Robust Mesoporous SiO2-Coated TiO2 Colloidal Nanocrystal with Enhanced Adsorption, Stability, and Adhesion for Photocatalytic Antibacterial and Benzene Removal
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of Mesoporous SiO2-Coated TiO2 Nanoparticles
2.3. Characterization
3. Results and Discussion
3.1. Microstructure and Morphology of the TiO2@SiO2 Nanoparticles
3.2. Photocatalytic Performance of T@S NP Composites
3.2.1. Benzene Degradation
3.2.2. Mechanisms of Enhanced Photocatalytic Activity
3.3. Practical Application Potentials
3.3.1. Stability of T@S NP Composites
3.3.2. Adhesion Characteristic of T@S NP Composites
3.4. Antibacterial Characteristic of T@S NP Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Z.; Li, B.; Liu, X.; Li, Z.; Zhu, S.; Liang, Y.; Cui, Z.; Wu, S. Recent Progress in Photocatalytic Antibacterial. ACS Appl. Bio. Mater. 2021, 4, 3909–3936. [Google Scholar] [CrossRef] [PubMed]
- Sisay, E.J.; Vereb, G.; Pap, Z.; Gyulavari, T.; Agoston, A.; Kopniczky, J.; Hodur, C.; Arthanareeswaran, G.; Sivasundari Arumugam, G.K.; Laszlo, Z. Visible-light-driven photocatalytic PVDF-TiO2/CNT/BiVO4 hybrid nanocomposite ultrafiltration membrane for dairy wastewater treatment. Chemosphere 2022, 307, 135589. [Google Scholar] [CrossRef] [PubMed]
- Khlyustova, A.; Sirotkin, N.; Kusova, T.; Kraev, A.; Titov, V.; Agafonov, A. Doped TiO2: The effect of doping elements on photocatalytic activity. Mater. Adv. 2020, 1, 1193–1201. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, J.; Song, L.-B.; Pan, J.-J.; Luo, Q. MOF-derived La/ZnO–TiO2 composite with enhanced photocatalytic ability for degradation of tetracycline. Prog. Nat. Sci. Mater. Int. 2023, 33, 544–550. [Google Scholar] [CrossRef]
- Reddy, N.R.; Reddy, P.M.; Jyothi, N.; Kumar, A.S.; Jung, J.H.; Joo, S.W. Versatile TiO2 bandgap modification with metal, non-metal, noble metal, carbon material, and semiconductor for the photoelectrochemical water splitting and photocatalytic dye degradation performance. J. Alloys Compd. 2023, 935, 167713. [Google Scholar] [CrossRef]
- Wang, F.; Yang, S.; Han, S.; Sun, P.; Liu, W.; Lu, Q.; Cao, W. Synthesis of Cu–TiO2/CuS p-n heterojunction via in situ sulfidation for highly efficient photocatalytic NO removal. Prog. Nat. Sci. Mater. Int. 2022, 32, 561–569. [Google Scholar] [CrossRef]
- Özdemir, P.; Yıldırım, R. Photocatalytic glycerol reforming on Pt, Au and Cu supported by reduced TiO2 under visible light irradiation. Int. J. Hydrogen Energy 2024, 52, 283–294. [Google Scholar] [CrossRef]
- Singh, A.K.; Veetil, A.N.; Nithyanandhan, J. D–A–D Based Complementary Unsymmetrical Squaraine Dyes for Co-sensitized Solar Cells: Enhanced Photocurrent Generation and Suppressed Charge Recombination Processes by Controlled Aggregation. ACS Appl. Energy Mater. 2021, 4, 3182–3193. [Google Scholar] [CrossRef]
- Liu, H.; Qian, C.; Wang, T.; Wang, S. N-doping TiO2 spheres with enriched oxygen vacancies for photocatalytic hydrogen evolution. Inorg. Chem. Commun. 2023, 156, 111212. [Google Scholar] [CrossRef]
- Zhu, L.; Shen, D.; Luo, K.H. A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods. J. Hazard. Mater. 2020, 389, 122102. [Google Scholar] [CrossRef] [PubMed]
- Ji, K.; Gao, Y.; Zhang, L.; Wang, S.; Yue, Q.; Xu, X.; Kong, W.; Gao, B.; Cai, Z.; Chen, Y. A tunable amphiphilic Enteromorpha-modified graphene aerogel for oil/water separation. Sci. Total Environ. 2021, 763, 142958. [Google Scholar] [CrossRef] [PubMed]
- Deiana, C.; Fois, E.; Coluccia, S.; Martra, G. Surface Structure of TiO2 P25 Nanoparticles: Infrared Study of Hydroxy Groups on Coordinative Defect Sites. J. Phys. Chem. C 2010, 114, 21531–21538. [Google Scholar] [CrossRef]
- Hiremath, V.; Deonikar, V.G.; Kim, H.; Seo, J.G. Hierarchically assembled porous TiO2 nanoparticles with enhanced photocatalytic activity towards Rhodamine-B degradation. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124199. [Google Scholar] [CrossRef]
- Gholami, T.; Bazarganipour, M.; Salavati-Niasari, M.; Bagheri, S. Photocatalytic degradation of methylene blue on TiO2@SiO2 core/shell nanoparticles: Synthesis and characterization. J. Mater. Sci. Mater. Electron. 2015, 26, 6170–6177. [Google Scholar] [CrossRef]
- Mahesh, K.P.O.; Kuo, D.-H.; Huang, B.-R. Facile synthesis of heterostructured Ag-deposited SiO2@TiO2 composite spheres with enhanced catalytic activity towards the photodegradation of AB 1 dye. J. Mol. Catal. A Chem. 2015, 396, 290–296. [Google Scholar] [CrossRef]
- Bossa, N.; Chaurand, P.; Levard, C.; Borschneck, D.; Miche, H.; Vicente, J.; Geantet, C.; Aguerre-Chariol, O.; Michel, F.M.; Rose, J. Environmental exposure to TiO2 nanomaterials incorporated in building material. Environ. Pollut. 2017, 220, 1160–1170. [Google Scholar] [CrossRef]
- Machinin, A.M.; Awang, A.; Pien, C.F.; Samavati, A.; Ul-Hamid, A. TiO2 decorated Au nanoparticle enhances wettability of glass for self-cleaning application. Opt. Mater. 2023, 143, 114246. [Google Scholar] [CrossRef]
- Sun, S.; Ding, H.; Wang, J.; Li, W.; Hao, Q. Preparation of a microsphere SiO2/TiO2 composite pigment: The mechanism of improving pigment properties by SiO2. Ceram. Int. 2020, 46, 22944–22953. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H. A new approach to preparation of TiO2@void@SiO2 rattle type core shell structure nanoparticles via titanyl oxalate complex. Colloids Surf. A Physicochem. Eng. Asp. 2015, 485, 25–33. [Google Scholar] [CrossRef]
- Romero-Morán, A.; Sánchez-Salas, J.L.; Molina-Reyes, J. Influence of selected reactive oxygen species on the photocatalytic activity of TiO2/SiO2 composite coatings processed at low temperature. Appl. Catal. B Environ. 2021, 291, 119685. [Google Scholar] [CrossRef]
- Chang, W.; Yan, L.; Bin, L.; Sun, R. Photocatalyic activity of double pore structure TiO2/SiO2 monoliths. Ceram. Int. 2017, 43, 5881–5886. [Google Scholar] [CrossRef]
- Liao, S.; Lin, L.; Huang, J.; Jing, X.; Chen, S.; Li, Q. Microorganism-Templated Nanoarchitectonics of Hollow TiO2-SiO2 Microspheres with Enhanced Photocatalytic Activity for Degradation of Methyl Orange. Nanomater 2022, 12, 1606. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, X.; Xiong, X.; Wu, X.; Xie, Z.; Liu, Z. Synthesis of hollow TiO2@SiO2 spheres via a recycling template method for solar heat protection coating. Ceram. Int. 2021, 47, 2678–2685. [Google Scholar] [CrossRef]
- Koli, V.B.; Delekar, S.D.; Pawar, S.H. Photoinactivation of bacteria by using Fe-doped TiO2-MWCNTs nanocomposites. J. Mater. Sci. Mater. Med. 2016, 27, 177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, Z.; Han, B.; Li, Z.; Yang, G.; Li, J.; Chen, J. Preparation of silica and TiO2–SiO2 core–shell nanoparticles in water-in-oil microemulsion using compressed CO2 as reactant and antisolvent. J. Supercrit. Fluids 2006, 36, 194–201. [Google Scholar] [CrossRef]
- Wang, J.; Sun, S.; Ding, H.; Chen, W.; Liang, Y. Preparation of a composite photocatalyst with enhanced photocatalytic activity: Smaller TiO2 carried on SiO2 microsphere. Appl. Surf. Sci. 2019, 493, 146–156. [Google Scholar] [CrossRef]
- Fan, M.; Fan, G.; Zhang, G.; Zheng, S. Facile synthesis and kinetic mechanism of Ag-doped TiO2/SiO2 nanoparticles for phenol degradation under visible light irradiation. Res. Chem. Intermed. 2019, 46, 1127–1139. [Google Scholar] [CrossRef]
- Zhang, S.; Yi, J.; Chen, J.; Yin, Z.; Tang, T.; Wei, W.; Cao, S.; Xu, H. Spatially confined Fe2O3 in hierarchical SiO2@TiO2 hollow sphere exhibiting superior photocatalytic efficiency for degrading antibiotics. Chem. Eng. J. 2020, 380, 122583. [Google Scholar] [CrossRef]
- Qi, K.; Liu, S.-Y.; Qiu, M. Photocatalytic performance of TiO2 nanocrystals with/without oxygen defects. Chin. J. Catal. 2018, 39, 867–875. [Google Scholar] [CrossRef]
- Wu, L.; Yan, H.; Xiao, J.; Li, X.; Wang, X. Characterization and photocatalytic properties of SiO2–TiO2 nanocomposites prepared through gaseous detonation method. Ceram. Int. 2017, 43, 9377–9381. [Google Scholar] [CrossRef]
- Yang, S.; Liu, H.; Zhang, Y.; Wang, S.; Li, L.; Liu, X. Facile fabrication of hierarchical micro-meso-macro porous metal oxide with high photochemical and electrochemical performances. Appl. Surf. Sci. 2019, 465, 672–677. [Google Scholar] [CrossRef]
- Wu, J.; Li, R.; Li, M.; Zhang, X.; Meng, J.; Liu, Z.; Zhao, J.; Li, S.; Yang, H. Ordered porous carbon nitride embedded with truncated carbon nanotubes for boosting photocatalytic degradation. J. Alloys Compd. 2024, 1005, 176040. [Google Scholar] [CrossRef]
- Liu, N.; Huang, W.; Zhang, X.; Tang, L.; Wang, L.; Wang, Y.; Wu, M. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Appl. Catal. B Environ. 2018, 221, 119–128. [Google Scholar] [CrossRef]
- Shi, X.; Li, L.; Zhu, Q.; Chen, C.; Wang, C. Boosting the piezo-photocatalytic performance of Na0.5Bi0.5TiO3 by modulating the oxygen vacancy concentration. J. Alloys Compd. 2024, 987, 174218. [Google Scholar] [CrossRef]
- Khan, M.M.; Ansari, S.A.; Pradhan, D.; Ansari, M.O.; Han, D.H.; Lee, J.; Cho, M.H. Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A 2014, 2, 637–644. [Google Scholar] [CrossRef]
- Wrana, D.; Gensch, T.; Jany, B.R.; Cieślik, K.; Rodenbücher, C.; Cempura, G.; Kruk, A.; Krok, F. Photoluminescence imaging of defects in TiO2: The influence of grain boundaries and doping on charge carrier dynamics. Appl. Surf. Sci. 2021, 569, 150909. [Google Scholar] [CrossRef]
Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) | |
---|---|---|---|
TiO2 | 102.23 | 0.26 | 7.91 |
1-T@S | 128.32 | 0.16 | 4.35 |
2-T@S | 146.74 | 0.22 | 4.91 |
3-T@S | 160.52 | 0.20 | 4.33 |
Sample | τ1 (ns) | τ2 (ns) | A1 | A2 | τ (ns) |
---|---|---|---|---|---|
TiO2 | 0.847 | 0.0001232 | 98.01% | 1.99% | 0.83 |
T@S | 0.9073 | 0.0001541 | 98.42% | 1.58% | 0.89 |
TiO2 | 1-T@S | 2-T@S | 3-T@S | |
---|---|---|---|---|
Transparency (%) | 77.5 | 74.1 | 68.5 | 66.1 |
the Secondary Particle Size (nm) | 25.7 | 28.5 | 32.0 | 33.6 |
Sample | Bacteriostatic Percentage After 40 min (%) | Bacteriostatic Percentage After 80 min (%) | Bacteriostatic Percentage After 120 min (%) |
---|---|---|---|
TiO2 | 68.9 | 98.1 | 99.4 |
2-T@S | 51.1 | 86.0 | 92.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, N.; Zhang, A.; Yuan, K.; Cao, W. Robust Mesoporous SiO2-Coated TiO2 Colloidal Nanocrystal with Enhanced Adsorption, Stability, and Adhesion for Photocatalytic Antibacterial and Benzene Removal. Materials 2025, 18, 3844. https://doi.org/10.3390/ma18163844
Xiao N, Zhang A, Yuan K, Cao W. Robust Mesoporous SiO2-Coated TiO2 Colloidal Nanocrystal with Enhanced Adsorption, Stability, and Adhesion for Photocatalytic Antibacterial and Benzene Removal. Materials. 2025; 18(16):3844. https://doi.org/10.3390/ma18163844
Chicago/Turabian StyleXiao, Nan, Aijia Zhang, Kunjie Yuan, and Wenbin Cao. 2025. "Robust Mesoporous SiO2-Coated TiO2 Colloidal Nanocrystal with Enhanced Adsorption, Stability, and Adhesion for Photocatalytic Antibacterial and Benzene Removal" Materials 18, no. 16: 3844. https://doi.org/10.3390/ma18163844
APA StyleXiao, N., Zhang, A., Yuan, K., & Cao, W. (2025). Robust Mesoporous SiO2-Coated TiO2 Colloidal Nanocrystal with Enhanced Adsorption, Stability, and Adhesion for Photocatalytic Antibacterial and Benzene Removal. Materials, 18(16), 3844. https://doi.org/10.3390/ma18163844