Preparation of CeXMn1−XO2 Catalysts with Strong Mn-Ce Synergistic Effect for Catalytic Oxidation of Toluene
Abstract
1. Introduction
2. Materials and Methods
2.1. Catalyst Preparation
2.2. Catalyst Characterization
2.3. Catalytic Activity Tests
3. Results
3.1. Basic Physicochemical Properties of the Catalyst
3.2. Chemical Components and Redox Ability
3.3. Catalytic Performance of Toluene Removal
Samples | SBET a (m2/g) | Pore Volume b (cm3/g) | Conc.(ppm) | VOCs | GHSV (mLg−1h−1 or h−1) | Activity | Ref |
---|---|---|---|---|---|---|---|
α-MO/LMO | 42.3 | — | 1000 | Toluene | 12,000 | T90 = 260 °C | [69] |
β-MO/LMO | 40.0 | — | 1000 | Toluene | 12,000 | T90 = 289 °C | |
MnFe | 147.92 | 0.540 | 1000 | Toluene | 30,000 | T90 = 320 °C | [8] |
Mn12Ce1-SW | 11.2 | — | 1000 | Toluene | 15,000 | T90 = 277 °C | [70] |
0.3Cu-MnO2/Ni | 7.88 | 0.041 | 100 | Toluene | 30,000 | T90 = 240 °C | [71] |
Co1.5Mn1.5O4 | 14.2 | 0.033 | 1000 | Toluene | 30,000 | T90 = 267 °C | [72] |
SM-4 | 77.3 | — | 1000 | Toluene | 36,000 | T90 = 231 °C | [73] |
Ce0.07Mn0.93O2 | 37.8 | 0.225 | 1000 | Toluene | 30,000 | T90 = 258 °C | This work |
3.4. The Intermediate Products in the Toluene Catalysis Process Were Analyzed by TD-GC-MS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, B.; Zeng, Y.; Zhang, M.; Meng, F.; Zhang, S.; Zhong, Q. Highly efficient K-doped Mn–Ce catalysts with strong K–Mn–Ce interaction for toluene oxidation. J. Rare Earths 2023, 41, 374–380. [Google Scholar] [CrossRef]
- Gong, P.; He, F.; Xie, J.; Fang, D. Catalytic removal of toluene using MnO2-based catalysts: A review. Chemosphere 2023, 318, 137938. [Google Scholar] [CrossRef]
- Li, M.; Wang, R. Combined Catalytic Conversion of NOx and VOCs: Present Status and Prospects. Materials 2024, 18, 39. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Heng, T.; Zeng, C.; Meng, Z.; Na, J.; Chen, X.; Zhang, X. Advances in photocatalytic removal of NOx and VOCs from flue gas. Energy Environ. Prot. 2024, 38, 144–154. [Google Scholar]
- Feng, Y.; Chu, P.; Hou, Z.; Wu, L.; Liu, Y.; Deng, J.; Dai, H. Single-atom catalysts in the photothermal catalysis: Fundamentals, mechanisms, and applications in VOCs oxidation. Chem. Synth. 2025, 5, 64. [Google Scholar] [CrossRef]
- Li, H.; Wei, L.; Liu, Y.; Wang, Z.; Dai, H.; Deng, J. Synergistic removal of NO and chlorinated organics on CeO2-based catalysts. Environ. Funct. Mater. 2023, 2, 57–65. [Google Scholar] [CrossRef]
- Bi, F.; Feng, X.; Huang, J.; Wei, J.; Wang, H.; Du, Q.; Liu, N.; Xu, J.; Liu, B.; Huang, Y.; et al. Unveiling the Influence Mechanism of Impurity Gases on Cl-Containing Byproducts Formation during VOC Catalytic Oxidation. Environ. Sci. Technol. 2025, 59, 15526–15537. [Google Scholar] [CrossRef]
- Jiang, Y.; Jiang, Y.; Su, C.; Sun, X.; Xu, Y.; Cheng, S.; Liu, Y.; Dou, X.; Yang, Z. Clarify the effect of different metals doping on α-MnO2 for toluene adsorption and deep oxidation. Fuel 2024, 355, 129402. [Google Scholar] [CrossRef]
- Guo, N.; Jiang, L.; Wang, D.; Zhan, Y.; Wang, Z. An efficient Mn1-yCeyOx composite oxide mesoporous catalysts for catalytic combustion of aromatic hydrocarbon. Atmos. Pollut. Res. 2023, 14, 101715. [Google Scholar] [CrossRef]
- Du, J.; Qu, Z.; Dong, C.; Song, L.; Qin, Y.; Huang, N. Low-temperature abatement of toluene over Mn-Ce oxides catalysts synthesized by a modified hydrothermal approach. Appl. Surf. Sci. 2018, 433, 1025–1035. [Google Scholar] [CrossRef]
- Chen, C.; Fan, X.; Zhou, C.; Lin, L.; Luo, Y.; Au, C.; Cai, G.; Wang, X.; Jiang, L. Hydrogen production from ammonia decomposition over Ni/CeO2 catalyst: Effect of CeO2 morphology. J. Rare Earths 2023, 41, 1014–1021. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Z.; Xu, J.; Cui, H.; Tang, K.; Crawshaw, D.; Wu, J.; Zhang, X.; Tang, L.; Liu, N. Highly Selective CO(2) Conversion to CH(4) by a N-Doped HTiNbO(5)/NH(2)-UiO-66 Photocatalyst without a Sacrificial Electron Donor. JACS Au 2025, 5, 1184–1195. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Feng, X.; Bi, F.; Huang, G.; Rao, R.; Qiao, R.; Zhang, X. Strategic defect engineering in TiO2 catalysts through electron beam irradiation: Unraveling enhanced photocatalytic pathways for multicomponent VOCs degradation. Sep. Purif. Technol. 2025, 359, 130804. [Google Scholar] [CrossRef]
- Xiong, Y.; Liu, J.; Wang, Y. Insight on reaction pathways of photocatalytic methane conversion. Chem. Synth. 2025, 5, 50. [Google Scholar] [CrossRef]
- Yang, Y.; Bi, F.; Wei, J.; Han, X.; Gao, B.; Qiao, R.; Xu, J.; Liu, N.; Zhang, X. Boosting the Photothermal Oxidation of Multicomponent VOCs in Humid Conditions: Synergistic Mechanism of Mn and K in Different Oxygen Activation Pathways. Environ. Sci. Technol. 2025, 59, 11341–11352. [Google Scholar] [CrossRef]
- Bi, F.; Zhang, Y.; Zhou, Z.; Guo, L.; Zhu, Z.; Liu, B.; Zhang, X. Electron Beam Irradiation-Induced Defects Enhance Pt-TiO2 Photothermal Catalytic Degradation in PAEs: A Performance and Mechanism Study. Molecules 2025, 30, 697. [Google Scholar] [CrossRef]
- Shen, K.; Jiang, M.; Yang, X.; Zhou, W.; Dai, Q.; Wang, X.; Wang, L.; Guo, Y.; Guo, Y.; Zhan, W. Low-temperature catalytic combustion of trichloroethylene over MnO -CeO2 mixed oxide catalysts. J. Rare Earths 2023, 41, 523–530. [Google Scholar] [CrossRef]
- Sidaraite, R.; Baltakys, K.; Jaskunas, A.; Naslenas, N.; Slavinskas, D.; Slavinskas, E.; Dambrauskas, T. Kinetic Study and Catalytic Activity of Cr(3+) Catalyst Supported on Calcium Silicate Hydrates for VOC Oxidation. Materials 2024, 17, 3489. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, Z.; Zhang, Y.; Rao, R.; Han, H.; Liang, J.; Zhao, Z.; Bi, F.; Liu, N.; Zhang, X. Review of irradiation treatments on MOFs and COFs: Synthesis, modification, and application. Sep. Purif. Technol. 2024, 339, 126636. [Google Scholar] [CrossRef]
- Zhang, C.; Cao, H.; Wang, C.; He, M.; Zhan, W.; Guo, Y. Catalytic mechanism and pathways of 1,2-dichloropropane oxidation over LaMnO3 perovskite: An experimental and DFT study. J. Hazard. Mater. 2021, 402, 123473. [Google Scholar] [CrossRef]
- Feng, Z.; Ren, Q.; Peng, R.; Mo, S.; Zhang, M.; Fu, M.; Chen, L.; Ye, D. Effect of CeO2 morphologies on toluene catalytic combustion. Catal. Today 2019, 332, 177–182. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Z.; Brosnahan, J.T.; Zhang, S.; Guo, Y.; Guo, Y.; Wang, L.; Wang, Y.; Zhan, W. Ru/CeO2 Catalyst with Optimized CeO2 Support Morphology and Surface Facets for Propane Combustion. Environ. Sci. Technol. 2019, 53, 5349–5358. [Google Scholar] [CrossRef] [PubMed]
- Salek, G.; Alphonse, P.; Dufour, P.; Guillemet-Fritsch, S.; Tenailleau, C. Low-temperature carbon monoxide and propane total oxidation by nanocrystalline cobalt oxides. Appl. Catal. B Environ. 2014, 147, 1–7. [Google Scholar] [CrossRef]
- Wan, J.; Tao, F.; Shi, Y.; Shi, Z.; Liu, Y.; Wu, G.; Kan, J.; Zhou, R. Designed preparation of nano rod shaped CeO2-MnO catalysts with different Ce/Mn ratios and its highly efficient catalytic performance for chlorobenzene complete oxidation: New insights into structure–activity correlations. Chem. Eng. J. 2022, 433, 133788. [Google Scholar] [CrossRef]
- Bi, F.; Wei, J.; Gao, B.; Liu, N.; Xu, J.; Liu, B.; Huang, Y.; Zhang, X. New Insight into the Antagonism Mechanism between Binary VOCs during Their Degradation over Pd/ZrO2 Catalysts. ACS ES&T Eng. 2024, 4, 1346–1355. [Google Scholar]
- He, C.; Xu, B.-T.; Shi, J.-W.; Qiao, N.-L.; Hao, Z.-P.; Zhao, J.-L. Catalytic destruction of chlorobenzene over mesoporous ACeOx (A=Co, Cu, Fe, Mn, or Zr) composites prepared by inorganic metal precursor spontaneous precipitation. Fuel Process. Technol. 2015, 130, 179–187. [Google Scholar] [CrossRef]
- Luo, Y.; Lin, D.; Zheng, Y.; Feng, X.; Chen, Q.; Zhang, K.; Wang, X.; Jiang, L. MnO2 nanoparticles encapsuled in spheres of Ce-Mn solid solution: Efficient catalyst and good water tolerance for low-temperature toluene oxidation. Appl. Surf. Sci. 2020, 504, 144481. [Google Scholar] [CrossRef]
- Huang, J.; Wei, J.; Tian, F.; Bi, F.; Rao, R.; Wang, Y.; Tao, H.; Liu, N.; Zhang, X. Nitrogen-induced TiO2 electric field polarization for efficient photodegradation of high-concentration ethyl acetate: Mechanisms and reaction pathways. Mater. Today Chem. 2024, 41, 102292. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.; Hu, H.; Huang, J.; Wei, J.; Bi, F.; Zhang, X. Impact of residual ions on catalyst structure and catalytic performance: A review. Chin. Chem. Lett. 2025, 111549. [Google Scholar] [CrossRef]
- Liu, N.; Tian, M.; Zhang, Y.; Yang, J.; Wang, Z.; Dai, W.; Quan, G.; Lei, J.; Zhang, X.; Tang, L. Three-dimensional MIL-88A(Fe)-derived α-Fe2O3 and graphene composite for efficient photo-Fenton-like degradation of ciprofloxacin. Chin. Chem. Lett. 2025, 111063. [Google Scholar] [CrossRef]
- Guo, L.; Bi, F.; Liu, N.; Zhang, X. Degradation of volatile organic pollutants over manganese-based catalysts by defect engineering: A review. Sep. Purif. Technol. 2025, 362, 131934. [Google Scholar] [CrossRef]
- Sun, H.; Yu, X.; Ma, X.; Yang, X.; Lin, M.; Ge, M. MnOx-CeO2 catalyst derived from metal-organic frameworks for toluene oxidation. Catal. Today 2020, 355, 580–586. [Google Scholar] [CrossRef]
- Figueredo, M.J.M.; Cocuzza, C.; Bensaid, S.; Fino, D.; Piumetti, M.; Russo, N. Catalytic Abatement of Volatile Organic Compounds and Soot over Manganese Oxide Catalysts. Materials 2021, 14, 4534. [Google Scholar] [CrossRef]
- Cheng, G.; Yu, L.; He, B.; Sun, M.; Zhang, B.; Ye, W.; Lan, B. Catalytic combustion of dimethyl ether over α-MnO2 nanostructures with different morphologies. Appl. Surf. Sci. 2017, 409, 223–231. [Google Scholar] [CrossRef]
- Wu, P.; Jin, X.; Qiu, Y.; Ye, D. Recent Progress of Thermocatalytic and Photo/Thermocatalytic Oxidation for VOCs Purification over Manganese-based Oxide Catalysts. Environ. Sci. Technol. 2021, 55, 4268–4286. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Su, Z.a.; Xu, Z.; Yang, W.; Peng, Y.; Li, J. Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: Oxygen vacancies and reaction intermediates. Appl. Catal. B Environ. 2020, 260, 118150. [Google Scholar] [CrossRef]
- Zeng, J.; Xie, H.; Zhang, H.; Huang, M.; Liu, X.; Zhou, G.; Jiang, Y. Insight into the effects of oxygen vacancy on the toluene oxidation over α-MnO2 catalyst. Chemosphere 2022, 291, 132890. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, Y.; Fang, X.; Cheng, Y. Simple strategy for the construction of oxygen vacancies on α-MnO2 catalyst to improve toluene catalytic oxidation. J. Hazard. Mater. 2021, 409, 125020. [Google Scholar] [CrossRef]
- Jiang, Z.; Jing, M.; Feng, X.; Xiong, J.; He, C.; Douthwaite, M.; Zheng, L.; Song, W.; Liu, J.; Qu, Z. Stabilizing platinum atoms on CeO2 oxygen vacancies by metal-support interaction induced interface distortion: Mechanism and application. Appl. Catal. B Environ. 2020, 278, 119304. [Google Scholar] [CrossRef]
- Zhao, D.; Lin, J.; Li, R.; Chu, L.; Wang, Z.; Huang, X.; Wang, G. Constructing frustrated Lewis pairs on porous Ce-based metal-organic frameworks with improved dicyclopentadiene hydrogenation activity. Chin. Chem. Lett. 2025, 36, 110172. [Google Scholar] [CrossRef]
- Miao, K.; Li, S.; Zhang, Y.; Liu, Q.; Wu, Y.; Liu, P.; Xu, H.; Le, S.; Zhu, C. Recent progress of modified CeO2-based materials for photocatalytic environmental remediation and antibacterial activity. Environ. Funct. Mater. 2023, 2, 213–227. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, Y.; Hu, H.; Wei, J.; Qiao, R.; Bi, F.; Zhang, X. Recent progress of cerium-based catalysts for the catalytic oxidation of volatile organic compounds: A review. Fuel 2025, 399, 135603. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Z.; Li, Y.; Leng, X.; Zhang, T.; Yuan, F.; Niu, X.; Zhu, Y. Synthesis of CeaMnOx hollow microsphere with hierarchical structure and its excellent catalytic performance for toluene combustion. Appl. Catal. B Environ. 2019, 245, 502–512. [Google Scholar] [CrossRef]
- Su, Z.; Yang, W.; Wang, C.; Xiong, S.; Cao, X.; Peng, Y.; Si, W.; Weng, Y.; Xue, M.; Li, J. Roles of Oxygen Vacancies in the Bulk and Surface of CeO2 for Toluene Catalytic Combustion. Environ. Sci. Technol. 2020, 54, 12684–12692. [Google Scholar] [CrossRef]
- Rong, S.; Zhang, P.; Liu, F.; Yang, Y. Engineering Crystal Facet of α-MnO2 Nanowire for Highly Efficient Catalytic Oxidation of Carcinogenic Airborne Formaldehyde. ACS Catal. 2018, 8, 3435–3446. [Google Scholar] [CrossRef]
- Pérez-Hernández, R. Reactivity of Pt/Ni supported on CeO2-nanorods on methanol steam reforming for H2 production: Steady state and DRIFTS studies. Int. J. Hydrogen Energy 2021, 46, 25954–25964. [Google Scholar] [CrossRef]
- Yan, Y.; Ouyang, M.; Xing, Y.; Tian, J.; Song, L.; Chen, P.; Liu, P.; Yang, L.; Song, X.; Fu, M.; et al. Promoted deep oxidation of m-xylene and inhibited the generation of carbon-deposited species by Ce modified Co3O4: The key role of modulating internal electron transport pathway. Appl. Catal. B Environ. 2025, 365, 124864. [Google Scholar] [CrossRef]
- Gao, H.; Song, Z.; Mao, Y.; Fan, Y.; Li, R.; Chen, X.; Liu, W.; Zhang, J.; Huang, Z.; Zhang, X. Tight coupling of oxygen vacancies and acidity on α-MnO2 through cerium doping engineering for efficient removal of multi-component VOCs. Appl. Catal. B Environ. 2025, 362, 124745. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Xu, W.; Xu, Z.; Jia, H. Homogeneous introduction of CeOy into MnOx-based catalyst for oxidation of aromatic VOCs. Appl. Catal. B Environ. 2018, 224, 825–835. [Google Scholar] [CrossRef]
- Gao, T.; Fjellvag, H.; Norby, P. A comparison study on Raman scattering properties of alpha- and beta-MnO2. Anal. Chim. Acta. 2009, 648, 235–239. [Google Scholar] [CrossRef]
- Li, J.-R.; Zhang, W.-P.; Li, C.; He, C. Efficient catalytic degradation of toluene at a readily prepared Mn-Cu catalyst: Catalytic performance and reaction pathway. J. Colloid Interface Sci. 2021, 591, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Kukier, G.A.; Turlik, A.; Xue, X.-S.; Houk, K.N. How Nature Circumvents the Woodward–Hoffmann Rules and Promotes the Forbidden Conrotatory 4n + 2 Electron Electrocyclization of Prinzbach’s Vinylogous Sesquifulvalene. J. Am. Chem. Soc. 2021, 143, 21694–21704. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.; Huang, J.; Huang, X.; Luo, X.; Sun, Y.; Dong, F.; Huang, H. Reheat treatment under vacuum induces pre-calcined α-MnO2 with oxygen vacancy as efficient catalysts for toluene oxidation. Chemosphere 2022, 289, 133081. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Huang, Q.; Ma, J.; Li, W.; Ogunbiyi, A.T.; Zhou, Z.; Chen, K.; Zhang, Q. HCHO Removal by MnO2(x)–CeO2: Influence of the Synergistic Effect on the Catalytic Activity. Ind. Eng. Chem. Res. 2019, 59, 596–608. [Google Scholar] [CrossRef]
- Bai, Y.; Dong, J.; Hou, Y.; Guo, Y.; Liu, Y.; Li, Y.; Han, X.; Huang, Z. Co3O4@PC derived from ZIF-67 as an efficient catalyst for the selective catalytic reduction of NO with NH3 at low temperature. Chem. Eng. J. 2019, 361, 703–712. [Google Scholar] [CrossRef]
- Gevers, L.E.; Enakonda, L.R.; Shahid, A.; Ould-Chikh, S.; Silva, C.I.Q.; Paalanen, P.P.; Aguilar-Tapia, A.; Hazemann, J.-L.; Hedhili, M.N.; Wen, F.; et al. Unraveling the structure and role of Mn and Ce for NOx reduction in application-relevant catalysts. Nat. Commun. 2022, 13, 2960. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, P.; Chen, L. Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Appl. Catal. B Environ. 2016, 189, 210–218. [Google Scholar] [CrossRef]
- Li, G.; Li, N.; Sun, Y.; Qu, Y.; Jiang, Z.; Zhao, Z.; Zhang, Z.; Cheng, J.; Hao, Z. Efficient defect engineering in Co-Mn binary oxides for low-temperature propane oxidation. Appl. Catal. B Environ. 2021, 282, 119512. [Google Scholar] [CrossRef]
- Hou, J.; Li, Y.; Liu, L.; Ren, L.; Zhao, X. Effect of giant oxygen vacancy defects on the catalytic oxidation of OMS-2 nanorods. J. Mater. Chem. A 2013, 1, 6736–6741. [Google Scholar] [CrossRef]
- Li, L.; Jia, S.; Yue, S.; Yang, Y.; Tan, C.; Wang, C.; Qiu, H.; Ji, Y.; Cao, M.; Tai, Z.; et al. Vanadium doping inhibit the Jahn−Teller effect of Mn3+ for high-performance aqueous zinc ion battery. Chin. Chem. Lett. 2025, 36, 111009. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, L.; Tang, Y.; Yang, Z.; Wang, H.; Guo, C.; Zhao, T.; Jiang, Y.; Wen, X.; Wang, F. Interfacial structure engineering enhances photo-thermal CO2 hydrogenation over Ni-CeO2 nanocomposites. Chem Catal. 2025, 17, 101361. [Google Scholar] [CrossRef]
- Song, R.; Zhao, G.; Restrepo-Flórez, J.M.; Pérez, C.J.V.; Chen, Z.; Ai, C.; Wang, A.; Jing, D.; Tountas, A.A.; Guo, J.; et al. Ethylene production via photocatalytic dehydrogenation of ethane using LaMn1−xCuxO3. Nat. Energy 2024, 9, 750–760. [Google Scholar] [CrossRef]
- Gong, P.; Xie, J.; Fang, D.; Han, D.; He, F.; Li, F.; Qi, K. Effects of surface physicochemical properties on NH3-SCR activity of MnO2 catalysts with different crystal structures. Chin. J. Catal. 2017, 38, 1925–1934. [Google Scholar] [CrossRef]
- Reyna-Alvarado, J.; López-Galán, O.A.; Trimmer, J.; Recalde-Benitez, O.; Molina, L.; Gutiérrez-Martínez, A.; Pérez-Hernández, R.; Ramos, M. Enhanced syngas (H2/CO) production by Co/CeO2 nanorods catalyst through dry reforming of methane. MRS Commun. 2024, 14, 1201–1209. [Google Scholar] [CrossRef]
- Xiong, T.; Cen, W.; Zhang, Y.; Dong, F. Bridging the g-C3N4 Interlayers for Enhanced Photocatalysis. ACS Catal. 2016, 6, 2462–2472. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Z.; Hua, M.; Liu, Y.; Jing, L.; Wei, L.; Hou, Z.; Wang, X.; Yu, X.; Wu, L.; et al. Differences between atomically-dispersed and particulate Pt supported catalysts on synergistic photothermocatalytic oxidation of VOCs from cooking oil fumes. Appl. Catal. B Environ. 2023, 339, 123116. [Google Scholar] [CrossRef]
- Dong, C.; Qu, Z.; Qin, Y.; Fu, Q.; Sun, H.; Duan, X. Revealing the Highly Catalytic Performance of Spinel CoMn2O4 for Toluene Oxidation: Involvement and Replenishment of Oxygen Species Using In Situ Designed-TP Techniques. ACS Catal. 2019, 9, 6698–6710. [Google Scholar] [CrossRef]
- Bi, F.; Wei, J.; Zhou, Z.; Zhang, Y.; Gao, B.; Liu, N.; Xu, J.; Liu, B.; Huang, Y.; Zhang, X. Insight into the Synergistic Effect of Binary Nonmetallic Codoped Co3O4 Catalysts for Efficient Ethyl Acetate Degradation under Humid Conditions. JACS Au 2025, 5, 363–380. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.; Liu, J.; Zhou, B.; Guo, M.; Liu, L. Catalytic Degradation of Toluene over MnO2/LaMnO3: Effect of Phase Type of MnO2 on Activity. Catalysts 2022, 12, 1666. [Google Scholar] [CrossRef]
- Li, L.; Jing, F.; Yan, J.; Jing, J.; Chu, W. Highly effective self-propagating synthesis of CeO2-doped MnO2 catalysts for toluene catalytic combustion. Catal. Today 2017, 297, 167–172. [Google Scholar] [CrossRef]
- Li, R.; Zhu, Y.; Rao, Y.; Huang, Y.; Guo, M.; Cao, J. Constructing oxygen vacancies for δ-MnO2 based monolithic catalyst by Cu intercalation to enhance toluene oxidation. Appl. Surf. Sci. 2024, 655, 159650. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, W.; Lai, S.; Chen, X. Integral structured Co–Mn composite oxides grown on interconnected Ni foam for catalytic toluene oxidation. RSC Adv. 2019, 9, 6533–6541. [Google Scholar] [CrossRef]
- Li, Y.; Xu, M.; Liu, R.; Wang, S.; Sun, T.; Yan, Z.; Wan, C.; Yu, H.; Li, H.; Li, H.; et al. Enhanced moisture tolerance and toluene oxidation activity of δ-MnO2 catalysts by Sn doping: Phase transition and surface protection. Fuel 2025, 398, 135521. [Google Scholar] [CrossRef]
- Zhang, X.; Bi, F.; Zhu, Z.; Yang, Y.; Zhao, S.; Chen, J.; Lv, X.; Wang, Y.; Xu, J.; Liu, N. The promoting effect of H2O on rod-like MnCeOx derived from MOFs for toluene oxidation: A combined experimental and theoretical investigation. Appl. Catal. B Environ. 2021, 297, 1203. [Google Scholar] [CrossRef]
Samples | SBET a (m2/g) | Pore Volume b (cm3/g) | Pore Diameter c (nm) | Crystal Size d (310) (nm) | Lattice Parameters e (Å) | XPS Results | |||
---|---|---|---|---|---|---|---|---|---|
(Mn2+ + Mn3+)/Total Mn | (OO-H + Oads)/Olatt | Ce3+/(Ce4++Ce3+) | AOS f | ||||||
CeO2 | 100.5 | 0.326 | 1.6–4.3 4.9–30.6 | — | — | — | 0.41 | 0.218 | — |
α-MnO2 | 70.2 | 0.379 | 3.0–17.5 | 83.6 | 9.86 | 0.56 | 0.24 | — | 3.69 |
Ce0.04Mn0.96O2 | 106.2 | 0.626 | 1.4–17.4 | 21.0 | 9.89 | 0.63 | 0.40 | 0.260 | 3.79 |
Ce0.07Mn0.93O2 | 37.8 | 0.225 | 1.4–6.5 | 20.3 | 9.79 | 0.80 | 0.51 | 0.251 | 3.44 |
Ce0.10Mn0.90O2 | 41.8 | 0.302 | 1.4–5.6 | 28.9 | 9.82 | 0.66 | 0.36 | 0.253 | 3.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Wang, Y.; Cao, M.; He, Z.; Qiao, R.; Bi, F.; Wang, Y.; Zhang, X. Preparation of CeXMn1−XO2 Catalysts with Strong Mn-Ce Synergistic Effect for Catalytic Oxidation of Toluene. Materials 2025, 18, 3809. https://doi.org/10.3390/ma18163809
Zhou Z, Wang Y, Cao M, He Z, Qiao R, Bi F, Wang Y, Zhang X. Preparation of CeXMn1−XO2 Catalysts with Strong Mn-Ce Synergistic Effect for Catalytic Oxidation of Toluene. Materials. 2025; 18(16):3809. https://doi.org/10.3390/ma18163809
Chicago/Turabian StyleZhou, Zhuoxuan, Yanxuan Wang, Mingkun Cao, Zhengqi He, Rong Qiao, Fukun Bi, Yuxin Wang, and Xiaodong Zhang. 2025. "Preparation of CeXMn1−XO2 Catalysts with Strong Mn-Ce Synergistic Effect for Catalytic Oxidation of Toluene" Materials 18, no. 16: 3809. https://doi.org/10.3390/ma18163809
APA StyleZhou, Z., Wang, Y., Cao, M., He, Z., Qiao, R., Bi, F., Wang, Y., & Zhang, X. (2025). Preparation of CeXMn1−XO2 Catalysts with Strong Mn-Ce Synergistic Effect for Catalytic Oxidation of Toluene. Materials, 18(16), 3809. https://doi.org/10.3390/ma18163809