Molten Salt Synthesis and Electrochemical Evaluation of Na/Ag-Containing MnxOy Composites for Pseudocapacitor Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Characterization of Materials
3. Results
3.1. Materials Characterization Using XRD and SEM-EDS
3.2. Cyclic Voltammetry
3.3. Galvanostatic Charge–Discharge
3.4. Electrochemical Impedance Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Philip, A.; Kumar, A.R. Electrochemical kinetics of a novel electrode material comprising different phases of MnO2 (Mn2O3, γ-, λ-, and δ-), graphite, and PVDF. Mater. Chem. Phys. 2024, 325, 129793. [Google Scholar] [CrossRef]
- Chowdhury, A.; Shukla, R.; Bhattacharyya, K.; Tyagi, A.K.; Chandra, A.; Grover, V. Electrochemical performance of K+-intercalated MnO2 nano-cauliflowers and their Na-ion-based pseudocapacitors. Mater. Sci. Eng. B 2023, 295, 116581. [Google Scholar] [CrossRef]
- Mulla, N.R.; Patel, N.N.; Bhosale, S.B.; Patil, U.M.; Patil, R.S. Morphologically tuned MnO2 thin film electrodes prepared by growth kinetic dependent SILAR approach for high-performance extrinsic pseudocapacitors. J. Alloys Compd. 2024, 1006, 176261. [Google Scholar] [CrossRef]
- Aadil, M.; Taki, A.G.; Zulfiqar, S.; Rahman, A.; Shahid, M.; Warsi, M.F.; Ahmad, Z.; Alothman, A.A.; Mohammad, S. Gadolinium doped zinc ferrite nanoarchitecture reinforced with a carbonaceous matrix: A novel hybrid material for next-generation flexible capacitors. RSC Adv. 2023, 13, 28063–28075. [Google Scholar] [CrossRef]
- Wei, W.; Cui, X.; Chen, W.; Ivey, D.G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721. [Google Scholar] [CrossRef]
- Ahn, J.; Chang, W.; Song, Y.; Son, Y.; Ko, Y.; Cho, J. Binder-free, multidentate bonding-induced carbon nano-oligomer assembly for boosting charge transfer and capacitance of energy nanoparticle-based textile pseudocapacitors. Energy Storage Mater. 2024, 69, 103396. [Google Scholar] [CrossRef]
- Rusi; Majid, S.R. Controllable synthesis of flowerlike α-lMnO2 as electrode for pseudocapacitor application. Solid State Ionics 2014, 262, 220–225. [Google Scholar] [CrossRef]
- Rudra, M.; Saha, S.; Sinha, T.P. Phase transitions in oxygen-intercalated pseudocapacitor Pr2MgMnO6 electrode: A combined structural and conductivity analysis. Mater. Sci. Eng. B 2024, 307, 117517. [Google Scholar] [CrossRef]
- Thanigai Vetrikarasan, B.; Nair, A.R.; Shinde, S.K.; Kim, D.Y.; Kim, J.M.; Bulakhe, R.N.; Sawant, S.N.; Jagadale, A.D. Oxygen vacancy enriched Na-intercalated MnO2 for high-performance MXene (Ti3C2TX)-based flexible supercapacitor and electrocatalysis. J. Energy Storage 2024, 94, 112457. [Google Scholar] [CrossRef]
- Siddiqui, R.; Rani, M.; Ibrahim, A.; Shah, A.A.; Razaq, A.; Bano, S.; Ajmal Khan, M. Enhanced specific capacitance of supercapacitors using wide band gap NdCrO3 and NdCrO3/graphene oxide nanocomposites. J. Rare Earths 2024. [Google Scholar] [CrossRef]
- Roberts, A.J.; Slade, R.C.T. Effect of specific surface area on capacitance in asymmetric carbon/α-MnO2 supercapacitors. Electrochim. Acta 2010, 55, 7460–7469. [Google Scholar] [CrossRef]
- Rahman, A.U.; Zarshad, N.; Wu, J.; Faiz, F.; Raziq, F.; Ali, A.; Li, G.; Ni, H. Fabrication of Ag-doped MnO2 nanosheets@carbon cloth for energy storage device. Mater. Sci. Eng. B 2021, 269, 115150. [Google Scholar] [CrossRef]
- Xin, G.; Jie, Y.; Liangjun, L.; Haitao, X.; Jian, Y.; Xuebo, Z. General Synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) Hierarchical Microspheres as Lithium-ion Battery Anodes. Electrochim. Acta 2015, 184, 250–256. [Google Scholar] [CrossRef]
- Karuppaiah, M.; Sakthivel, P.; Asaithambi, S.; Murugan, R.; Babu, G.A.; Yuvakkumar, R.; Ravi, G. Solvent dependent morphological modification of micro-nano assembled Mn2O3/NiO composites for high performance supercapacitor applications. Ceram. Int. 2019, 45, 4298–4307. [Google Scholar] [CrossRef]
- Vashisth, P.; Sharma, A.; Nasit, M.; Singh, J.P.; Anjali; Varshney, M.; Kumar, S.; Won, S.O.; Shin, H.J. Fabrication of Na and K based MnO(2) nanocomposites for supercapacitive applications. Heliyon 2024, 10, e35360. [Google Scholar] [CrossRef]
- Wang, D.; Lu, J.; Gou, J.; Wang, Z.; Wang, M.; Gong, X.; Hao, S. A rapid method for the synthesis of perovskite (ATiO3, A=Ca, Sr, Ba) in molten chloride. Ceram. Int. 2019, 45, 19547–19549. [Google Scholar] [CrossRef]
- Sun, S.; Huang, M.; Wang, P.; Lu, M. Controllable Hydrothermal Synthesis of Ni/Co MOF as Hybrid Advanced Electrode Materials for Supercapacitor. J. Electrochem. Soc. 2019, 166, A1799. [Google Scholar] [CrossRef]
- Riyas, Z.; Manimuthu, R.; Sankaranarayanan, K. Hydrothermal synthesis of La2O3–ZnO nanocomposites as electrode material for asymmetric supercapacitor applications. J. Mater. Sci. Mater. Electron. 2023, 34, 1612. [Google Scholar] [CrossRef]
- Myasoedova, T.N.; Kalusulingam, R.; Mikhailova, T.S. Sol-Gel Materials for Electrochemical Applications: Recent Advances. Coatings 2022, 12, 1625. [Google Scholar] [CrossRef]
- Lv, G.; Tong, B.; Shi, W.; Li, N.; Wang, L. Characterization of LiNi0.8Co0.15Al0.05O2 cathode material synthesized via co-precipitation method. J. Phys. Conf. Ser. 2024, 2789, 012006. [Google Scholar] [CrossRef]
- Ganguli, A.K.; Ahmad, T.; Vaidya, S.; Ahmed, J. Microemulsion route to the synthesis of nanoparticles. Pure Appl. Chem. 2008, 80, 2451–2477. [Google Scholar] [CrossRef]
- Zhao, Y.; Ji, D.B.; Wang, P.; Yan, Y.D.; Xue, Y.; Xu, H.B.; Liang, Y.; Luo, H.J.; Zhang, M.L.; Han, W. Molten salt synthesis of Mn2O3 nanoparticle as a battery type positive electrode material for hybrid capacitor in KNO3-NaNO2-NaNO3 melts. Chem. Eng. J. 2018, 349, 613–621. [Google Scholar] [CrossRef]
- Gupta, S.K.; Mao, Y. Recent Developments on Molten Salt Synthesis of Inorganic Nanomaterials: A Review. J. Phys. Chem. C 2021, 125, 6508–6533. [Google Scholar] [CrossRef]
- Li, L.; Deng, J.; Chen, J.; Xing, X. Topochemical molten salt synthesis for functional perovskite compounds. Chem. Sci. 2016, 7, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhu, S.; Zhang, Z.; Sun, Q.; Wu, C.; Gong, W.; Kang, L.; Yang, Y. Molten salt synthesis of high quality 2D δ-MnO2 nanosheets for advanced aqueous Zn/MnO2 batteries. J. Alloys Compd. 2023, 957, 170362. [Google Scholar] [CrossRef]
- Zuniga, J.P.; Abdou, M.; Gupta, S.K.; Mao, Y. Molten-Salt Synthesis of Complex Metal Oxide Nanoparticles. J. Vis. Exp. 2018, 140, e58482. [Google Scholar] [CrossRef]
- Huang, A.; Zhou, W.; Wang, A.; Chen, M.; Tian, Q.; Chen, J. Molten salt synthesis of α-MnO2/Mn2O3 nanocomposite as a high-performance cathode material for aqueous zinc-ion batteries. J. Energy Chem. 2021, 54, 475–481. [Google Scholar] [CrossRef]
- Rossi, F.; Marini, E.; Boniardi, M.; Casaroli, A.; Bassi, A.L.; Macrelli, A.; Mele, C.; Bozzini, B. What Happens to MnO2 When It Comes in Contact with Zn2+? An Electrochemical Study in Aid of Zn/MnO2-Based Rechargeable Batteries. Energy Technol. 2022, 10, 2200084. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Q.; He, M.; Sun, X.; Wang, X. A ternary Pt/MnO2/graphene nanohybrid with an ultrahigh electrocatalytic activity toward methanol oxidation. J. Power Sources 2013, 239, 189–195. [Google Scholar] [CrossRef]
- Hazarika, K.K.; Goswami, C.; Saikia, H.; Borah, B.J.; Bharali, P. Cubic Mn2O3 nanoparticles on carbon as bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Mol. Catal. 2018, 451, 153–160. [Google Scholar] [CrossRef]
- Balamurugan, S.; Ashika, S.A.; Fathima, T.K.S. Moderate temperature production of manganese oxides via thermal treatment – Structural and thermal properties. Chem. Inorg. Mater. 2024, 2, 100039. [Google Scholar] [CrossRef]
- Boucher, B.; Buhl, R.; Perrin, M. Proprietes et structure magnetique de Mn3O4. J. Phys. Chem. Solids 1971, 32, 2429–2437. [Google Scholar] [CrossRef]
- Jamil, S.; Khan, S.R.; Sultana, B.; Hashmi, M.; Haroon, M.; Janjua, M.R.S.A. Synthesis of Saucer Shaped Manganese Oxide Nanoparticles by Co-precipitation Method and the Application as Fuel Additive. J. Clust. Sci. 2018, 29, 1099–1106. [Google Scholar] [CrossRef]
- Garces Gonzales, P.R., Jr.; De Abreu, H.A.; Duarte, H.A. Stability, Structural, and Electronic Properties of Hausmannite (Mn3O4) Surfaces and Their Interaction with Water. J. Phys. Chem. C 2018, 122, 20841–20849. [Google Scholar] [CrossRef]
- Lanson, B.; Drits, V.A.; Feng, Q.; Manceau, A. Structure of synthetic Na-birnessite: Evidence for a triclinic one-layer unit cell. Am. Mineral. 2002, 87, 1662–1671. [Google Scholar] [CrossRef]
- Zhang, X.; Qian, Y.; Zhu, Y.; Tang, K. Synthesis of Mn2O3 nanomaterials with controllable porosity and thickness for enhanced lithium-ion batteries performance. Nanoscale 2014, 6, 1725–1731. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.L.; Wang, Z.C.; Yan, Y.D.; Zhang, M.L.; Wang, G.L.; Yin, T.Q.; Xue, Y.; Gao, F.; Qiu, M. Molten salt synthesis and supercapacitor properties of oxygen-vacancy LaMnO3. J. Energy Chem. 2020, 43, 173–181. [Google Scholar] [CrossRef]
- Takeuchi, K.J.; Yau, S.Z.; Menard, M.C.; Marschilok, A.C.; Takeuchi, E.S. Synthetic Control of Composition and Crystallite Size of Silver Hollandite, AgxMn8O16: Impact on Electrochemistry. ACS Appl. Mater. Interfaces 2012, 4, 5547–5554. [Google Scholar] [CrossRef]
- Brady, A.B.; Huang, J.; Durham, J.L.; Smith, P.F.; Bai, J.; Takeuchi, E.S.; Marschilok, A.C.; Takeuchi, K.J. The Effect of Silver Ion Occupancy on Hollandite Lattice Structure. MRS Adv. 2018, 3, 547–552. [Google Scholar] [CrossRef]
- Sánchez-Ochoa, F.; Springborg, M. Silver hollandite (AgxMn8O16, x ≤ 2): A highly anisotropic half-metal for spintronics. Phys. Rev. Mater. 2021, 5, 095001. [Google Scholar] [CrossRef]
- Li, L.; King, D.L. Synthesis and Characterization of Silver Hollandite and Its Application in Emission Control. Chem. Mater. 2005, 17, 4335–4343. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Liu, Q.; Huang, X.; Shen, W. Facile Synthesis of Ag-Hollandite Nanofibers and Their Catalytic Activity for Ethanol Selective Oxidation. Chin. J. Catal. 2007, 28, 1034–1036. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Li, H.; Huang, X.; Shen, W. Facile synthesis of Ag–OMS-2 nanorods and their catalytic applications in CO oxidation. Microporous Mesoporous Mater. 2008, 116, 586–592. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, X.; Zhang, W.; Yuan, L.; Huang, Y. Large-scale synthesis of Ag1.8Mn8O16 nanorods and their electrochemical lithium-storage properties. J. Nanopart. Res. 2011, 13, 3139–3148. [Google Scholar] [CrossRef]
- Sukhdev, A.; Challa, M.; Narayani, L.; Manjunatha, A.S.; Deepthi, P.R.; Angadi, J.V.; Mohan Kumar, P.; Pasha, M. Synthesis, phase transformation, and morphology of hausmannite Mn3O4 nanoparticles: Photocatalytic and antibacterial investigations. Heliyon 2020, 6, e03245. [Google Scholar] [CrossRef]
- Amirtharaj, S.N.; Mariappan, M. Rapid and controllable synthesis of Mn2O3 nanorods via a sonochemical method for supercapacitor electrode application. Appl. Phys. A 2021, 127, 607. [Google Scholar] [CrossRef]
- Nagamuthu, S.; Ryu, K.S. Synthesis of Silver Hollandite Nanorectangular Cuboids as Negative Electrode Material for High-Performance Asymmetric Supercapacitors and Lithium-Ion Capacitors. Batter. Supercaps 2019, 2, 91–103. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Patil, S.A.; Han, J.; Cho, S.; Inamdar, A.I.; Kim, H.; Im, H. Chemical etching induced microporous nickel backbones decorated with metallic Fe@hydroxide nanocatalysts: An efficient and sustainable OER anode toward industrial alkaline water-splitting. J. Mater. Chem. A 2022, 10, 8989–9000. [Google Scholar] [CrossRef]
- dos Santos, J.P.A.; Rufino, F.C.; Ota, J.I.Y.; Fernandes, R.C.; Vicentini, R.; Pagan, C.J.; Silva, L.M.D.; Zanin, H. Best practices for electrochemical characterization of supercapacitors. J. Energy Chem. 2023, 80, 265–283. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, D.; Xu, T.; Yao, T.; Shen, L. Enabling extreme low-temperature proton pseudocapacitor with tailored pseudocapacitive electrodes and antifreezing electrolytes engineering. Chem. Eng. J. 2024, 495, 153347. [Google Scholar] [CrossRef]
- Mei, B.A.; Munteshari, O.; Lau, J.; Dunn, B.; Pilon, L. Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. J. Phys. Chem. C 2017, 122, 194–206. [Google Scholar] [CrossRef]
- Nithya, V.D.; Selvan, R.K.; Vasylechko, L.; Sanjeeviraja, C. Surfactant assisted sonochemical synthesis of Bi2WO6 nanoparticles and their improved electrochemical properties for use in pseudocapacitors. RSC Adv. 2014, 4, 4343–4352. [Google Scholar] [CrossRef]
- Mathis, T.S.; Kurra, N.; Wang, X.; Pinto, D.; Simon, P.; Gogotsi, Y. Energy Storage Data Reporting in Perspective—Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems. Adv. Energy Mater. 2019, 9, 1902007. [Google Scholar] [CrossRef]
- Abdullin, K.A.; Gabdullin, M.T.; Kalkozova, Z.K.; Nurbolat, S.T.; Mirzaeian, M. Efficient Recovery Annealing of the Pseudocapacitive Electrode with a High Loading of Cobalt Oxide Nanoparticles for Hybrid Supercapacitor Applications. Nanomaterials 2022, 12, 3669. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Burke, A.F. Electrochemical Capacitors: Performance Metrics and Evaluation by Testing and Analysis. Adv. Energy Mater. 2020, 11, 2002192. [Google Scholar] [CrossRef]
- Martínez-Hincapié, R.; Wegner, J.; Anwar, M.U.; Raza-Khan, A.; Franzka, S.; Kleszczynski, S.; Colic, V. The determination of the electrochemically active surface area and its effects on the electrocatalytic properties of structured nickel electrodes produced by additive manufacturing. Electrochim. Acta 2024, 476, 143663. [Google Scholar] [CrossRef]
- Rivera-Benítez, A.; Luna-Sánchez, R.; Rafael-Alonso, A.; Arce-Estrada, E.; Cabrea-Sierra, R.; Henández-Ramírez, A.; Arellanes-Lozada, P.; Cuellar-Herrera, L.; López-Rodríguez, J. Enhancing the specific capacitance of α-MnO2 through quenching-induced changes in the crystal phase structure. Int. J. Electrochem. Sci. 2024, 19, 100609. [Google Scholar] [CrossRef]
- Saju, S.M.; Vargeese, A.A. Synthesis of perforated single-crystalline Mn2O3 microcubes for thermocatalytic applications. New J. Chem. 2024, 48, 17150–17158. [Google Scholar] [CrossRef]
Sample Abbreviation | MnSO4·H2O/NaNO3 | MnSO4·H2O (g) | (g) | (g) | NaOH (g) |
---|---|---|---|---|---|
0.3 M/N | 0.3 | 3 | 9 | 0 | 3 |
0.4 M/N | 0.4 | 4 | 9 | 0 | 3 |
0.5 M/N | 0.5 | 5 | 9 | 0 | 3 |
0.7 M/N | 0.7 | 6 | 9 | 0 | 3 |
0.5 M/N-0.1A | 0.5 | 3 | 6 | 0.1 | 1 |
0.5 M/N-0.3A | 0.5 | 3 | 6 | 0.3 | 1 |
0.5 M/N-0.5A | 0.5 | 3 | 6 | 0.5 | 1 |
1 M/N-0.1A | 1 | 3 | 3 | 0.1 | 1 |
1 M/N-0.3A | 1 | 3 | 3 | 0.3 | 1 |
1 M/N-0.5A | 1 | 3 | 3 | 0.5 | 1 |
Sample | O | Na | Mn | Ag |
---|---|---|---|---|
0.3 M/N | 69.53 | 5.69 | 24.78 | 0.00 |
0.5 M/N-0.5Ag | 73.01 | 4.96 | 18.51 | 3.53 |
1 M/N-0.5Ag | 72.22 | 3.4 | 19.34 | 5.04 |
I (A ) | (s) | (F ) | E (Wh ) | P (W ) |
---|---|---|---|---|
0.5 | 443.3 | 225.1 | 31.3 | 253.8 |
1.0 | 159.8 | 162.2 | 22.5 | 507.5 |
1.5 | 33.7 | 51.3 | 7.1 | 761.3 |
2.0 | 2.9 | 5.9 | 0.8 | 1015.0 |
Sample | () | (mF) | (mS ) | () | Angle (°) | |
---|---|---|---|---|---|---|
0.3 M/N | 0.083 | 46.8 | 14.4 | 0.84 | 68.2 | 67.0 |
0.4 M/N | 0.017 | 20.3 | 3.3 | 0.72 | 67.1 | 69.7 |
0.5 M/N | 0.869 | 12.1 | 7.3 | 0.86 | 72.5 | 69.1 |
0.7 M/N | 0.021 | 18.0 | 4.1 | 0.62 | 80.4 | 56.5 |
0.5 M/N-0.1A | 0.027 | 35.8 | 5.4 | 0.86 | 79.5 | 70.1 |
0.5 M/N-0.3A | 0.003 | 28.9 | 6.1 | 0.91 | 59.0 | 70.3 |
0.5 M/N-0.5A | 0.002 | 49.1 | 9.9 | 0.83 | 67.4 | 70.6 |
1 M/N-0.1A | 0.000 | 18.8 | 8.0 | 0.81 | 71.1 | 63.4 |
1 M/N-0.3A | 0.050 | 57.5 | 7.9 | 0.77 | 69.1 | 62.6 |
1 M/N-0.5A | 0.083 | 41.7 | 22.0 | 0.95 | 60.6 | 81.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Morales, C.; Romero-Serrano, A.; López-Rodríguez, J.; Arellanes-Lozada, P. Molten Salt Synthesis and Electrochemical Evaluation of Na/Ag-Containing MnxOy Composites for Pseudocapacitor Applications. Materials 2025, 18, 3869. https://doi.org/10.3390/ma18163869
Martínez-Morales C, Romero-Serrano A, López-Rodríguez J, Arellanes-Lozada P. Molten Salt Synthesis and Electrochemical Evaluation of Na/Ag-Containing MnxOy Composites for Pseudocapacitor Applications. Materials. 2025; 18(16):3869. https://doi.org/10.3390/ma18163869
Chicago/Turabian StyleMartínez-Morales, Carmen, Antonio Romero-Serrano, Josué López-Rodríguez, and Paulina Arellanes-Lozada. 2025. "Molten Salt Synthesis and Electrochemical Evaluation of Na/Ag-Containing MnxOy Composites for Pseudocapacitor Applications" Materials 18, no. 16: 3869. https://doi.org/10.3390/ma18163869
APA StyleMartínez-Morales, C., Romero-Serrano, A., López-Rodríguez, J., & Arellanes-Lozada, P. (2025). Molten Salt Synthesis and Electrochemical Evaluation of Na/Ag-Containing MnxOy Composites for Pseudocapacitor Applications. Materials, 18(16), 3869. https://doi.org/10.3390/ma18163869