Anisotropic Behavior in Microstructures and Properties of Refractory Tungsten Metal Produced by Laser Powder Bed Fusion
Abstract
1. Introduction
2. Materials and Methods
2.1. Feedstock and Manufacturing
2.2. Microstructure Characterization
2.3. Hardness and Wear Testing
3. Results and Discussion
3.1. Deposition Quality
3.2. Microstructural Evolution
3.3. Hardness Properties
3.4. Wear Performances
4. Conclusions
- (1)
- The top and side surfaces of the LPBF-fabricated W parts exhibited excellent deposition quality, with only a small number of pores and cracks observed. Additionally, the surface roughness was significantly reduced when compared to the size of the original powder particles. However, an array of elongated cracks aligned with the HAGBs was observed within the part, primarily owing to the grain boundaries providing extended and unobstructed slip paths for crack propagation.
- (2)
- The steep temperature gradient during the LPBF process has led to the formation of columnar crystals, which grew along the vertical direction. The grain size within the horizontal plane was finer than that within the vertical plane, and the intensity of grain orientation within both deposition planes was relatively low. The proportion of LAGBs reached 75% due to high thermal stresses generated by rapid solidification and cooling, causing local plastic deformation within the grains.
- (3)
- The distribution of cracks resulted in significant variations in hardness properties across the micro-regions within the horizontal and vertical planes. The hardness performance was a result of the competition between the grains and cracks. The numerous cracks distributed along the HAGBs within the horizontal plane significantly weakened the fine-grained strengthening effect, leading to a lower average hardness performance within the horizontal plane compared to the vertical plane.
- (4)
- Similarly to the hardness performance, wear resistance within the vertical plane was superior to that within in the horizontal plane. The surface of the wear scars within the vertical plane are composed of abrasive grooves and delamination pits, whereas within the horizontal plane there are clear observations of abrasive grooves accompanied by a small number of adhesive points. The wear behavior transformed from a comprehensive wear mechanism involving delamination wear and abrasive wear within the vertical plane to an abrasive wear mechanism with slight adhesive wear within in the horizontal plane.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wimmer, L.; Bienert, C.; Schiftner, R.; Eisenmenger-Sittner, C. Effects of non-isothermal annealing on the microstructure of pure and potassium-doped tungsten sheets. Int. J. Refract. Met. Hard Mater. 2024, 122, 106714. [Google Scholar] [CrossRef]
- Kan, X.; Li, J.; Zhong, J.; Suo, T. Tailoring the adiabatic shear susceptibility of pure tungsten via texture evolution. Int. J. Plast. 2024, 174, 103909. [Google Scholar] [CrossRef]
- Gludovatz, B.; Wurster, S.; Hohenwarter, A.; Hoffmann, A.; Pippan, R. Influence of deformation, microstructure, and temperature on the fracture resistance of technically pure tungsten. Mater. Sci. Eng. A 2024, 902, 146631. [Google Scholar] [CrossRef]
- Müller, A.; Dorow-Gerspach, D.; Balden, M.; Binder, M.; Buschmann, B.; Curzadd, B.; Loewenhoff, T.; Neu, R.; Schlick, G.; You, J. Progress in additive manufacturing of pure tungsten for plasma-facing component applications. J. Nucl. Mater. 2022, 566, 153760. [Google Scholar] [CrossRef]
- Jiang, Y.; Xie, Z.M.; Yang, J.F.; Fang, Q.F. High-temperature tribological behavior of tungsten. Int. J. Refract. Met. Hard Mater. 2019, 84, 104992. [Google Scholar] [CrossRef]
- Bai, J.; Xu, Z.; Zhong, W.; Wang, M.; Qian, L. On understanding the influence of microstructure on pure tungsten machinability: A micro-end milling case. J. Mater. Res. Technol. 2024, 33, 8435–8450. [Google Scholar] [CrossRef]
- Aygun, M.; Aygun, Z.; Ercan, E. Newly fabricated cobalt and tungsten based alloys: Structural features and radiation protection potentials. Nucl. Eng. Des. 2024, 428, 113490. [Google Scholar] [CrossRef]
- Kottke, N.G.; Tajmar, M.; Hey, F.G. Hollow cathode testing of Y2O3, La2O3-doped tungsten and LaB6 emitters with krypton and iodine. Vacuum 2024, 220, 112812. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Zhang, T.; Song, G.M.; Chen, L.; Wei, B.X.; Zhao, Y.; Zhou, Y. Refractory carbide reinforced tungsten matrix composites. J. Alloys Compd. 2022, 925, 166342. [Google Scholar] [CrossRef]
- Miyazawa, T.; Matsui, K.; Hasegawa, A. Effects of microstructural anisotropy and helium implantation on tensile properties of powder-metallurgy processed tungsten plates. Nucl. Mater. Energy 2022, 30, 101122. [Google Scholar] [CrossRef]
- Wang, W.; Song, J.; Yan, B.; Yu, Y. Metal injection molding of tungsten and its alloys. Met. Powder Rep. 2016, 71, 441–444. [Google Scholar] [CrossRef]
- Hu, K.; Han, C.; Khanlari, K.; Zhang, Y.; Peng, X.; Zhang, J. A Tungsten Heavy Alloy with Enhanced Performance Prepared by Spark Plasma Sintering from Fine Spherical Tungsten Powders. Adv. Eng. Mater. 2023, 25, 2200615. [Google Scholar] [CrossRef]
- Hassan, S.F.; Kamran, S.; Al-Salhabi, A.; Al-Ahmed, A.; Nouari, S.; Hakeem, A.S. Tungsten heavy alloy: Nano-crystallinity and alloying induced low temperature sintering, microstructure and mechanical properties. Int. J. Refract. Met. Hard Mater. 2024, 120, 106627. [Google Scholar] [CrossRef]
- Nandhakumar, R.; Venkatesan, K. A process parameters review on selective laser melting-based additive manufacturing of single and multi-material: Microstructure, physical properties, tribological, and surface roughness. Mater. Today Commun. 2023, 35, 105538. [Google Scholar] [CrossRef]
- Schwanekamp, T.; Mueller, A.; Reuber, M.; Gobran, H.; Gdoura, N.; Cetto, S. Investigations on laser powder bed fusion of tungsten heavy alloys. Int. J. Refract. Met. Hard Mater. 2022, 109, 105959. [Google Scholar] [CrossRef]
- Ge, J.; Liu, H.; Yuan, B.; Chen, H.; Zhang, Y.; Liu, Q.; Zhang, L. Selective laser melting of the ternary NiTi+3Cu shape memory alloys with excellent properties via microstructural tailoring. J. Alloys Compd. 2024, 1002, 175395. [Google Scholar] [CrossRef]
- Talignani, A.; Seede, R.; Whitt, A.; Zheng, S.; Ye, J.; Karaman, I.; Kirka, M.; Katoh, Y.; Wang, Y.M. A review on additive manufacturing of refractory tungsten and tungsten alloys. Addit. Manuf. 2022, 58, 103009. [Google Scholar] [CrossRef]
- Ren, X.; Liu, H.; Lu, F.; Huang, L.; Yi, X. Effects of processing parameters on the densification, microstructure and mechanical properties of pure tungsten fabricated by optimized selective laser melting: From single and multiple scan tracks to bulk parts. Int. J. Refract. Met. Hard Mater. 2021, 96, 105490. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, Y.; Guan, K.; Wang, Z.; Ma, Z. Pure tungsten and oxide dispersion strengthened tungsten manufactured by selective laser melting: Microstructure and cracking mechanism. Addit. Manuf. 2020, 36, 101579. [Google Scholar] [CrossRef]
- Zhou, K.; Chen, W.; Yang, Y.; Li, R.; Dong, L.; Fu, Y.Q. Microstructure and mechanical behavior of porous tungsten skeletons synthesized by selected laser melting. Int. J. Refract. Met. Hard Mater. 2022, 103, 105769. [Google Scholar] [CrossRef]
- García-Zapata, J.M.; Torres, B.; Rams, J. Effects of Building Direction, Process Parameters and Border Scanning on the Mechanical Properties of Laser Powder Bed Fusion AlSi10Mg. Materials 2024, 17, 3655. [Google Scholar] [CrossRef]
- Ma, H.Y.; Wang, J.C.; Qin, P.; Liu, Y.J.; Chen, L.Y.; Wang, L.Q.; Zhang, L.C. Advances in additively manufactured titanium alloys by powder bed fusion and directed energy deposition: Microstructure, defects, and mechanical behavior. J. Mater. Sci. Technol. 2023, 183, 32–62. [Google Scholar] [CrossRef]
- Zhu, K.; Song, L.; Zhao, L.; Zhu, Y.; Liang, S.; Huang, M.; Li, Z. Numerical study on the effect of crystallographic orientation on mechanical behavior and its anisotropy of laser powder bed fusion AlSi10Mg. J. Alloys Compd. 2024, 976, 173284. [Google Scholar] [CrossRef]
- Liu, C.S.; Xue, X.; Wang, Y.; Zhang, H.; Li, J.; Lu, Y.Y.; Xiong, L.; Ni, H.W. Investigation on the characteristics of porosity, melt pool in 316L stainless steel manufactured by laser powder bed fusion. J. Mater. Res. Technol. 2024, 32, 1832–1844. [Google Scholar] [CrossRef]
- Sarkar, D.; Kapil, A.; Sharma, A. Advances in computational modeling for laser powder bed fusion additive manufacturing: A comprehensive review of finite element techniques and strategies. Addit. Manuf. 2024, 85, 104157. [Google Scholar] [CrossRef]
- Shrivastava, A.; Subramaniyan, A.K.; Rao, S.; Nagesha, B. How to characterise the anisotropy of laser powder bed fusion-processed parts? towards a surrogate, non-destructive indentation-based approach. J. Manuf. Process. 2024, 118, 128–153. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, W.; Liang, J.; Zhao, M.; Han, F. Microstructures and mechanical properties of additively manufactured Fe-30Mn-3Al-3Si TWIP steel using laser powder bed fusion. Mater. Sci. Eng. A 2024, 913, 147087. [Google Scholar] [CrossRef]
- Song, L.; Zhao, L.; Ding, L.; Zhu, Y.; Liang, S.; Huang, M.; Simar, A.; Li, Z. How heterogeneous microstructure determines mechanical behavior of laser powder bed fusion AlSi10Mg. Mater. Sci. Eng. A 2024, 909, 146845. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, Y.; Yi, F.; Liu, H.; Zhou, Q.; Yan, Z.; Lin, j. Anisotropy in microstructure and mechanical properties of additively manufactured Ni-based GH4099 alloy. J. Mater. Res. Technol. 2023, 26, 6552–6564. [Google Scholar] [CrossRef]
- Lu, J.; Zhuo, L. Additive manufacturing of titanium alloys via selective laser melting: Fabrication, microstructure, post-processing, performance and prospect. Int. J. Refract. Met. Hard Mater. 2023, 111, 106110. [Google Scholar] [CrossRef]
- Aziz, U.; McAfee, M.; Manolakis, I.; Timmons, N.; Tormey, D. A Review of Optimization of Additively Manufactured 316/316L Stainless Steel Process Parameters, Post-Processing Strategies, and Defect Mitigation. Materials 2025, 18, 2870. [Google Scholar] [CrossRef]
- Huang, Q.; Ge, J.; Wang, Y.; Bao, J.; He, S.; Zhang, Z.; Zhang, L. Characterization of the anisotropy in the microstructure and mechanical properties of laser powder bed fusion Ti6Al4V alloys. Adv. Eng. Mater. 2023, 25, 2201156. [Google Scholar] [CrossRef]
- Jiang, W.; Deng, Y.; Guo, X. Effect of heat treatment on microstructure and mechanical anisotropy of selective laser melted Al-Mn-Sc alloy. Mater. Sci. Eng. A 2023, 887, 145743. [Google Scholar] [CrossRef]
- Ge, J.; Yuan, B.; Chen, H.; Pan, J.; Liu, Q.; Yan, M.; Lu, Z.; Zhang, S.; Zhang, L. Anisotropy in microstructural features and tensile performance of laser powder bed fusion NiTi alloys. J. Mater. Res. Technol. 2023, 24, 8656–8668. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, X.H.; Zhang, D.D.; Shen, Z.J.; Liu, W. Balling phenomena in selective laser melted tungsten. J. Mater. Process. Technol. 2015, 222, 33–42. [Google Scholar] [CrossRef]
- Dai, D.H.; Gu, D.D.; Ge, Q.; Li, Y.Z.; Shi, Y.X. Mesoscopic study of thermal behavior, fluid dynamics and surface morphology during selective laser melting of Ti-based composites. Comput. Mater. Sci. 2020, 177, 109598. [Google Scholar] [CrossRef]
- Braun, J.; Kaserer, L.; Stajkovic, J.; Leitz, K.-H.; Tabernig, B.; Singer, P.; Leibenguth, P.; Gspan, C.; Kestler, H.; Leichtfried, G. Molybdenum and tungsten manufactured by selective laser melting: Analysis of defect structure and solidification mechanisms. Int. J. Refract. Met. Hard Mater. 2019, 84, 104999. [Google Scholar] [CrossRef]
- Tan, C.L.; Zhou, K.S.; Ma, W.Y.; Zhang, P.P.; Liu, M.; Kuang, T.C. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater. Des. 2017, 134, 23–34. [Google Scholar] [CrossRef]
- Samy, V.P.N.; Schaefle, M.; Brasche, F.; Krupp, U.; Haase, C. Understanding the mechanism of columnar–to-equiaxed transition and grain refinement in additively manufactured steel during laser powder bed fusion. Addit. Manuf. 2023, 73, 103702. [Google Scholar]
- Li, H.; Shen, Y.; Wu, X.H.; Wang, D.S.; Yang, Y.W. Advances in laser powder bed fusion of tungsten, tungsten alloys, and tungsten-based composites. Micromachines 2024, 15, 966. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.Q.; Feng, Z.; Tang, J.G.; Tang, C.B.; Zhao, Z. Selective laser melting additive manufacturing of tungsten with niobium alloying: Microstructure and suppression mechanism of microcracks. J. Alloys Compd. 2021, 874, 159879. [Google Scholar] [CrossRef]
- Wang, J.L.; Han, B.; Chen, Z.B.; Hu, C.Y.; Zhang, Q.; Wang, C. Study on tribological oxide mechanism of CoCrFeNiMo high entropy alloy. Wear 2023, 526, 204907. [Google Scholar] [CrossRef]
- De Oliveria Junior, M.M.; Costa, H.L.; Silva Junior, W.M.; De Mello, J.D.B. Effect of iron oxide debris on the reciprocating sliding wear of tool steels. Wear 2019, 426, 1065–1075. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, J.; Wu, H.; Liu, H.; Zhu, Y.; Chen, Y.; Zhan, W.; Zhang, L.; Liu, Z. Anisotropic Behavior in Microstructures and Properties of Refractory Tungsten Metal Produced by Laser Powder Bed Fusion. Materials 2025, 18, 3910. https://doi.org/10.3390/ma18163910
Ge J, Wu H, Liu H, Zhu Y, Chen Y, Zhan W, Zhang L, Liu Z. Anisotropic Behavior in Microstructures and Properties of Refractory Tungsten Metal Produced by Laser Powder Bed Fusion. Materials. 2025; 18(16):3910. https://doi.org/10.3390/ma18163910
Chicago/Turabian StyleGe, Jinguo, Heming Wu, Hongsen Liu, Yanan Zhu, Yan Chen, Wangwei Zhan, Liang Zhang, and Zhuming Liu. 2025. "Anisotropic Behavior in Microstructures and Properties of Refractory Tungsten Metal Produced by Laser Powder Bed Fusion" Materials 18, no. 16: 3910. https://doi.org/10.3390/ma18163910
APA StyleGe, J., Wu, H., Liu, H., Zhu, Y., Chen, Y., Zhan, W., Zhang, L., & Liu, Z. (2025). Anisotropic Behavior in Microstructures and Properties of Refractory Tungsten Metal Produced by Laser Powder Bed Fusion. Materials, 18(16), 3910. https://doi.org/10.3390/ma18163910