | 10 | 157 | 0.5 | 0.5 | 0.54 | 0.21 | 0.71 | 0.29 |
F-1 | 20 | 8 | 156 | 0.5 | 0.5 | 0.54 | 0.10 | 0.70 | 0.14 |
F-2 | 20 | 8 | 156 | 0.5 | 0.5 | 0.54 | 0.14 | 0.70 | 0.2 |
F-3 | 20 | 8 | 156 | 0.5 | 0.5 | 0.54 | 0.15 | 0.71 | 0.22 |
G-1 | 26 | 11 | 156 | 0.8 | 0.6 | 0.71 | 0.09 | 0.90 | 0.12 |
G-2 | 26 | 11 | 156 | 0.8 | 0.6 | 0.70 | 0.17 | 0.90 | 0.24 |
G-3 | 25 | 11 | 157 | 0.8 | 0.6 | 0.70 | 0.25 | 0.88 | 0.36 |
G-4 | 26 | 11 | 159 | 0.7 | 0.6 | 0.69 | 0.33 | 0.87 | 0.46 |
H-1 | 26 | 11 | 156 | 0.8 | 0.6 | 0.71 | 0.07 | 0.91 | 0.1 |
H-2 | 26 | 11 | 156 | 0.8 | 0.6 | 0.71 | 0.15 | 0.91 | 0.21 |
H-3 | 26 | 12 | 157 | 0.8 | 0.6 | 0.71 | 0.21 | 0.91 | 0.31 |
H-4 | 26 | 12 | 158 | 0.8 | 0.6 | 0.71 | 0.27 | 0.92 | 0.39 |
K-1 | 26 | 12 | 157 | 0.8 | 0.6 | 0.71 | 0.30 | 0.91 | 0.41 |
K-2 | 26 | 12 | 158 | 0.8 | 0.6 | 0.70 | 0.30 | 0.90 | 0.43 |
K-3 | 26 | 12 | 158 | 0.7 | 0.6 | 0.69 | 0.32 | 0.88 | 0.45 |
L-1 | 26 | 11 | 156 | 0.8 | 0.6 | 0.71 | 0.16 | 0.91 | 0.22 |
L-2 | 26 | 11 | 157 | 0.8 | 0.6 | 0.71 | 0.22 | 0.91 | 0.32 |
L-3 | 26 | 12 | 157 | 0.8 | 0.6 | 0.70 | 0.24 | 0.90 | 0.32 |
M-1 | 20 | 7 | 157 | 0.5 | 0.5 | 0.55 | 0.18 | 0.70 | 0.26 |
M-2 | 20 | 8 | 157 | 0.5 | 0.5 | 0.54 | 0.20 | 0.71 | 0.28 |
M-3 | 20 | 8 | 157 | 0.5 | 0.5 | 0.54 | 0.21 | 0.71 | 0.29 |
N-1 | 20 | 8 | 156 | 0.5 | 0.5 | 0.54 | 0.10 | 0.70 | 0.14 |
N-2 | 20 | 8 | 156 | 0.5 | 0.5 | 0.54 | 0.14 | 0.70 | 0.2 |
N-3 | 20 | 8 | 156 | 0.5 | 0.5 | 0.54 | 0.15 | 0.71 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzwierzynska, J.; Lechwar, P. Comparative Analysis of Structural Efficiency of Steel Bar Hyperbolic Paraboloid Modules. Materials 2025, 18, 4127. https://doi.org/10.3390/ma18174127
Dzwierzynska J, Lechwar P. Comparative Analysis of Structural Efficiency of Steel Bar Hyperbolic Paraboloid Modules. Materials. 2025; 18(17):4127. https://doi.org/10.3390/ma18174127
Chicago/Turabian StyleDzwierzynska, Jolanta, and Patrycja Lechwar. 2025. "Comparative Analysis of Structural Efficiency of Steel Bar Hyperbolic Paraboloid Modules" Materials 18, no. 17: 4127. https://doi.org/10.3390/ma18174127
APA StyleDzwierzynska, J., & Lechwar, P. (2025). Comparative Analysis of Structural Efficiency of Steel Bar Hyperbolic Paraboloid Modules. Materials, 18(17), 4127. https://doi.org/10.3390/ma18174127