In Vivo Evaluation of Laser-Textured Air Plasma in Osseointegration of Dental Implants
Abstract
1. Introduction
2. Materials and Methods
2.1. Optical Emission Spectroscopy
2.2. Scanning Electron Microscopy and EDX Analysis
2.3. Protein Adsorption
2.4. Cellular Morphology
2.5. In Vivo Study
2.6. Animal Maintenance
2.7. Anesthesia and Surgery Procedures
2.8. Sample Collection
2.9. Laboratory Processing of Samples for Inclusion in Resin
2.10. Histomorphometry Analysis
2.11. Statistical Analysis
3. Results
3.1. OES Analysis
3.2. SEM Analyses
3.3. Protein Adsorption
3.4. Cell Morphology
3.5. Histological Evaluation
3.6. Histomorphometric Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
ASC | Adipose-derived stem cells |
BSA | Bovine serum albumin |
BAFO | Bone occupied area fraction |
BIC | Bone-to-implant contact |
CONCEA | Conselho Nacional de Controle de Experimentação Animal |
EDX | Energy dispersive X-Ray |
SBAE | Sand-blasted acid-etched surface |
SEM | Scanning electron microscope |
OES | Optical emission spectroscopy |
References
- Tagliareni, J.M.; Clarkson, E. Basic concepts and techniques of dental implants. Dent. Clin. N. Am. 2015, 59, 255–264. [Google Scholar] [CrossRef]
- Parithimarkalaignan, S.; Padmanabhan, T.V. Osseointegration: An update. J. Indian. Prosthodont. Soc. 2013, 13, 2–6. [Google Scholar] [CrossRef]
- Osman, R.B.; Swain, M.V. A Critical Review of Dental Implant Materials with an Emphasis on Titanium versus Zirconia. Materials 2015, 8, 932–958. [Google Scholar] [CrossRef]
- Misch, C.E. Implantes Dentais Contemporâneos; GEN: Rio De Janeiro, Brazil, 2022. [Google Scholar]
- Albrektsson, T.; Brånemark, P.I.; Hansson, H.A.; Lindström, J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop. Scand. 1981, 52, 155–170. [Google Scholar] [CrossRef]
- Ryu, H.S.; Namgung, C.; Lee, J.H.; Lim, Y.J. The influence of thread geometry on implant osseointegration under immediate loading: A literature review. J. Adv. Prosthodont. 2014, 6, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Ma, J.; Tian, A.; Wang, Y.; Li, Y.; Dong, B.; Tong, X.; Ma, X. Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review. Colloids Surf. B Biointerfaces 2023, 227, 113339. [Google Scholar] [CrossRef] [PubMed]
- Le Guéhennec, L.; Soueidan, A.; Layrolle, P.; Amouriq, Y. Tratamentos de superfície de implantes dentários de titânio para rápida osseointegração. Dent. Mater. Julho 2007, 23, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Elias, C.N.; Fernandes, D.J.; Resende, C.R.; Roestel, J. Mechanical properties, surface morphology and stability of a modified commercially pure high strength titanium alloy for dental implants. Dent. Mater. 2015, 31, e1–e13. [Google Scholar] [CrossRef]
- Kim, J.J.; Cho, S.A. Comparison of removal torque of dual-acid etched and single-acid etched implants in rabbit tibias. J. Korean Acad. Prosthodont. 2019, 57, 335. [Google Scholar] [CrossRef]
- Ruffinatti, F.A.; Genova, T.; Roato, I.; Perin, M.; Chinigò, G.; Pedraza, R.; Della Bella, O.; Motta, F.; Aimo Boot, E.; D’Angelo, D.; et al. Osteoblast Response to Widely Ranged Texturing Conditions Obtained through High Power Laser Beams on Ti Surfaces. J. Funct. Biomater. 2024, 15, 303. [Google Scholar] [CrossRef]
- Al Qahtani, W.M.; Schille, C.; Spintzyk, S.; Al Qahtani, M.S.; Engel, E.; Geis-Gerstorfer, J.; Rupp, F.; Scheideler, L. Effect of surface modification of zirconia on cell adhesion, metabolic activity and proliferation of human osteoblasts. Biomed. Tech. 2017, 62, 75–87. [Google Scholar] [CrossRef]
- Canullo, L.; Genova, T.; Mandracci, P.; Mussano, F.; Abundo, R.; Fiorellini, J.P. Morphometric Changes Induced by Cold Argon Plasma Treatment on Osteoblasts Grown on Different Dental Implant Surfaces. Int. J. Periodontics Restor. Dent. 2017, 37, 541–548. [Google Scholar] [CrossRef]
- Aita, H.; Hori, N.; Takeuchi, M.; Suzuki, T.; Yamada, M.; Anpo, M.; Ogawa, T. The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials 2009, 30, 1015–1025. [Google Scholar] [CrossRef]
- Kligman, S.; Ren, Z.; Chung, C.H.; Perillo, M.A.; Chang, Y.C.; Koo, H.; Zheng, Z.; Li, C. The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation. J. Clin. Med. 2021, 10, 1641. [Google Scholar] [CrossRef]
- Barfeie, A.; Wilson, J.; Rees, J. Implant surface characteristics and their effect on osseointegration. Br. Dent. J. 2015, 218, E9. [Google Scholar] [CrossRef]
- Canullo, L.; Genova, T.; Tallarico, M.; Gautier, G.; Mussano, F.; Botticelli, D. Plasma of Argon Affects the Earliest Biological Response of Different Implant Surfaces: An In Vitro Comparative Study. J. Dent. Res. 2016, 95, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Fenelon, T.; Bakr, M.M.; Walsh, L.J.; George, R. Effects of Lasers and Their Delivery Characteristics on Machined and Micro-Roughened Titanium Dental Implant Surfaces. Bioengineering 2020, 7, 93. [Google Scholar] [CrossRef] [PubMed]
- ABNT NBR 15729:2009; Sterilization for Dental Implants—Radiation—Validation And Routine Control. DIN Standards: Berlin, Germany, 2009.
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef]
- Smith, A.J.; Clutton, R.E.; Lilley, E.; Hansen, K.E.A.; Brattelid, T. PREPARE: Guidelines for planning animal research and testing. Lab. Anim. 2017, 52, 135–141. [Google Scholar] [CrossRef]
- NC3Rs Reporting Guidelines Working Group. Animal research: Reporting in vivo experiments: The ARRIVE guidelines. J. Physiol. 2010, 588, 2519–2521. [Google Scholar] [CrossRef] [PubMed]
- Sartoretto, S.C.; Alves, A.T.; Resende, R.F.; Calasans-Maia, J.; Granjeiro, J.M.; Calasans-Maia, M.D. Early osseointegration driven by the surface chemistry and wettability of dental implants. J. Appl. Oral Sci. 2015, 23, 279–287. [Google Scholar] [CrossRef]
- Calasans-Maia, M.D.; Ascoli, F.O.; Novellino, A.T.N.A.; Rossi, A.M.; Granjeiro, J.M. Comparative histological evaluation of tibial bone repair in rabbits treated with xenografts. Acta Ortop. Bras. 2009, 17, 340–343. [Google Scholar] [CrossRef]
- Suzuki, M.; Calasans-Maia, M.D.; Marin, C.; Granato, R.; Gil, J.N.; Granjeiro, J.M.; Coelho, P.G. Effect of Surface Modifications on Early Bone Healing Around Plateau Root Form Implants: An Experimental Study in Rabbits. J. Oral Maxillofac. Surg. 2010, 68, 1631–1638. [Google Scholar] [CrossRef]
- Resende, R.F.; Fernandes, G.V.; Santos, S.R.; Rossi, A.M.; Lima, I.; Granjeiro, J.M.; Calasans-Maia, M.D. Long-term biocompatibility evaluation of 0.5 % zinc containing hydroxyapatite in rabbits. J. Mater. Sci. Mater. Med. 2013, 24, 1455–1463. [Google Scholar] [CrossRef] [PubMed]
- Valiense, H.; Barreto, M.; Resende, R.F.; Alves, A.T.; Rossi, A.M.; Mavropoulos, E.; Granjeiro, J.M.; Calasans-Maia, M.D. In vitro and in vivo evaluation of strontium-containing nanostructured carbonated hydroxyapatite/sodium alginate for sinus lift in rabbits. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 104, 274–282. [Google Scholar] [CrossRef]
- Gittens, R.A.; Olivares-Navarrete, R.; McLachlan, T.; Cai, Y.; Hyzy, S.L.; Schneider, J.M.; Schwartz, Z.; Sandhage, K.H.; Boyan, B.D. Differential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titanium-aluminum-vanadium alloy surfaces. Biomaterials 2012, 33, 8986–8994. [Google Scholar] [CrossRef] [PubMed]
- Lincks, J.; Boyan, B.D.; Blanchard, C.R.; Lohmann, C.H.; Liu, Y.; Cochran, D.L.; Dean, D.D.; Schwartz, Z. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 1998, 19, 2219–2232. [Google Scholar] [CrossRef]
- Boyan, B.D.; Sylvia, V.L.; Liu, Y.; Sagun, R.; Cochran, D.L.; Lohmann, C.H.; Dean, D.D.; Schwartz, Z. Surface roughness mediates its effects on osteoblasts via protein kinase A and phospholipase A2. Biomaterials 1999, 20, 2305–2310. [Google Scholar] [CrossRef] [PubMed]
- Deligianni, D.D.; Katsala, N.; Ladas, S.; Sotiropoulou, D.; Amedee, J.; Missirlis, Y.F. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials 2001, 22, 1241–1251. [Google Scholar] [CrossRef]
- Melo-Fonseca, F.; Gasik, M.; Cruz, A.; Moreira, D.; SSilva, F.; Miranda, G.; Mendes Pinto, I. Engineering a Hybrid Ti6Al4V-Based System for Responsive and Consistent Osteogenesis. ACS Omega 2024, 9, 8985–8994. [Google Scholar] [CrossRef]
- Henningsen, A.; Precht, C.; Karnatz, N.; Bibiza, E.; Yan, M.; Guo, L.; Gosau, M.; Smeets, R. Osseointegration of titanium implants after surface treatment with ultraviolet light or cold atmospheric plasma in vivo. Int. J. Oral Implant. 2023, 16, 197–208. [Google Scholar]
- Fernandes, V.V.B., Jr.; Rosa, P.A.A.D.; Grisante, L.A.D.; Embacher, F.C.; Lopes, B.B.; Vasconcellos, L.G.O.D.; Romeiro, R.D.L.; Vasconcellos, L.M.R.D. Argon plasma application on the surface of titanium implants: Osseointegration study. Braz. Dent. Sci. 2023, 26, e3843. [Google Scholar] [CrossRef]
- Vieira, G.M.; Almeida, T.C.S.; Oliveira, F.P.; Azzi, P.C.; Rodrigues, C.F.; Souza, R.L.; Lacerda, S.M.S.N.; Lages, F.S.; Martins, M.D. Comparative Study of Acid Etching and SLA Surface Modification for Titanium Implants. Materials 2025, 18, 1632. [Google Scholar] [CrossRef]
- Poduska, R.; Fister, D.; Green, N.; McAndrew, P. Hazardous waste reduction from mixed acid titanium etching. Clean Technol. Environ. Policy 2012, 14, 69–78. [Google Scholar] [CrossRef]
- Calasans-Maia, M.; Calasans-Maia, J.; Santos, S.; Mavropoulos, E.; Farina, M.; Lima, I.; Lopes, R.T.; Rossi, A.; Granjeiro, J.M. Short-term in vivo evaluation of zinc-containing calcium phosphate using a normalized procedure. Mater. Sci. Eng. C 2014, 41, 309–319. [Google Scholar] [CrossRef]
- Pearce, A.I.; Richards, R.G.; Milz, S.; Schneider, E.; Pearce, S.G. Animal models for implant biomaterial research in bone: A review. Eur. Cell Mater. 2007, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pintor, A.V.B.; Resende, R.F.D.B.; Neves, A.T.N.; Alves, G.G.; Coelho, P.G.; Granjeiro, J.M.; Calasans-Maia, M.D. In Vitro and In Vivo Biocompatibility Of ReOss® in Powder and Putty Configurations. Braz. Dent. J. 2018, 29, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Bonato, R.S.; Fernandes, G.V.O.; Calasans-Maia, M.D.; Mello, A.; Rossi, A.M.; Carreira, A.C.O.; Sogayar, M.C.; Granjeiro, J.M. The Influence of rhBMP-7 Associated with Nanometric Hydroxyapatite Coatings Titanium Implant on the Osseointegration: A Pre-Clinical Study. Polymers 2022, 14, 4030. [Google Scholar] [CrossRef]
- Sartoretto, S.C.; Calasans-Maia, J.; Resende, R.; Câmara, E.; Ghiraldini, B.; Barbosa Bezerra, F.J.; Granjeiro, J.M.; Calasans-Maia, M.D. The Influence of Nanostructured Hydroxyapatite Surface in the Early Stages of Osseointegration: A Multiparameter Animal Study in Low-Density Bone. Int. J. Nanomed. 2020, 15, 8803–8817. [Google Scholar] [CrossRef]
- Mello-Machado, R.C.; Sartoretto, S.C.; Granjeiro, J.M.; Calasans-Maia, J.D.A.; de Uzeda, M.J.P.G.; Mourão, C.F.D.A.B.; Ghiraldini, B.; Bezerra, F.J.B.; Senna, P.M.; Calasans-Maia, M.D. Osseodensification enables bone healing chambers with improved low-density bone site primary stability: An in vivo study. Sci. Rep. 2021, 11, 15436. [Google Scholar] [CrossRef]
- Almeida, D.; Sartoretto, S.C.; Calasans-Maia, J.D.A.; Ghiraldini, B.; Bezerra, F.J.B.; Granjeiro, J.M.; Calasans-Maia, M.D. In vivo osseointegration evaluation of implants coated with nanostructured hydroxyapatite in low density bone. PLoS ONE 2023, 18, e0282067. [Google Scholar] [CrossRef]
- Cardoso, E.S.; Cançado, R.P.; Heitz, C.; Gerhardt de Oliveira, M. Estudo exploratório descritivo do emprego de coelhos brancos da Nova Zelândia (Orytolagus cuniculus) como modelo animal na avaliação dos padrões de crescimento craniofacial. Rev. Odonto Ciênc. 2007, 22, 66–71. [Google Scholar]
- Kawamura, H.; Ito, A.; Miyakawa, S.; Layrolle, P.; Ojima, K.; Ichinose, N.; Tateishi, T. Stimulatory effect of zinc-releasing calcium phosphate ceramic on bone formation in rabbit femora. J. Biomed. Mater. Res. 2000, 50, 184–190. [Google Scholar] [CrossRef]
- Kawamura, H.; Ito, A.; Muramatsu, T.; Miyakawa, S.; Ochiai, N.; Tateishi, T. Long term implantation of zinc-releasing calcium phosphate ceramics in rabbit femora. J. Biomed. Mater. Res. A 2003, 65, 468–474. [Google Scholar] [CrossRef]
- Nascimento, L.; Medeiros, M.; Calasans-Maia, J.; Alves, A.; Rossi, A.M.; Alves, G.; Granjeiro, J.M.; Calasans-Maia, M.D. Osseoinduction evaluation of hydroxyapatite and zinc containing hydroxyapatite granules in rabbits. Key Eng. Mater. 2012, 493–494, 252–257. [Google Scholar]
- Johansson, C.B.; Han, C.H.; Wennerberg, A.; Albrektsson, T. A quantitative comparison of machined commercially pure titanium and titanium-aluminum-vanadium implants in rabbit bone. Int. J. Oral Maxillofac. Implant. 1998, 13, 315–321. [Google Scholar]
- Park, Y.S.; Yi, K.Y.; Lee, I.S.; Han, C.H.; Jung, Y.C. The effects of ion beam-assisted deposition of hydroxyapatite on the grit-blasted surface of endosseous implants in rabbit tibiae. Int. J. Oral Maxillofac. Implant. 2005, 20, 31. [Google Scholar]
- Calasans-Maia, M.D.; Rossi, A.M.; Dias, E.P.; Santos, S.R.A.; Ascoli, F.O.; Granjeiro, J.M. Stimulatory Effect on Osseous Repair of Zinc-substituted Hydroxyapatite: Histological Study in Rabbit’s Tibia. Key Eng. Mater. 2008, 361–363, 1269–1272. [Google Scholar]
- Cezar Iet, a.l. Standardized study of carbonate apatite as bone substitute in rabbit’s tibia. Key Eng. Mater. 2012, 493–494, 242–246. [Google Scholar]
- Donath, K.; Breuner, G. A method for the study of undecalcified bones and teeth with attached soft tissues. The Säge-Schliff (sawing and grinding) technique. J. Oral Pathol. 1982, 11, 318–326. [Google Scholar] [CrossRef]
- Reis, F.B.D.; Lopes, A.D.; Faloppa, F.; Ciconelli, R.M. A importância da qualidade dos estudos para a busca da melhor evidência. Rev. Bras. Ortop. 2008, 43, 209–216. [Google Scholar] [CrossRef]
- Kara-Junior, N. Definição da população e randomização da amostra em estudos clínicos. Rev. Bras. Oftalmol. 2014, 73, 67–68. [Google Scholar]
Surface | Ti | N | O | |||
---|---|---|---|---|---|---|
at %. | wt %. | at %. | wt %. | at %. | wt %. | |
LS160 | 57.65 | 80.3 | 23.87 | 8.4 | 42.35 | 19.7 |
SBAE | 76.13 | 91.6 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicolau, L.A.d.S.L.; Sartoretto, S.C.; Nunes, P.S.; Gheno, E.; Granjeiro, J.M.; D’Angelo, D.; Mussano, F.; Diuana Calasans-Maia, M.; Bella, O.D.; Motta, F.; et al. In Vivo Evaluation of Laser-Textured Air Plasma in Osseointegration of Dental Implants. Materials 2025, 18, 3810. https://doi.org/10.3390/ma18163810
Nicolau LAdSL, Sartoretto SC, Nunes PS, Gheno E, Granjeiro JM, D’Angelo D, Mussano F, Diuana Calasans-Maia M, Bella OD, Motta F, et al. In Vivo Evaluation of Laser-Textured Air Plasma in Osseointegration of Dental Implants. Materials. 2025; 18(16):3810. https://doi.org/10.3390/ma18163810
Chicago/Turabian StyleNicolau, Larissa Azeredo da Silva Lessa, Suelen Cristina Sartoretto, Pamella Santana Nunes, Ezio Gheno, Jose Mauro Granjeiro, Domenico D’Angelo, Federico Mussano, Monica Diuana Calasans-Maia, Olivio Della Bella, Francesca Motta, and et al. 2025. "In Vivo Evaluation of Laser-Textured Air Plasma in Osseointegration of Dental Implants" Materials 18, no. 16: 3810. https://doi.org/10.3390/ma18163810
APA StyleNicolau, L. A. d. S. L., Sartoretto, S. C., Nunes, P. S., Gheno, E., Granjeiro, J. M., D’Angelo, D., Mussano, F., Diuana Calasans-Maia, M., Bella, O. D., Motta, F., & Louro, R. S. (2025). In Vivo Evaluation of Laser-Textured Air Plasma in Osseointegration of Dental Implants. Materials, 18(16), 3810. https://doi.org/10.3390/ma18163810