Numerical Simulation Study on Non-Axisymmetric Die-Less Spinning with a Right-Angle Groove in the Tube
Abstract
1. Introduction
2. Establishment of the Finite Element Model
2.1. Roller Path Design
2.2. Material Parameters
2.3. Settings of the Finite Element Model
3. Simulation Results and Verification
4. Discussion
4.1. Analysis of the Forming Process
4.2. The Stress Distribution
4.3. The Strain Distribution
5. Conclusions
- (1)
- The macroscopic shape and wall thickness variations from simulations and experiments are largely consistent, validating the model’s accuracy and demonstrating the feasibility of the proposed forming method.
- (2)
- Single-pass forming exhibits severe stress concentration, uneven wall thickness, and unidirectional metal flow, leading to low forming accuracy. Multi-pass forming mitigates stress concentration through staged deformation. Scheme I outperforms Scheme II because of the lower equivalent stress in the last pass and more uniform wall thickness distribution.
- (3)
- The deformation zone experiences overall wall thickness thinning. The maximum stress localizes at the bottom of the right-angle groove, increasing with the forming depth. Springback causes the actual depth to be slightly less than the ideal value (9 mm). The strain at the groove bottom is higher than in other regions due to the more pronounced wall thickness thinning, while the strain in the roller exit region is significantly elevated by localized thickening due to metal accumulation.
6. Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, C.C.; Dean, T.A.; Lin, J. A review of spinning, shear forming and flow forming processes. Int. J. Mach. Tools Manuf. 2003, 43, 1419–1435. [Google Scholar] [CrossRef]
- Music, O.; Allwood, J.M.; Kawai, K. A review of the mechanics of metal spinning. J. Mater. Process. Technol. 2010, 210, 3–23. [Google Scholar] [CrossRef]
- Kang, D.C.; Gao, X.C.; Meng, X.F.; Wang, Z.H. Study on the deformation mode of conventional spinning of plates. J. Mater. Process. Technol. 1999, 91, 226–230. [Google Scholar] [CrossRef]
- Ahmed, K.I.; Gadala, M.S.; El-Sebaie, M.G. Deep spinning of sheet metals. Int. J. Mach. Tools Manuf. 2015, 97, 72–85. [Google Scholar] [CrossRef]
- Xia, Q.; Xiao, G.; Long, H.; Cheng, X.; Sheng, X. A review of process advancement of novel metal spinning. Int. J. Mach. Tools Manuf. 2014, 85, 100–121. [Google Scholar] [CrossRef]
- Jeswiet, J.; Micari, F.; Hirt, G.; Bramley, A.; Duflou, J.; Allwood, J. Asymmetric single point incremental forming of sheet metal. CIRP Ann. 2005, 54, 88–114. [Google Scholar] [CrossRef]
- Music, O.; Allwood, J.M. Flexible asymmetric spinning. CIRP Ann. 2011, 60, 319–322. [Google Scholar] [CrossRef]
- Shimizu, I. Asymmetric forming of aluminum sheets by synchronous spinning. J. Mater. Process. Technol. 2010, 210, 585–592. [Google Scholar] [CrossRef]
- Jianguo, Y.; Makoto, M. An experimental study on spinning of taper shape on tube end. J. Mater. Process. Technol. 2005, 166, 405–410. [Google Scholar] [CrossRef]
- Zhan, M.; Guo, J.; Fu, M.W.; Li, R.; Gao, P.F.; Long, H.; Ma, F. Formation mechanism and control of flaring in forward tube spinning. Int. J. Adv. Manuf. Technol. 2018, 94, 59–72. [Google Scholar] [CrossRef]
- Chen, S.W.; Zhan, M.; Gao, P.F.; Ma, F.; Zhang, H.R. A new robust theoretical prediction model for flange wrinkling in conventional spinning. J. Mater. Process. Technol. 2021, 288, 116849. [Google Scholar] [CrossRef]
- Watson, M.; Long, H. Wrinkling failure mechanics in metal spinning. Procedia Eng. 2014, 81, 2391–2396. [Google Scholar] [CrossRef]
- He, J.; Wang, R.; Li, N.; Xiao, Z.; Gu, J.; Yu, H.; Bi, Z.; Liu, W.; Song, M. Unravelling the origin of multiple cracking in an additively manufactured Haynes 230. Mater. Res. Lett. 2023, 11, 281–288. [Google Scholar] [CrossRef]
- Wilson, S.; Long, H.; Garter, G. Non-axisymmetric tube spinning by offset rotation. Procedia Manuf. 2018, 15, 1247–1254. [Google Scholar] [CrossRef]
- Arai, H.; Gondo, S. Oblique/curved tube necking formed by synchronous multipass spinning. Metals 2020, 10, 733. [Google Scholar] [CrossRef]
- Jia, Z.; Shen, Y.; Gong, X.; Liu, B. Development of a novel approach to middle-tube asymmetric spinning via generic rollers. J. Mater. Process. Technol. 2024, 326, 118342. [Google Scholar] [CrossRef]
- Gondo, S.; Arai, H.; Kajino, S.; Hanada, K. Evolution of texture distribution in thickness direction of aluminum sheet in metal spinning. Mater. Charact. 2022, 188, 111877. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, X.; Ma, H.; Shan, D.; Lin, H. Influence of roller distribution modes on spinning force during tube spinning. Int. J. Mech. Sci. 2016, 113, 10–25. [Google Scholar] [CrossRef]
- Xu, W.; Wu, H.; Ma, H.; Shan, D. Damage evolution and ductile fracture prediction during tube spinning of titanium alloy. Int. J. Mech. Sci. 2018, 135, 226–239. [Google Scholar] [CrossRef]
- Roy, B.K.; Korkolis, Y.P.; Arai, Y.; Araki, W.; Iijima, T.; Kouyama, J. Experimental and numerical investigation of deformation characteristics during tube spinning. Int. J. Adv. Manuf. Technol. 2020, 110, 1851–1867. [Google Scholar] [CrossRef]
- Huang, C.C.; Hung, J.C.; Hung, C.; Lin, C.R. Finite element analysis on neck-spinning process of tube at elevated temperature. Int. J. Adv. Manuf. Technol. 2011, 56, 1039–1048. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, W.; Chen, Y.; Ma, H.; Shan, D.; Lin, H. Fabrication of curved generatrix workpiece of TA15 titanium alloy by variable thickness tube spinning and flaring process. Int. J. Adv. Manuf. Technol. 2017, 88, 1983–1992. [Google Scholar] [CrossRef]
- Xia, Q.; Long, J.; Xiao, G.; Yuan, S.; Qin, Y. Deformation mechanism of ZK61 magnesium alloy cylindrical parts with longitudinal inner ribs during hot backward flow forming. J. Mater. Process. Technol. 2021, 296, 117197. [Google Scholar] [CrossRef]
- Xiao, Y.; Han, Z.; Fan, Z.; Jia, Z. A study of asymmetric multi-pass spinning for angled-flange cylinder. J. Mater. Process. Technol. 2018, 256, 202–215. [Google Scholar] [CrossRef]
- Xia, Q.X.; Cheng, X.Q.; Hu, Y.; Ruan, F. Finite element simulation and experimental investigation on the forming forces of 3D non-axisymmetrical tubes spinning. Int. J. Mech. Sci. 2006, 48, 726–735. [Google Scholar] [CrossRef]
- Xia, Q.X.; Xie, S.W.; Huo, Y.L.; Ruan, F. Numerical simulation and experimental research on the multi-pass neck-spinning of non-axisymmetric offset tube. J. Mater. Process. Technol. 2008, 206, 500–508. [Google Scholar] [CrossRef]
- Xia, Q.; Cheng, X.; Long, H.; Ruan, F. Finite element analysis and experimental investigation on deformation mechanism of non-axisymmetric tube spinning. Int. J. Adv. Manuf. Technol. 2012, 59, 263–272. [Google Scholar] [CrossRef]
- Jia, Z.; Xuan, W.; Shen, Y.; Xie, Y.; Gong, X.; Liu, B. Numerical simulation and experimental study on non-axisymmetric spinning with a groove at the middle of the tube. Int. J. Adv. Manuf. Technol. 2022, 121, 6271–6284. [Google Scholar] [CrossRef]
- Jain, S.; Rai, D.C.; Sahoo, D.R. Postyield cyclic buckling criteria for aluminum shear panels. ASME J. Appl. Mech. March. 2008, 75, 021015. [Google Scholar] [CrossRef]
- Soundararaj, S.; Christopher, T.; Kalaichelvan, K. Process parameter correlation in low pressure hydro forming of 6063-O aluminium tubes. Mechanics 2019, 25, 64–72. [Google Scholar] [CrossRef]
- Misiolek, W.Z.; Kelly, R.M. Extrusion of aluminum alloys. In Metalworking: Bulk Forming; Semiatin, S.L., Ed.; ASM International: Novelty, OH, USA, 2005; Volume 14A, pp. 522–527. [Google Scholar]
Element | Content Range (%) | Typical Value (%) |
---|---|---|
Aluminum (Al) | Balance | — |
Silicon (Si) | 0.20–0.60 | 0.40 |
Magnesium (Mg) | 0.45–0.90 | 0.65 |
Iron (Fe) | ≤0.35 | 0.25 |
Copper (Cu) | ≤0.10 | — |
Manganese (Mn) | ≤0.10 | — |
Zinc (Zn) | ≤0.10 | — |
Titanium (Ti) | ≤0.10 | — |
Other Impurities | Single ≤ 0.05, Total ≤ 0.15 | — |
Property | Test Standard [31] | 6063-O Aluminum Alloy |
---|---|---|
Tensile Strength (σb) | ASTM B221 | ≤180.2 MPa |
Yield Strength (σs) | ASTM B221 | ≤68 MPa |
Relative Elongation (δ5) | ASTM B221 | ≤56% |
Hardness (HB) | ASTM E18 | ≤50 HB |
Elastic Modulus (E) | — | 68–70 GPa |
Poisson’s Ratio (ν) | — | 0.33 |
Scheme | Depth (mm) | Width (mm) | Angle (°) | |
---|---|---|---|---|
I | 7.64 | 18 | 95.34 | |
Experiment | II | 7.60 | 16 | 92.93 |
III | 7.74 | 17 | 94.36 | |
I | 8.73 | 17.9 | 91.43 | |
Simulation | II | 8.67 | 17.4 | 90.19 |
III | 8.79 | 17.5 | 89.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Fan, Z.; Jia, Z.; Shen, Y.; You, H. Numerical Simulation Study on Non-Axisymmetric Die-Less Spinning with a Right-Angle Groove in the Tube. Materials 2025, 18, 3858. https://doi.org/10.3390/ma18163858
Ren X, Fan Z, Jia Z, Shen Y, You H. Numerical Simulation Study on Non-Axisymmetric Die-Less Spinning with a Right-Angle Groove in the Tube. Materials. 2025; 18(16):3858. https://doi.org/10.3390/ma18163858
Chicago/Turabian StyleRen, Xuesong, Zuojun Fan, Zhen Jia, Yongping Shen, and Huanzhang You. 2025. "Numerical Simulation Study on Non-Axisymmetric Die-Less Spinning with a Right-Angle Groove in the Tube" Materials 18, no. 16: 3858. https://doi.org/10.3390/ma18163858
APA StyleRen, X., Fan, Z., Jia, Z., Shen, Y., & You, H. (2025). Numerical Simulation Study on Non-Axisymmetric Die-Less Spinning with a Right-Angle Groove in the Tube. Materials, 18(16), 3858. https://doi.org/10.3390/ma18163858