The Role of Natural Fibers in the Building Industry—The Perspective of Sustainable Development
Abstract
1. Introduction
2. A Historical Overview of Pre-Industrial Revolution Housing Construction Methods
2.1. Wooden Construction
2.2. Masonry Construction
2.3. Earth Construction
2.4. Concrete and Reinforced Concrete Construction
2.5. Construction with Natural and Renewable Materials
2.6. Prefabricated and Modular Construction
2.7. Stone and Megalithic Construction
2.8. Clay and Wattle, and Daub Construction
3. Today’s Use of Traditional Housing Construction Practices
4. Returning to Traditional Materials: The Utilization of Natural Fibers in Construction
4.1. Types of Natural Fibers Used in Construction
4.1.1. Plant Fibers
Flax (Linum usitatissimum)
Hemp (Cannabis sativa)
Jute (Corchorus capsularis)
Sisal (Agave sisalana)
Coconut (Cocos nucifera)
Cotton (Gossypium spp.)
4.1.2. Animal and Mineral Fibers
Sheep Wool
Silk (Bombyx mori) and Horsehair
Asbestos (Now Banned)
4.2. Methods of Processing Natural Fibers
4.2.1. Physical Processing [110,111]
- Mechanization (cutting, grinding): Reduces the length of fibers to the desired fraction;
- Thermal modification: Includes drying or steam treatment to remove moisture;
- Ultrasound: Improves the delamination and dispersion of fibers in the matrix.
4.2.2. Chemical Processing [112,113,114]
- Alkalization (NaOH): Removes lignin and hemicellulose, increasing the contact surface with the matrix;
- Acetylation: Reduces the hygroscopicity of the fibers;
- Silanization: Improves adhesion between the fiber and epoxy resin or cement.
4.2.3. Biological Treatment [115,116]
- Enzymatic fermentation: Reduces the content of undesirable substances, e.g., pectins;
- Cellulolytic bacteria: Reduce the non-adhesive parts of the fibers.
4.3. Natural Fiber Composites in Construction
4.3.1. Polymer Composites [117,118]
- Matrices: Epoxy resins, polyester resins, polylactide (PLA);
- Applications: Facades, wall panels, furniture, roofing;
- Advantages: Lightweight, biodegradable, low CO2 emissions.
4.3.2. Cement Composites [119,120]
- Matrices: Portland cement, geopolymers;
- Applications: Wall blocks, plasters, facade panels;
- Advantages: Improved flexural strength, better crack resistance.
4.3.3. Insulation Composites [121,122]
- Matrices: Natural binders (starch, lignin), bio-resins;
- Applications: Insulation boards, acoustic mats;
- Advantages: High water vapor sorption, microclimate regulation.
5. What Factors Underlie the Recent Increase in Popularity of Natural Fibers?
- Environmental sustainability: Natural fibers are biodegradable, renewable, and have a lower environmental impact compared to synthetic fibers [160,161,162,163]. The growing environmental consciousness and need for sustainable development have driven the demand for natural fiber-based composites as alternatives to synthetic materials [161,162];
- Mechanical properties: Natural fibers possess good mechanical properties, such as high specific strength and stiffness, making them suitable reinforcements in composite materials [164,165,166]. The ability to enhance the mechanical performance of composites has increased their adoption in various industries [164,166,167];
- Cost-effectiveness: Natural fibers are generally low-cost, abundant, and have shorter processing stages compared to synthetic fibers [165,168]. This cost-effectiveness has made natural fiber-based composites an attractive option for various industries, particularly the automotive, aerospace, and civil engineering sectors [168,169];
- Lightweight and density: Natural fibers have a lower density compared to synthetic fibers, which contributes to the development of lightweight composite materials [135,139]. This property is particularly beneficial for applications in the automotive and aerospace industries, where weight reduction is an essential factor [168,169];
- Versatility and customizability: Natural fibers can be obtained from a wide range of sources, such as plants, animals, and agricultural waste, providing a diverse range of options for composite development [166,170]. Additionally, the chemical structure of natural fibers can be modified to enhance their properties, further increasing their versatility [165,167].
6. Disadvantages and Limitations of Natural Fibers
7. AI Technology: Opinion on the Question Posed in the Article
8. Summary: A Critical Analysis of the Potential for Natural Fibers to Revolutionize Material Science and Serve as Alternatives to Conventional Materials
8.1. Critical Analysis of Properties
8.2. Advantages of Natural Fibers as Insulation Materials
8.3. Limitations of Natural Fibers
8.3.1. Flammability: Flammability Mechanisms and Strategies to Address the Problem
8.3.2. Availability in Selected Regions, Regional Differences, and Economic Implications
8.3.3. Transportation Issues, Logistics and Costs, and Environmental Impact
- Production costs and availability: While natural fibers are renewable resources, their large-scale production can be costly and resource-intensive, particularly in terms of water and land usage. In comparison to synthetic materials, which can be manufactured cost-effectively, natural fibers generally incur higher production expenses;
- Limited durability: Natural fibers exhibit increased susceptibility to moisture, mold, fungi, and pests. They may undergo more rapid decomposition or experience a reduction in insulating properties under specific conditions, rendering them less advantageous in comparison to more durable synthetic alternatives;
- Mechanical properties: While natural fibers exhibit favorable insulating properties, their mechanical strength is frequently inferior to that of synthetic materials. This limitation restricts their application in certain contexts where high compressive strength or dynamic loads are necessary;
- Scale and logistics: Large-scale production of natural fibers that could meet global demands would necessitate substantial modifications in agricultural and industrial practices. The extensive cultivation of hemp, flax, or jute presents considerable logistical challenges, encompassing raw material transportation, processing, and storage.
8.4. The Challenges of Adaptation
8.5. Potential for the Future
8.6. Summary: Answer to the Main Question
8.7. The Future of Natural Materials
- Development of hybrid composites with improved performance and durability;
- Long-term analysis of performance under varying environmental conditions;
- Implementation of new processing technologies and recycling methods;
- Exploration of eco-friendly geopolymer matrix in association with fibers;
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Musa, M.F.; Yusof, M.R.; Samsudin, N.S.; Muhamad Halil, F. Adopting industrialisation in the construction environment: Meeting the requirements of sustainability. Sci. Res. J. 2016, 13, 45–66. Available online: https://ir.uitm.edu.my/id/eprint/34689 (accessed on 8 October 2024). [CrossRef]
- Kumar, R.; Aggarwal, V.; Surinder, M.G. Sustainable materials and techniques in affordable high-rise buildings—A case study. E3S Web Conf. 2021, 309, 01080. [Google Scholar] [CrossRef]
- Andersson, N.; Lessing, J. Industrialization of construction: Implications on standards, business models and project orientation. Organ. Technol. Manag. Constr. 2020, 11, 2109–2116. [Google Scholar] [CrossRef]
- Costa, S.; Carvalho, M.S.; Pimentel, C.; Duarte, C. A Systematic Literature Review and Conceptual Framework of Construction Industrialization. J. Constr. Eng. Manag. 2022, 149, 03122013. [Google Scholar] [CrossRef]
- Goh, E.; Loosemore, M. The impacts of industrialization on construction subcontractors: A resource based view. Constr. Manag. Econ. 2016, 35, 288–304. [Google Scholar] [CrossRef]
- Umar, U.A.; Tukur, H.; Khamidi, M.F.; Alkali, A.U. Impact of environmental assessment of green building materials on sustainable rating system. Adv. Mater. Res. 2013, 689, 398–402. [Google Scholar] [CrossRef]
- Sharma, N.K. Sustainable Building Material for Green Building Construction, Conservation and Refurbishing. Int. J. Adv. Sci. Technol. 2020, 29, 5343–5350. [Google Scholar]
- Sketh, K.N. Sustainable building materials used in green buildings. In Proceedings of the 9th International Conference on Engineering and Business Education (ICEBE) & 6th International Conference on Innovation and Entrepreneurship (ICIE), Ahmedabad, India, 24–26 February 2016; pp. 135–143. [Google Scholar]
- Shehata, N.; Mohamed, O.A.; Sayed, E.T.; Abdelkareem, M.A.; Olabi, A.G. Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials. Sci. Total Environ. 2022, 836, 155577. [Google Scholar] [CrossRef]
- Al-Maharma, A.Y.; Al-Huniti, N.S. Critical Review of the Parameters Affecting the Effectiveness of Moisture Absorption Treatments Used for Natural Composites. J. Compos. Sci. 2019, 3, 27. [Google Scholar] [CrossRef]
- Zhou, B.; Shi, J.; Chen, Z.Q. Experimental study on moisture migration process of zeolite-based composite humidity control material. Appl. Therm. Eng. 2018, 128, 604–613. [Google Scholar] [CrossRef]
- Belakroum, R.; Gherfi, A.; Bouchema, K.; Gharbi, A.; Kerboua, Y.; Kadja, M.; Maalouf, C.; Mai, T.; El Wakil, N.; Lachi, M. Hygric buffer and acoustic absorption of new building insulation materials based on date palm fibers. J. Build. Eng. 2017, 12, 132–139. [Google Scholar] [CrossRef]
- Mohsin, A.H.; Ellk, D.S. Identifying barriers to the use of sustainable building materials in building construction. J. Eng. Sustain. Dev. 2018, 22, 107–115. [Google Scholar] [CrossRef]
- Gounder, S.; Hasan, A.; Shrestha, A.; Elmualim, A. Barriers to the use of sustainable materials in Australian building projects. Eng. Constr. Archit. Manag. 2023, 30, 189–209. [Google Scholar] [CrossRef]
- Krueger, K.; Stoker, A.; Gaustad, G. “Alternative” materials in the green building and construction sector: Examples, barriers, and environmental analysis. Smart Sustain. Built Environ. 2019, 8, 270–291. [Google Scholar] [CrossRef]
- Dalirazar, S.; Sabzi, Z. Barriers to sustainable development: Critical social factors influencing the sustainable building development based on Swedish experts’ perspectives. Sustain. Dev. 2022, 30, 1963–1974. [Google Scholar] [CrossRef]
- Yetkin, E.G.; Koç, İ. Green Building Assessment Model for Historic Buildings of Turkey. ICONARP Int. J. Archit. Plan. 2023, 11, 904–923. [Google Scholar] [CrossRef]
- Wiryani, E.; Anggoro, S.; Mulyani, S. Identification of water conservative tree species with high economic value around “Sendang Kalimah Toyyibah”. Bioma Berk. Ilm. Biol. 2018, 19, 104. [Google Scholar] [CrossRef]
- Hartanti, G. Keberadaan Material Bambu sebagai Subtitusi Material Kayu pada Penerapan Desain Interior dan Arsitektur. Humaniora 2010, 1, 11. [Google Scholar] [CrossRef]
- Maknun, T.; Hasjim, M.; Muslimat, M.; Hasyim, M. The form of the traditional bamboo house in the Makassar culture: A cultural semiotic study. Semiotica 2020, 2020, 153–164. [Google Scholar] [CrossRef]
- Stolz, R. The end of bamboo houses in northern Laos. Am. Anthropol. 2023, 125, 611–622. [Google Scholar] [CrossRef]
- Librici, C.; Oliveira, D.V.; Silva, R.A.M. Seismic assessment of a vernacular rammed earth building. In Proceedings of the IABSE Symposium, Vancouver 2017: Engineering the Future, Vancouver, BC, Canada, 21–23 September 2017. [Google Scholar] [CrossRef]
- Islam, M.S.; Hossain, M.I.; Islam, M.A.; Shahriar, A.R.; Bose, B. Construction of earthen houses using CSEB: Bangladesh perspective. In Proceedings of the 3rd International Conference on Advances in Civil Engineering, CUET, Chittagong, Bangladesh, 21–23 December 2016. [Google Scholar]
- Thompson, D.; Augarde, C.; Osorio, J.P. A review of current construction guidelines to inform the design of rammed earth houses in seismically active zones. J. Build. Eng. 2022, 54, 104666. [Google Scholar] [CrossRef]
- Khechiba, A.; Djaghrouri, D.; Benabbas, M.; Leccese, F.; Rocca, M.; Salvadori, G. Balancing Thermal Comfort and Energy Consumption in Residential Buildings of Desert Areas: Impact of Passive Strategies. Sustainability 2023, 15, 8383. [Google Scholar] [CrossRef]
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Radkau, J. Wood: A History; Polity Press: London, UK, 2012. [Google Scholar]
- Perlin, J. A Forest Journey: The Story of Wood and Civilization; The Countryman Press: Woodstock, VT, USA, 2005. [Google Scholar]
- Asif, M. 2—Sustainability of timber, wood and bamboo in construction. In Sustainability of Construction Materials; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Cambridge, UK, 2009; pp. 31–54. [Google Scholar] [CrossRef]
- Padoch, C.; Brondizio, E.; Costa, S.; Pinedo-Vasquez, M.; Sears, R.R.; Siqueira, A. Urban Forest and Rural Cities: Multi-sited Households, Consumption Patterns, and Forest Resources in Amazonia. Ecol. Soc. 2008, 13, 2. Available online: https://www.jstor.org/stable/26267988 (accessed on 8 October 2024). [CrossRef]
- Shmulsky, R.; Jones, P.D. Forest Products and Wood Science: An Introduction; WILEY Blackwell: Hoboken, NJ, USA, 2019. [Google Scholar]
- Churkina, G.; Organschi, A.; Reyer, C.P.O.; Ruff, A.; Vinke, K.; Liu, Z.; Reck, B.K.; Graedel, T.E.; Schellnhuber, H.J. Buildings as a global carbon sink. Nat. Sustain. 2020, 3, 269–276. [Google Scholar] [CrossRef]
- Ullah, M.; Rehman, A.; Bashir, J. Conserving Wooden Structure of Neelum and Leepa Valley, Kashmir. Pak. J. Soc. Res. 2022, 04, 458–483. [Google Scholar] [CrossRef]
- Khan, A.A. Earthquake Safe Traditional House Construction Practices in Kashmir. In Indigenous Knowledge for Disaster Risk Reduction: Good Practices and Lessons Learned from Experiences in the Asia-Pacific Region. 2008. Available online: https://www.unisdr.org/files/3646_IndigenousKnowledgeDRR.pdf (accessed on 25 July 2025).
- Anwar, A.; Khan, A.; Ilya, M. Tradational wooden houses as a container of life patterns: A detailed study of Architectural spaces and elements of houses of Neelum Valley, Azad Kashmir, Pakistan. In Proceedings of the Kerpic’19—Earthen Heritage, New Technology, Management 7th International Conference, Muğla, Turkey, 5–7 September 2019. [Google Scholar]
- User:Stig Nygaard, Source: Wikimedia Commons. License: Creative Commons Attribution-Share Alike 4.0 International (CC BY-SA 4.0). Available online: https://commons.wikimedia.org/wiki/File:A_simple_Bamboo_house_in_Nzulenzu.jpg (accessed on 25 July 2025).
- DVIDSHUB (U.S. Defense Visual Information Distribution Service), Source: Wikimedia Commons. License: Creative Commons Attribution 2.0 Unported (CC BY 2.0). Available online: https://commons.wikimedia.org/wiki/File:Flickr_-_DVIDSHUB_-_New_eco-dome_signals_changes_for_local_village_(Image_10_of_10).jpg (accessed on 25 July 2025).
- Muhammad Mahdi Karim, Source: Wikimedia Commons. License: Creative Commons Attribution 3.0 Unported (CC BY 3.0). Available online: https://commons.wikimedia.org/wiki/File:Kashmir_Pakistan1.JPG (accessed on 25 July 2025).
- McCaig, I.; Ridout, B. Practical Building Conservation: Timber; Ashgate Publishing: London, UK, 2012. [Google Scholar]
- Stewart, E. The Timber Framing Book; Alan Hood&Company: Chambersburg, PA, USA, 2007. [Google Scholar]
- Ashurst, J. Conservation of Ruins; Butterworth-Heinemann: London, UK, 2007. [Google Scholar]
- Curl, J.S. A Dictionary of Architecture and Landscape Architecture; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Houben, H.; Guillaud, H. Earth Construction: A Comprehensive Guide; Intermediate Technology Publications: Rugby, UK, 1994. [Google Scholar]
- Rael, R. Earth Architecture; Princeton Architectural Press: New York, NY, USA, 2009. [Google Scholar]
- Neville, A.M. Properties of Concrete; Pearson Education: London, UK, 2011. [Google Scholar]
- Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties, and Materials; McGraw-Hill Education: New York, NY, USA, 2014. [Google Scholar]
- Magwood, C.; Mack, P. Straw Bale Building: How to Plan, Design & Build with Straw; New Society Publishers: Gabriola Island, BC, Canada, 2000. [Google Scholar]
- Liese, W.; Köhl, M. Bamboo: The Plant and Its Uses; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Knaack, U.; Chung-Klatte, S.; Hasselbach, R. Prefabricated Systems: Principles of Construction; Birkhäuser Basel: Basel, Switzerland, 2012. [Google Scholar]
- Lehner, M. The Complete Pyramids; Thames & Hudson: London, UK, 2008. [Google Scholar]
- Dipasquale, L.; Rovero, L.; Fratini, F. Ancient stone masonry constructions. In Nonconventional and Vernacular Construction Materials, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 403–435. [Google Scholar] [CrossRef]
- Oliver, P. Built to Meet Needs: Cultural Issues in Vernacular Architecture; Architectural Press: Oxford, UK, 2006. [Google Scholar]
- Hadrovic, A. Bosnian Chardaklia House: The Dzider Family’s House in The Crnoc Village near Kakanj. South East Eur. J. Archit. Des. 2021, 2021, 1–6. [Google Scholar] [CrossRef]
- Hadrovic, A. Bosnian Chardaklia House: House of the Korajlic Family in Hrvatinovici Near Tesanj. Int. J. Sci. Eng. Sci. 2022, 6, 26–37. [Google Scholar]
- Hadrovic, A. Bosnian Chardaklia House: The Bugilovic Family House in Gornja Tuzla. Int. J. Multidiscip. Res. Publ. 2022, 5, 25–30. [Google Scholar]
- Hadrovic, A. Bosnian chardaklia house: The kasumovic family house in vrnograc. Int. J. Multidiscip. Res. Growth Eval. 2022, 3, 123–133. [Google Scholar]
- Hadrovic, A. Bosnian Chardaklia House: Abazovic Family House in Donja Koprivna Near Cazin. J. Smart Build. Constr. Technol. 2022, 4, 15–27. [Google Scholar] [CrossRef]
- Hadrovic, A. Bosnian Chardaklia House: The Kapetanovic Family House 01 in Jajce. Int. J. Multidiscip. Res. Publ. 2022, 5, 51–56. [Google Scholar]
- Kudumovic, L.; Hadrovic, A. Architectural Characteristics of the Bosnian Chardaklia House: Two Examples from Cazin. bab J. FSMVU Fac. Archit. Des. 2021, 2, 43–56. [Google Scholar]
- Hadrovic, A. An Example Of Bioclimate Architecture In Bosnia And Herzegovina: Bosnian Chardaklia House In Gorani Near Konjic. Int. J. Sci. Manag. Res. 2022, 5, 42–55. [Google Scholar] [CrossRef]
- Moňoková, A.; Vilčeková, S. Environmental impact analysis of five family houses in eastern slovakia through a life cycle assessment. Sel. Sci. Pap.-J. Civ. Eng. 2019, 14, 81–92. [Google Scholar] [CrossRef]
- Krídlová Burdová, E.; Selecká, I.; Vilčeková, S.; Burák, D.; Sedláková, A. Evaluation of Family Houses in Slovakia Using a Building Environmental Assessment System. Sustainability 2020, 12, 6524. [Google Scholar] [CrossRef]
- Hassin, N.S.F.N.; Misni, A. Developing methodology to assess the thermal comfort of traditional malay house. IOP Conf. Ser. Earth Environ. Sci. 2022, 1067, 012023. [Google Scholar] [CrossRef]
- Rahman, N.B.A.; Ahmad, M.H.; Daud, R.; Rahim, S.A.A.; Sharkawi, N.; Abdullah, S.; Arshard, W.N.R.; Mahdzar, S.S.S. Architectural Value in Tanggam System on the Traditional Malay House. Adv. Civ. Eng. Mater. 2022, 223, 193–201. [Google Scholar] [CrossRef]
- Toe, D.H.C. Malaysia: Malay House. In Sustainable Houses and Living in the Hot-Humid Climates of Asia; Springer: Singapore, 2018; pp. 25–35. [Google Scholar] [CrossRef]
- Tuck, N.W.; Zaki, S.A.; Hagishima, A.; Rijal, H.B.; Yakub, F. Affordable retrofitting methods to achieve thermal comfort for a terrace house in Malaysia with a hot–humid climate. Energy Build. 2020, 223, 110072. [Google Scholar] [CrossRef]
- Tuck, N.W.; Zaki, S.A.; Hagishima, A.; Rijal, H.B.; Zakaria, M.A.; Yakub, F. Effectiveness of free running passive cooling strategies for indoor thermal environments: Example from a two-storey corner terrace house in Malaysia. Build. Environ. 2019, 160, 106214. [Google Scholar] [CrossRef]
- Nugroho, A.M.; Ahmad, M.H.; Ossen, D.R. A Preliminary Study of Thermal Comfort in Malaysia’s Single Storey Terraced Houses. J. Asian Archit. Build. Eng. 2007, 6, 175–182. [Google Scholar] [CrossRef]
- Jamaludin, N.; Mohammed, N.I.; Khamidi, M.F.; Wahab, S.N.A. Thermal Comfort of Residential Building in Malaysia at Different Micro-climates. Procedia-Soc. Behav. Sci. 2015, 170, 613–623. [Google Scholar] [CrossRef]
- LMih, Source: Wikimedia Commons. License: Creative Commons Attribution-Share Alike 4.0 International (CC BY-SA 4.0). Available online: https://commons.wikimedia.org/wiki/File:Building_with_ornaments_in_Čičmany,_Slovakia.jpg, (accessed on 25 July 2025).
- User:azmil77, Source: Wikimedia Commons. License: Creative Commons Attribution 3.0 Unported (CC BY 3.0). Available online: https://commons.wikimedia.org/wiki/File:Malay_Traditional_House,_Perak,_Malaysia_-_panoramio_(1).jpg (accessed on 25 July 2025).
- Rahim, M.; Ibrahim, M.; Marasabessy, F. Construction system and environment adaptation of traditional architecture in moluccas island. Civ. Eng. Archit. 2021, 9, 1530–1545. [Google Scholar] [CrossRef]
- Scopus: Natural fiber. Available online: https://www.scopus.com/search/form.uri?display=basic&zone=header&origin=#basic (accessed on 8 October 2024).
- Westman, M.P.; Fifield, L.S.; Simmons, K.L.; Laddha, S.; Kafentzis, T.A. Natural Fiber Composites: A Review; Technical Report; Pacific Northwest National Laboratory: Richland, WA, USA, 2010. [Google Scholar] [CrossRef]
- Saba, N.; Tahir, P.M.; Jawaid, M. A Review on Potentiality of Nano Filler/Natural Fiber Filled Polymer Hybrid Composites. Polymers 2014, 6, 2247–2273. [Google Scholar] [CrossRef]
- Girijappa, Y.G.T.; Rangappa, S.M.; Parameswaranpillai, J.; Siengchin, S. Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Front. Mater. 2019, 6, 226. [Google Scholar] [CrossRef]
- Sanal, I.; Verma, D. Construction Materials Reinforced with Natural Products. In Handbook of Ecomaterials; Springer: Basel, Switzerland, 2019; pp. 1–24. [Google Scholar] [CrossRef]
- Zini, E.; Scandola, M. Green composites: An Overview. Polym. Compos. 2011, 32, 1905–1915. [Google Scholar] [CrossRef]
- El-Wafa, M.A. Investigating Fiber Reinforcement Solutions for Environmentally Sustainable and Technologically. World J. Adv. Eng. Technol. Sci. 2024, 11, 044–049. [Google Scholar] [CrossRef]
- Idler, C.; Pecenka, R.; Fürll, C.; Gusovius, H. Wet Processing of Hemp: An Overview. J. Nat. Fibers 2011, 8, 59–80. [Google Scholar] [CrossRef]
- Ahmad, H.; Ismail, A.E. Fracture Energy of Woven Fabric Kenaf Composite Plates with Different Fiber Orientations. Mater. Sci. Forum 2017, 882, 56–60. [Google Scholar] [CrossRef]
- Rachedi, M.; Kriker, A. Thermal Properties of Plaster Reinforced with Date Palm Fibers. Civ. Environ. Eng. 2020, 16, 259–266. [Google Scholar] [CrossRef]
- Arairo, W.; Saba, M.; Bachawati, M.E.; Absi, J.; Kontoleon, K.J. Mechanical characterization and environmental assessment of stabilized earth blocks. IOP Conf. Ser. Earth Environ. Sci. 2022, 1123, 012060. [Google Scholar] [CrossRef]
- Zhao, K.; Xue, S.; Zhang, P.; Tian, Y.; Li, P. Application of natural plant fibers in cement-based composites and the influence on mechanical properties and mass transport. Materials 2019, 12, 3498. [Google Scholar] [CrossRef]
- Pakravan, H.R.; Jamshidi, M.; Latifi, M. Investigation on polymeric fibers as reinforcement in cementitious composites: Flexural performance. J. Ind. Text. 2011, 42, 3–18. [Google Scholar] [CrossRef]
- Dawood, E.T.; Ramli, M. Properties of high-strength flowable mortar reinforced with palm fibers. ISRN Civ. Eng. 2012, 2012, 1–5. [Google Scholar] [CrossRef]
- Bello, C.B.d.C.; Cecchi, A.; Ferrara, L. Assessing the alkali-sensitivity of the mechanical behavior of jute fibers to evaluate their durability in cementitious composites applications. In Proceedings of the RILEM Spring Convention and Conference; RILEM Bookseries; Springer: Cham, Switzerland, 2021; pp. 151–160. [Google Scholar] [CrossRef]
- Drechsler, A.; Frenzel, R.; Caspari, A.; Michel, S.; Holzschuh, M.; Synytska, A.; Liebscher, M.; Curosu, I.; Mechtcherine, V. Surface modification of polymeric fibers to control the interactions with cement-based matrices in fiber-reinforced composites. Key Eng. Mater. 2019, 809, 225–230. [Google Scholar] [CrossRef]
- Fidelis, M.E.A.; Silva, F.d.A.; Filho, R.D.T. The influence of fiber treatment on the mechanical behavior of jute textile reinforced concrete. Key Eng. Mater. 2014, 600, 469–474. [Google Scholar] [CrossRef]
- Zatul, S.N.; Siow, K.S.; Zuruzi, A.S. Fiber treatment and loading affect mechanical properties of bamboo/cement composite. Int. J. Adv. Agric. Environ. Eng. 2016, 4, 1–4. [Google Scholar] [CrossRef]
- Beyene, M.T.; Kadi, M.E.; Demissie, T.A.; Hemelrijck, D.V.; Tysmans, T. Mechanical behavior of cement composites reinforced by aligned enset fibers. Constr. Build. Mater. 2021, 304, 124607. [Google Scholar] [CrossRef]
- Adamu, M.; Alanazi, F.; Ibrahim, Y.E.; Alanazi, H.; Khed, V.C. A comprehensive review on sustainable natural fiber in cementitious composites: The date palm fiber case. Sustainability 2022, 14, 6691. [Google Scholar] [CrossRef]
- Amin, M.; Ahmad, W.; Khan, K.; Ahmad, A. A comprehensive review of types, properties, treatment methods and application of plant fibers in construction and building materials. Materials 2022, 15, 4362. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Z.; Xie, Z.; Wei, L.; Hua, J.; Huang, L.; Yap, P.-S. Recent developments on natural fiber concrete: A review of properties, sustainability, applications, barriers, and opportunities. Dev. Built Environ. 2023, 16, 100255. [Google Scholar] [CrossRef]
- Akhil, U.V.; Radhika, N.; Saleh, B.; Krishna, S.A.; Noble, N.; Rajeshkumar, L. A comprehensive review on plant-based natural fiber reinforced polymer composites: Fabrication, properties, and applications. Polym. Compos. 2023, 44, 2598–2633. [Google Scholar] [CrossRef]
- Rayyaan, R.; Kennon, W.R.; Potluri, P.; Akonda, M. Morphological modification of the technical flax fibre bundles to improve the longitudinal tensile properties of flax fibre reinforced epoxy composites. arXiv 2018. [Google Scholar] [CrossRef]
- Shelly, D.; Lee, S.; Park, S. Hemp fiber and its bio-composites: A comprehensive review part I—Characteristics and processing. Adv. Compos. Hybrid. Mater. 2025, 8, 252. [Google Scholar] [CrossRef]
- Siouta, L.; Apostolopoulou, M.; Bakolas, A. Natural Fibers in Composite Materials for Sustainable Building: A State-of-the-Art Review on Treated Hemp Fibers and Hurds in Mortars. Sustainability 2023, 16, 10368. [Google Scholar] [CrossRef]
- Al-Azad, N.; Asril, M.F.M.; Shah, M.K.M. A Review on Development of Natural Fibre Composites for Construction Applications. J. Mater. Sci. Chem. Eng. 2021, 9, 7. [Google Scholar] [CrossRef]
- Elfaleh, I.; Abbassi, F.; Habibi, M.; Ahmad, F.; Guedri, M.; Nasri, M.; Garnier, C. A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results Eng. 2023, 19, 101271. [Google Scholar] [CrossRef]
- Parasakthibala, G.; Monisha, A.S. A Review on Natural Fibers; Its Properties and Application Over Synthetic Fibers. IJRASET Int. J. Res. Appl. Sci. Eng. Technol. 2022, 10, 1894–1897. [Google Scholar] [CrossRef]
- Parlato, M.C.; Porto, S.M. Organized Framework of Main Possible Applications of Sheep Wool Fibers in Building Components. Sustainability 2020, 12, 761. [Google Scholar] [CrossRef]
- Murillo, M.; Sánchez, A.; Gil, A.; Araya-Letelier, G.; Burbano-Garcia, C.; Silva, Y. Use of animal fiber-reinforcement in construction materials: A review. Case Stud. Constr. Mater. 2024, 20, e02812. [Google Scholar] [CrossRef]
- Phatw (own work), Source: Wikimedia Commons. License: License: Creative Commons Attribution 3.0 Unported (CC BY 3.0). Available online: https://commons.wikimedia.org/wiki/File:Agave-sisal.jpg (accessed on 8 August 2025).
- Wikikarate24 (own work), Source: Wikimedia Commons. License: Creative Commons Attribution 4.0 International (CC BY 4.0). Available online: https://commons.wikimedia.org/wiki/File:Hemp_plant_in_a_field.webp (accessed on 8 August 2025).
- Filo gèn’ (own work), Source: Wikimedia Commons. License: Creative Commons Attribution-ShareAlike (CC BY-SA 4.0). Available online: https://commons.wikimedia.org/wiki/File:Cocos_nucifera_-_Drup_%28Arecaceae%29_02.jpg (accessed on 8 August 2025).
- Plantman (own work), Source: Wikimedia Commons. License: Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). Available online: https://commons.wikimedia.org/wiki/File:Linum_usitatissimum_20230402.jpg (accessed on 8 August 2025).
- Apurv013 (own work), Source: Wikimedia Commons. License: Creative Commons CC0 License (CC BY-SA 0). Available online: https://commons.wikimedia.org/wiki/File:Corchorus_capsularis_-_white_jute_3.jpg (accessed on 8 August 2025).
- Michael Bass-Deschênes (Commons user Mike Bass-Deschênes), Source: Wikimedia Commons. License: Creative Commons Attribution 2.0 Unported (CC BY 2.0). Available online: https://commons.wikimedia.org/wiki/File:Cotton_boll_nearly_ready_for_harvest.jpg (accessed on 8 August 2025).
- Placet, V. Characterization of the thermo-mechanical behaviour of Hemp fibres intended for the manufacturing oh high performance composites. arXiv 2009. [Google Scholar] [CrossRef]
- Karaduman, Y.; Gokcan, D.; Onal, L. Effect of enzymatic pretreatment on the mechanical properties of jute fiber-reinforced polyester composites. J. Compos. Mater. 2013, 47, 1293–1302. [Google Scholar] [CrossRef]
- Arunachalam, S.J.; Saravanan, R.; Anbuchezhiyan, G. An overview on chemical treatment in natural fiber composites. Mater. Today Proc. 2024. [Google Scholar] [CrossRef]
- Khalil, H.; Ismail, H.; Rozman, H.; Ahmad, M. The effect of acetylation on interfacial shear strength between plant fibres and various matrices. Eur. Polym. J. 2001, 37, 1037–1045. [Google Scholar] [CrossRef]
- Sathish, S.; Karthi, N.; Prabhu, L.; Gokulkumar, S.; Balaji, D.; Vigneshkumar, N.; Ajeem Farhan, T.; AkilKumar, A.; Dinesh, V. A review of natural fiber composites: Extraction methods, chemical treatments and applications. Mater. Today Proc. 2020, 45, 8017–8023. [Google Scholar] [CrossRef]
- George, M.; Mussone, P.G.; Alemaskin, K.; Chae, M.; Wolodko, J.; Bressler, D.C. Enzymatically treated natural fibres as reinforcing agents for biocomposite material: Mechanical, thermal, and moisture absorption characterization. J. Mater. Sci. 2016, 51, 2677–2686. [Google Scholar] [CrossRef]
- De Prez, J.; Van Vuure, A.W.; Ivens, J.; Aerts, G.; Van de Voorde, I. Effect of enzymatic treatment of flax on fineness of fibers and mechanical performance of composites. Compos. Part A Appl. Sci. Manuf. 2019, 123, 190–199. [Google Scholar] [CrossRef]
- Imon, I.H. Sustainable Natural Fiber Based Composites Materials: A Review. ChemRxiv 2024. [Google Scholar] [CrossRef]
- Kamarudin, S.H.; Mohd Basri, M.S.; Rayung, M.; Abu, F.; Ahmad, S.; Norizan, M.N.; Osman, S.; Sarifuddin, N.; Desa, M.S.; Abdullah, U.H.; et al. A Review on Natural Fiber Reinforced Polymer Composites (NFRPC) for Sustainable Industrial Applications. Polymers 2021, 14, 3698. [Google Scholar] [CrossRef]
- Singh, A.; Yadav, B.P. Sustainable innovations and future prospects in construction material: A review on natural fiber-reinforced cement composites. Environ. Sci. Pollut. Res. Int. 2024, 31, 62549–62587. [Google Scholar] [CrossRef]
- Lilargem Rocha, D.; Tambara Júnior, L.U.; Marvila, M.T.; Pereira, E.C.; Souza, D.; De Azevedo, A.R. A Review of the Use of Natural Fibers in Cement Composites: Concepts, Applications and Brazilian History. Polymers 2021, 14, 2043. [Google Scholar] [CrossRef]
- Liuzzi, S.; Rubino, C.; Martellotta, F.; Stefanizzi, P. Sustainable Materials from Waste Paper: Thermal and Acoustical Characterization. Appl. Sci. 2022, 13, 4710. [Google Scholar] [CrossRef]
- Rubino, C.; Bonet Aracil, M.; Liuzzi, S.; Stefanizzi, P.; Martellotta, F. Wool waste used as sustainable nonwoven for building applications. J. Clean. Prod. 2020, 278, 123905. [Google Scholar] [CrossRef]
- Karim, N.; Sarker, F.; Afroj, S.; Zhang, M.; Potluri, P.; Novoselov, K.S. Sustainable and Multifunctional Composites of Graphene-Based Natural Jute Fibers. Adv. Sustain. Syst. 2021, 5, 2000228. [Google Scholar] [CrossRef]
- Arnold, U.; Palmenaer, A.D.; Brück, T.; Kuse, K. Energy-efficient carbon fiber production with concentrated solar power: Process design and techno-economic analysis. Ind. Eng. Chem. Res. 2018, 57, 7934–7945. [Google Scholar] [CrossRef]
- Salim, N.V.; Blight, S.; Creighton, C.; Nunna, S.; Atkiss, S.; Razal, J.M. The role of tension and temperature for efficient carbonization of polyacrylonitrile fibers: Toward low cost carbon fibers. Ind. Eng. Chem. Res. 2018, 57, 4268–4276. [Google Scholar] [CrossRef]
- Arnold, U.; Brück, T.; Palmenaer, A.D.; Kuse, K. Carbon capture and sustainable utilization by algal polyacrylonitrile fiber production: Process design, techno-economic analysis, and climate related aspects. Ind. Eng. Chem. Res. 2018, 57, 7922–7933. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, R.; Yan, W.; Zhu, X. Analysis and evaluation of energy consumption and carbon emission levels of products produced by different kinds of equipment based on green development concept. Sustainability 2022, 14, 7631. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, X.; Cheng, F.; Ramakrishna, S. Study progress on inorganic fibers from industry solid wastes and the key factors determining their characteristics. Materials 2022, 15, 7256. [Google Scholar] [CrossRef]
- Çelik, O.; Yaşar, A.; Karaçor, B. Properties of basalt/aramid fiber reinforced hybrid composites compared to carbon fiber composites. Polym. Compos. 2023, 44, 3509–3521. [Google Scholar] [CrossRef]
- Qi, Z.; Cai, D.; Zhang, N.; Long, L.; Zhou, G. Experimental and numerical study on the mechanical properties of carbon/aramid intralayer hybrid composites. J. Reinf. Plast. Compos. 2023, 43, 657–670. [Google Scholar] [CrossRef]
- Tatar, J.; Milev, S. Durability of externally bonded fiber-reinforced polymer composites in concrete structures: A critical review. Polymers 2021, 13, 765. [Google Scholar] [CrossRef]
- Meliande, N.M.; Silveira, P.H.P.M.d.; Monteiro, S.N.; Nascimento, L.F.C. Tensile properties of curaua–aramid hybrid laminated composites for ballistic helmet. Polymers 2022, 14, 2588. [Google Scholar] [CrossRef] [PubMed]
- Song, J. Pairing effect and tensile properties of laminated high-performance hybrid composites prepared using carbon/glass and carbon/aramid fibers. Compos. Part B Eng. 2015, 79, 61–66. [Google Scholar] [CrossRef]
- Mengal, A.N.; Karuppanan, S.; Wahab, A.A. Basalt carbon hybrid composite for wind turbine rotor blades: A short review. Adv. Mater. Res. 2014, 970, 67–73. [Google Scholar] [CrossRef]
- Neves, A.C.C.; Rohen, L.A.; de Castro, R.G.; Vieira, C.M.F.; Margem, F.M.; Monteiro, S.N. Charpy Impact Test in Epoxy Matrix Composites Reinforced with Hemp Fiber. ABM Proc. 2018, 70, 615–620. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Khalina, A.; Abdullah, N.; Aisyah, A.H.; Rafiqah, S.A.; Sabaruddin, F.A.; Kamarudin, S.H.; Norrrahim, M.N.F.; Ilyas, R.A.; et al. A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers 2021, 13, 646. [Google Scholar] [CrossRef]
- Dong, S.; Xian, G.; Yi, X. Life Cycle Assessment of Ramie Fiber Used for FRPs. Aerospace 2018, 5, 81. [Google Scholar] [CrossRef]
- Sachin, K.O.; Maruthi, B.H.; Puttaswamaiah, S.; Satish, B. Effect of fillers on water and chemical absorption behavior of natural fiber reinforced epoxy composites. Int. J. Biosens. Bioelectron. 2021, 7, 69–72. [Google Scholar] [CrossRef]
- Júnior, R.R.d.R.; Simonassi, N.T.; Duarte, F.P.L.; Viera, C.M.F.; Monteiro, S.N. Use of Corn Stalk Waste in the Manufacturing of Composites: A Review. J. Eng. Res. 2024, 4, 2–8. [Google Scholar] [CrossRef]
- Laddha, R.; Patil, D.; Waghulde, V.; More, G.V.; More, C.R. Eco-Friendly Synergy: A Review of Fully Biodegradable Composites Combining Biofibers and PLAPHB Matrix. Int. Res. J. Mod. Eng. Technol. Sci. 2023, 5. [Google Scholar] [CrossRef]
- Tasgin, Y.; Demircan, G.; Kandemir, S.; Acikgoz, A. Mechanical, wear and thermal properties of natural fiber-reinforced epoxy composite: Cotton, sisal, coir and wool fibers. J. Mater. Sci. 2024, 59, 10844–10857. [Google Scholar] [CrossRef]
- Rahman, M.Z. Mechanical and damping performances of flax fibre composites—A review. Compos. Part C Open Access 2021, 4, 100081. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Gassan, J. Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 1999, 24, 221–274. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Nicoletti, F.; Vitale, G.; Prestipino, M.; Valenza, A. A new eco-friendly chemical treatment of natural fibers: Effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Compos. Part B Eng. 2016, 85, 150–160. [Google Scholar] [CrossRef]
- Bakar, N.; Chin, S.C.; Siregar, J.P.; Ngien, S.K. A review on physical, mechanical, thermal properties and chemical composition of plant fibers. IOP Conf. Ser. Mater. Sci. Eng. 2020, 736, 052017. [Google Scholar] [CrossRef]
- Praveena, B.A.; Buradi, A.; Santhosh, N.; Vasu, V.K.; Hatgundi, J.; Huliya, D. Study on characterization of mechanical, thermal properties, machinability and biodegradability of natural fiber reinforced polymer composites and its Applications, recent developments and future potentials: A comprehensive review. Mater. Today Proc. 2021, 52, 1255–1259. [Google Scholar] [CrossRef]
- Koronis, G.; Silva, A.; Fontul, M. Green composites: A review of adequate materials for automotive applications. Compos. Part B Eng. 2013, 44, 120–127. [Google Scholar] [CrossRef]
- Li, Y.; Mai, Y.W.; Ye, L. Sisal fibre and its composites: A review of recent developments. Compos. Sci. Technol. 2000, 60, 2037–2055. [Google Scholar] [CrossRef]
- Mansor, M.R.; Sapuan, S.M.; Zainudin, E.S.; Nuraini, A.A.; Hambali, A. Hybrid natural and glass fibers reinforced polymer composites material selection using Analytical Hierarchy Process for automotive brake lever design. Mater. Des. 2013, 51, 484–492. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.G.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef]
- Parbin, S.; Waghmare, N.K.; Singh, S.K.; Khan, S. Mechanical properties of natural fiber reinforced epoxy composites: A review. Procedia Comput. Sci. 2018, 152, 375–379. [Google Scholar] [CrossRef]
- Thomason, J. The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1641–1652. [Google Scholar] [CrossRef]
- Wei, B.; Cao, H.; Song, S. Tensile behavior contrast of basalt and glass fibers after chemical treatment. Mater. Des. 2010, 31, 4244–4250. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Jayaraman, K. Flax fibre and its composites—A review. Compos. Part B Eng. 2014, 56, 296–317. [Google Scholar] [CrossRef]
- Zafeiropoulos, N.E. (Ed.) Interface Engineering of Natural Fibre Composites for Maximum Performance; Woodhead Publishing: Cambridge, UK, 2011; ISBN 9781845697426. [Google Scholar]
- Cho, J.; Park, J. Hybrid fiber-reinforced composite with carbon, glass, basalt, and para-aramid fibers for light use applications. Mater. Res. Express 2021, 8, 125304. [Google Scholar] [CrossRef]
- Doğru, M.H.; Yeter, E.; Göv, İ.; Göv, K. Ballistic impact resistance and flexural performance of natural basalt fiber with carbon and glass fibers in inter-ply hybrid composites. Polym. Compos. 2024, 45, 9785–9801. [Google Scholar] [CrossRef]
- Wagh, J.; Madgule, M.; Awadhani, L. Investigative studies on the mechanical behavior of Jute, Sisal, Hemp, and glass fiber-based composite material. Mater. Today Proc. 2022, 77, 969–976. [Google Scholar] [CrossRef]
- Raci Aydin, M.; Acar, V.; Cakir, F.; Gündoğdu, Ö.; Akbulut, H. Comparative dynamic analysis of carbon, aramid and glass fiber reinforced interply and intraply hybrid composites. Compos. Struct. 2022, 291, 115595. [Google Scholar] [CrossRef]
- Kaushik, Y.; Sooriyaperakasam, N.; Rathee, U.; Naik, N. A mini review of natural cellulosic fibers: Extraction, treatment and characterization methods. J. Comput. Mech. Manag. 2023, 2, 32–47. [Google Scholar] [CrossRef]
- Ngo, T. Natural fibers for sustainable bio-composites. In Natural and Artificial Fiber-Reinforced Composites as Renewable Sources; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Gkoloni, N.; Golonis, C.; Kostopoulos, V. Integration of LCA and LCC for decision making in biocomposite production. IOP Conf. Ser. Earth Environ. Sci. 2022, 1123, 012071. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 2018, 172, 566–581. [Google Scholar] [CrossRef]
- Dikshit, I.; Bhushan, G. Experimental investigations and optimization of tensile and impact strength of a novel composite reinforced with carbon jute and porcine bone powder. Polym. Compos. 2022, 43, 3915–3928. [Google Scholar] [CrossRef]
- Suriaman, I.; Hendrarsakti, J.; Mardiyati, Y.; Pasek, A.D. The effect of alkali treatment on improving the mechanical properties of ramie (boehmeria nivea), sugar palm (arenga pinnata), and coir (cocos nucifera) fibers. ASEAN Eng. J. 2021, 11, 177–189. [Google Scholar] [CrossRef]
- Abidin, N.M.; Sultan, M.T.H.; Hua, L.S.; Basri, A.A.; Shah, A.U.M.; Safri, S.N.A. A brief review of computational analysis and experimental models of composite materials for aerospace applications. J. Reinf. Plast. Compos. 2019, 38, 1031–1039. [Google Scholar] [CrossRef]
- Mansingh, B.B.; Binoj, J.S.; Siengchin, S.; Sanjay, M.R. Influence of surface treatment on properties of cocos nucifera l. var typica fiber reinforced polymer composites. J. Appl. Polym. Sci. 2022, 140, e53345. [Google Scholar] [CrossRef]
- Ali, A.; Shaker, K.; Nawab, Y.; Jabbar, M.; Hussain, T.; Militký, J.; Baheti, V. Hydrophobic treatment of natural fibers and their composites—A review. J. Ind. Text. 2016, 47, 2153–2183. [Google Scholar] [CrossRef]
- Silva, R.; Neto, J.C.d.M.; Kimura, S.P.R. Natural fiber for reinforcement in matrix polymeric. Indep. J. Manag. Prod. 2022, 13, 154–167. [Google Scholar] [CrossRef]
- Mohammed, L.; Ansari, M.; Pua, G.; Jawaid, M.; Islam, S. A review on natural fiber reinforced polymer composite and its applications. Int. J. Polym. Sci. 2015, 2015, 243947. [Google Scholar] [CrossRef]
- Akar, M.A.; Tosun, A.T.; Yel, F.; Kumlu, U. The usage of natural fibers for automotive applications. Macromol. Symp. 2022, 404. [Google Scholar] [CrossRef]
- Khan, T.; Sultan, M.T.B.H.; Ariffin, A.H. The challenges of natural fiber in manufacturing, material selection, and technology application: A review. J. Reinf. Plast. Compos. 2018, 37, 770–779. [Google Scholar] [CrossRef]
- Market Research Future. Natural Fiber Reinforced Composites Market Research Report—Forecast to 2034. 2025. Available online: https://www.marketresearchfuture.com/reports/natural-fiber-reinforced-composite-market-37224 (accessed on 8 August 2025).
- MarketsandMarkets. Natural Fiber Composites Market worth $0.46 billion in 2029—Exclusive Report by MarketsandMarkets™. 2025. Available online: https://www.prnewswire.com/news-releases/natural-fiber-composites-market-worth-0-46-billion-in-2029--exclusive-report-by-marketsandmarkets-302361614.html (accessed on 8 August 2025).
- Grand View Research. Natural Fiber Market Size, Share & Trends Analysis Report by Plant-based Fiber (Cotton, Linen, Jute, Hemp), by Animal-Based Fiber (Wool, Silk), by Region (North America, Europe, Asia Pacific, C&SA, MEA), and Segment Forecasts, 2025–2030. 2025. Available online: https://www.grandviewresearch.com/industry-analysis/natural-fibers-market (accessed on 8 August 2025).
- Mordor Intelligence. Natural Fiber Reinforced Composites Market Size & Share Analysis—Growth Trends & Forecasts (2025–2030). 2025. Available online: https://www.mordorintelligence.com/industry-reports/natural-fiber-reinforced-composites-market (accessed on 8 August 2025).
- Hemp. Available online: https://en.wikipedia.org/wiki/Hemp (accessed on 8 August 2025).
- World Construction Today. Natural Fiber Composites Market to hit $18.98B by 2032. 2024. Available online: https://www.worldconstructiontoday.com/market-moves/natural-fiber-composites-market-to-hit-18-98b-by-2032 (accessed on 8 August 2025).
- Grand View Research. Natural Fiber Composites Market Size, Share & Trends Analysis Report By Raw Material (Wood, Cotton, Flax), by Matrix, by Technology, by Application, By Region, and Segment Forecasts, 2025–2030. 2025. Available online: https://www.grandviewresearch.com/industry-analysis/natural-fiber-composites-market (accessed on 8 August 2025).
- Khan, M.A.; Hassan, M.M. Effect of γ-aminopropyl trimethoxy silane on the performance of jute–polycarbonate composites. J. Appl. Polym. Sci. 2006, 100, 4142–4154. [Google Scholar] [CrossRef]
- Fathi, B.; Foruzanmehr, M.; Elkoun, S.; Robert, M. Novel approach for silane treatment of flax fiber to improve the interfacial adhesion in flax/bio epoxy composites. J. Compos. Mater. 2019, 53, 2229–2238. [Google Scholar] [CrossRef]
- Muñoz, E.; García-Manrique, J.A. Water Absorption Behaviour and Its Effect on the Mechanical Properties of Flax Fibre Reinforced Bioepoxy Composites. Int. J. Polym. Sci. 2015, 2015, 1–10. [Google Scholar] [CrossRef]
- Sathasivam, K.V.; Haris, M.R.H.M.; Fuloria, S.; Fuloria, N.K.; Malviya, R.; Subramaniyan, V. Chemical Modification of Banana Trunk Fibers for the Production of Green Composites. Polymers 2021, 13, 1943. [Google Scholar] [CrossRef] [PubMed]
- Alarcón-López, C.; Bárcenas, K.L.C.; Báez, J.E.N.; Carranza, J.A.C.; Bautista, I.B.D. Current development of edible food packaging: A review. Afr. J. Biol. Sci. 2022, 4, 1. [Google Scholar] [CrossRef]
- Suriani, M.J.; Rapi, H.Z.; Ilyas, R.A.; Petrů, M.; Sapuan, S. Delamination and Manufacturing Defects in Natural Fiber-Reinforced Hybrid Composite: A Review. Polymers 2021, 13, 1323. [Google Scholar] [CrossRef]
- Madhu, P.; Sanjay, M.R.; Jawaid, M.; Siengchin, S.; Khan, A.; Pruncu, C.I. A new study on effect of various chemical treatments on agave americana fiber for composite reinforcement: Physico-chemical, thermal, mechanical and morphological properties. Polym. Test. 2020, 85, 106437. [Google Scholar] [CrossRef]
- Raja, N.D.; Kumar, K.V.A.; Salunkhe, S.; Hussein, H.M.A. Investigation of water absorption properties of 2d interwoven kevlar–jute reinforced hybrid laminates. J. Compos. Sci. 2023, 7, 187. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Liang, W.; Wang, J.; Chen, Y. Effect of silane treatment on mechanical properties and thermal behavior of bamboo fibers reinforced polypropylene composites. J. Eng. Fibers Fabr. 2020, 15, 1–10. [Google Scholar] [CrossRef]
- Geng, J.; Cai, Y. Influence of interface modification on the moisture absorption and thermal resistance of ramie fiber/degradable epoxy composites. Materials 2024, 17, 1779. [Google Scholar] [CrossRef]
- Thitithanasarn, S.; Yamada, K.; Ishiaku, U.S.; Hamada, H. The effect of curative concentration on thermal and mechanical properties of flexible epoxy coated jute fabric reinforced polyamide 6 composites. Open J. Compos. Mater. 2012, 2, 133–138. [Google Scholar] [CrossRef]
- Tiber, B.; Balcıoğlu, H.E. Flexural and fracture behavior of natural fiber knitted fabric reinforced composites. Polym. Compos. 2017, 40, 217–228. [Google Scholar] [CrossRef]
- Priya, C.; Sudalaimani, K. Performance assessment of surface modified natural fibre using NaOH in composite concrete. Mater. Res. Express 2023, 10, 125101. [Google Scholar] [CrossRef]
- Zach, J.; Hroudová, J.; Sedlmajer, M.; Korjenić, A. Study of heat transfer process in structure of thermal insulating materials based on natural fibers. Adv. Mater. Res. 2014, 1000, 227–230. [Google Scholar] [CrossRef]
- Dhakal, H.; Zhang, Z.; Richardson, M. Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos. Sci. Technol. 2007, 67, 1674–1683. [Google Scholar] [CrossRef]
- Sreekala, M.; Thomas, S. Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. Compos. Sci. Technol. 2003, 63, 861–869. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Mamun, A.A.; Faruk, O. Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites. Express Polym. Lett. 2007, 1, 755–762. [Google Scholar] [CrossRef]
- Joseph, K.; Thomas, S.; Pavithran, C. Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 1996, 37, 5139–5149. [Google Scholar] [CrossRef]
- Bertholet, J.M. Composite Materials: Mechanical Behavior and Structural Analysis; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Facca, A.G.; Kortschot, M.T.; Yan, N. Predicting the tensile strength of natural fibre reinforced thermoplastics. Compos. Sci. Technol. 2007, 67, 2454–2466. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. A review on basalt fibre and its composites. Compos. Part B Eng. 2015, 74, 74–94. [Google Scholar] [CrossRef]
- George, J.; Sreekala, M.S.; Thomas, S. A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym. Eng. Sci. 2001, 41, 1471–1485. [Google Scholar] [CrossRef]
- Kang, D.; Qin, Y.; Zhang, X.; Han, K.; Cheng, L.; Zhang, Y.; Sun, Z.; Dai, J.; Yu, M. Effect of surface treatment on interface properties of carbon fiber reinforced PA6 composites during overmolding. Polym. Compos. 2025, 46, 530–546. [Google Scholar] [CrossRef]
- John, M.J.; Thomas, S. Biofibres and biocomposites. Carbohydr. Polym. 2008, 71, 343–364. [Google Scholar] [CrossRef]
- Kabir, M.; Wang, H.; Lau, K.; Cardona, F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B Eng. 2012, 43, 2883–2892. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Le Duigou, A.; Davies, P.; Baley, C. Environmental Impact Analysis of the Production of Flax Fibres to be Used as Composite Material Reinforcement. J. Biobased Mater. Bioenergy 2011, 5, 153–165. [Google Scholar] [CrossRef]
- Shalwan, A.; Yousif, B. In State of Art: Mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater. Des. 2013, 48, 14–24. [Google Scholar] [CrossRef]
- Li, X.; Tabil, L.G.; Panigrahi, S. Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. J. Polym. Environ. 2007, 15, 25–33. [Google Scholar] [CrossRef]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef]
- Azman, M.A.; Asyraf, M.R.M.; Khalina, A.; Petrů, M.; Ruzaidi, C.; Sapuan, S.M.; Wan Nik, W.B.; Ishak, M.R.; Ilyas, R.A.; Suriani, M.J. Natural Fiber Reinforced Composite Material for Product Design: A Short Review. Polymers 2021, 13, 1917. [Google Scholar] [CrossRef]
- El Hawary, O.; Boccarusso, L.; Ansell, M.P.; Durante, M.; Pinto, F. An Overview of Natural Fiber Composites for Marine Applications. J. Mar. Sci. Eng. 2023, 11, 1076. [Google Scholar] [CrossRef]
- Kumar, S. A Review on Natural Fiber Reinforced Composites and its Applications. Int. J. Res. Appl. Sci. Eng. Technol. 2021, 9, 1917–1921. [Google Scholar] [CrossRef]
- Ganapathy, S.B.; Sakthivel, A.R.; Sultan, M.T.H.; Shahar, F.S.; Shah, A.U.M.; Khan, T.; Sebaey, T.A. Effect of Prosopis Juliflora Thorns on Mechanical Properties of Plastic Waste Reinforced Epoxy Composites. Polymers 2022, 14, 1278. [Google Scholar] [CrossRef] [PubMed]
- Chowdary, M.S.; Raghavendra, G.; Kumar, M.S.R.N.; Ojha, S.; Prakash, M. A review on the degradation of properties under the influence of liquid medium of hybrid polymer composites. SN Appl. Sci. 2020, 2, 1708. [Google Scholar] [CrossRef]
- Rajesh, M.; Pitchaimani, J. Mechanical characterization of natural fiber intra-ply fabric polymer composites: Influence of chemical modifications. J. Reinf. Plast. Compos. 2017, 36, 1651–1664. [Google Scholar] [CrossRef]
- Rajesh, S.; Ramnath, B.V.; Prashanth, B.; Kumar, M.P. An Effect of Fiber Orientation of Tensile and Compressive Properties of Natural Hybrid Composite. Int. J. Mech. Prod. Eng. Res. Dev. 2019, 9, 11–20. [Google Scholar] [CrossRef]
- Raj, S.S.; Dhas, J.E.R.; Jesuthanam, C. Challenges on machining characteristics of natural fiber-reinforced composites—A review. J. Reinf. Plast. Compos. 2020, 40, 41–69. [Google Scholar] [CrossRef]
- Rothenhäusler, F.; Ouali, A.; Rinberg, R.; Demleitner, M.; Kroll, L.; Ruckdaeschel, H. Influence of sodium hydroxide, silane, and siloxane treatments on the moisture sensitivity and mechanical properties of flax fiber composites. Polym. Compos. 2024, 45, 8937–8948. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Imran, R.; Arif, Z.U.; Akram, N.; Arshad, H.; Rashid, A.A.; Márquez, F.P.G. Developments in chemical treatments, manufacturing techniques and potential applications of natural-fibers-based biodegradable composites. Coatings 2021, 11, 293. [Google Scholar] [CrossRef]
- Huzaifa, M.; Akhtar, N.; Zahoor, S.; Abdullah, M.H.; Arslan, M.; Niazi, A.K. Hemp fibers as sustainable reinforcement in natural fiber composites: A comprehensive review. World J. Biol. Biotechnol. 2024, 9, 1. [Google Scholar] [CrossRef]
- Bozacı, E.; Tağaç, A.A. Extraction and characterization of new cellulosic fiber from catalpa bignonioides fruits for potential use in sustainable products. Polymers 2022, 15, 201. [Google Scholar] [CrossRef] [PubMed]
- Tavares, T.D.; Antunes, J.C.; Ferreira, F.; Felgueiras, H.P. Biofunctionalization of natural fiber-reinforced biocomposites for biomedical applications. Biomolecules 2020, 10, 148. [Google Scholar] [CrossRef] [PubMed]
- Maiti, S.; Islam, M.R.; Uddin, M.A.; Afroj, S.; Eichhorn, S.J.; Karim, N. Sustainable fiber-reinforced composites: A review. Adv. Sustain. Syst. 2022, 6. [Google Scholar] [CrossRef]
- Matykiewicz, D.; Dudziec, B.; Skórczewska, K.; Sałasińska, K. The Effect of Silanes Treatments on Thermal and Mechanical Properties of Nettle Fibre/Bio Epoxy Composites. J. Nat. Fibers 2024, 21. [Google Scholar] [CrossRef]
- Simonini, L.; Dorigato, A. Surface Modification of Wood Fibers with Citric Acid as a Sustainable Approach to Developing Novel Polycaprolactone-Based Composites for Packaging Applications. J. Compos. Sci. 2025, 9, 274. [Google Scholar] [CrossRef]
- Ghalme, S.; Hayat, M.; Harne, M. A Comprehensive Review of Natural Fibers: Bio-Based Constituents for Advancing Sustainable Materials Technology. J. Renew. Mater. 2025, 13, 273–295. [Google Scholar] [CrossRef]
- Puttegowda, M. Eco-friendly composites: Exploring the potential of natural fiber reinforcement. Discov. Appl. Sci. 2025, 7, 401. [Google Scholar] [CrossRef]
- Rao, A.; Divoux, T.; Owens, C.; Hart, A.J. Printable, castable, nanocrystalline cellulose-epoxy composites exhibiting hierarchical nacre-like toughening. arXiv 2021. [Google Scholar] [CrossRef]
- Thimmegowda, D.Y.; Hindi, J.; Markunti, G.B.; Kakunje, M. Enhancement of Mechanical Properties of Natural Fiber Reinforced Polymer Composites Using Different Approaches—A Review. J. Compos. Sci. 2025, 9, 220. [Google Scholar] [CrossRef]
- Winandy, J.; Morrell, J. Improving the utility, performance, and durability of wood- and bio-based composites. Ann. For. Sci. 2017, 74, 25. [Google Scholar] [CrossRef]
- Sarker, F.; Potluri, P.; Afroj, S.; Koncherry, V.; Novoselov, K.S.; Karim, N. Ultra-High Performance of Nano-Engineered Graphene-Based Natural Jute Fiber Composites. arXiv 2019. [Google Scholar] [CrossRef]
- Jia, Y.; Fiedler, B.; Yang, W.; Feng, X.; Tang, J.; Liu, J.; Zhang, P. Durability of Plant Fiber Composites for Structural Application: A Brief Review. Materials 2022, 16, 3962. [Google Scholar] [CrossRef]
- Pavlovic, A.; Valzania, L.; Minak, G. Effects of Moisture Absorption on the Mechanical and Fatigue Properties of Natural Fiber Composites: A Review. Polymers 2024, 17, 1996. [Google Scholar] [CrossRef]
- Xu, Z. Research on deep learning in natural language processing. Adv. Comput. Commun. 2023, 4, 196–200. [Google Scholar] [CrossRef]
- Tuteja, A.; Matta, P.; Dhoundiyal, A. Natural language processing: State-of-the-art. Webology 2021, 18, 4. [Google Scholar] [CrossRef]
- Basha, M.J.; Vijayakumar, S.; Jayashankari, J.; Alawadi, A.H.; Durdona, P. Advancements in natural language processing for text understanding. E3S Web Conf. 2023, 399, 04031. [Google Scholar] [CrossRef]
- Greco, C.; Suglia, A.; Basile, P.; Rossiello, G.; Semeraro, G. Iterative multi-document neural attention for multiple answer prediction. arXiv 2017. [Google Scholar] [CrossRef]
- Yahya, M.; Berberich, K.; Elbassuoni, S.; Weikum, G. Robust question answering over the web of linked data. In Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, San Francisco, CA, USA, 27 October–1 November 2013; pp. 1107–1116. [Google Scholar] [CrossRef]
- Sordoni, A.; Bachman, P.; Trischler, A.; Bengio, Y. Iterative alternating neural attention for machine reading. arXiv 2016. [Google Scholar] [CrossRef]
- Yu, S.; Indurthi, S.R.; Back, S.; Lee, H. A multi-stage memory augmented neural network for machine reading comprehension. In Proceedings of the Workshop on Machine Reading for Question Answering, Melbourne, Australia, 19 July 2018; pp. 21–30. [Google Scholar] [CrossRef]
- Xie, P.; Xing, E.P. A constituent-centric neural architecture for reading comprehension. In Proceedings of the 55th Annual Meeting of the Association For Computational Linguistics, Vancouver, BC, Canada, 30 July–4 August 2017. Volume 1: Long Papers. [Google Scholar] [CrossRef]
- Patel, D.; Raval, P.; Parikh, R.; Shastri, Y. Comparative study of machine learning models and bert on squad. arXiv 2020. [Google Scholar] [CrossRef]
- Doumanis, I.; Smith, S. Evaluating an intelligent Q&A system for mobile cultural learning. EAI Endorsed Trans. Future Intell. Educ. Environ. 2015, 1, e3. [Google Scholar] [CrossRef]
- Mustafidah, H.; Suwarsito, S.; Pinandita, T. Natural language processing for mapping exam questions to the cognitive process dimension. Int. J. Emerg. Technol. Learn. (IJET) 2022, 17, 4–16. [Google Scholar] [CrossRef]
- Zhang, W.E.; Sheng, Q.Z.; Alhazmi, A.; Li, C. Adversarial attacks on deep-learning models in natural language processing. ACM Trans. Intell. Syst. Technol. 2020, 11, 1–41. [Google Scholar] [CrossRef]
- Prasad, V.; Vijayakumar, A.A.; Jose, T.; George, S.C. A Comprehensive Review of Sustainability in Natural-Fiber-Reinforced Polymers. Sustainability 2024, 16, 1223. [Google Scholar] [CrossRef]
- BASF: Sustainability in Building Insulation: Expanded Polystyrene (EPS). Available online: https://www.basf.com (accessed on 25 May 2025).
- Dow Chemical (2023): Environmental Impact of Polyurethane in Building Applications. Available online: https://www.dow.com (accessed on 25 May 2025).
- European Expanded Polystyrene Association (EUMEPS) (2023): Recycling and End-of-Life Management of EPS. Available online: https://www.eumeps.eu (accessed on 25 May 2025).
- Polyurethane Foam Association (PFA) (2023): Polyurethane Foam and Sustainability: A Lifecycle Perspective. Available online: https://www.pfa.org (accessed on 25 May 2025).
- WWF (2023): Natural Building Materials and Their Role in Reducing CO2 Emissions. Available online: https://www.worldwildlife.org (accessed on 25 May 2025).
- Greenpeace (2023): The Role of Renewable Materials in Sustainable Construction. Available online: https://www.greenpeace.org (accessed on 25 May 2025).
- Covestro (2023): Life Cycle Analysis of Polyurethane Foams in Construction Applications. Available online: https://www.covestro.com (accessed on 25 May 2025).
- European Commission (2010): ILCD Handbook: General Guide for Life Cycle Assessment—Detailed Guidance. Available online: https://eplca.jrc.ec.europa.eu (accessed on 25 May 2025).
- European Plastics Converters (EuPC) (2022): The Environmental Footprint of EPS in Construction. Available online: https://www.plasticsconverters.eu (accessed on 25 May 2025).
- SimaPro (2023): LCA Database for Building Materials. Available online: https://simapro.com (accessed on 25 May 2025).
- Ecoinvent (2022): Ecoinvent Database v3.7: Comprehensive LCA Data. Available online: https://ecoinvent.org (accessed on 25 May 2025).
- Central Statistical Office (CSO) (2023). Report on the Building Materials market in Poland. Available online: https://stat.gov.pl (accessed on 25 May 2025).
- Leroy Merlin (2024): Price List for Building Materials. Available online: https://www.leroymerlin.pl (accessed on 25 May 2025).
- Castorama (2024): Cost Analysis of Insulation Materials. Available online: https://www.castorama.pl (accessed on 25 May 2025).
- Wang, Y.; Hirvonen, J.; Qu, K.; Jokisalo, J.; Kosonen, R. The impact of energy renovation on continuously and intermittently heated residential buildings in Southern Europe. Buildings 2022, 12, 1316. [Google Scholar] [CrossRef]
- Sakthivel, S.; Melese, B.; Edae, A.; Abedom, F.; Mekonnen, S.; Solomon, E. Garment waste recycled cotton/polyester thermal and acoustic properties of air-laid nonwovens. Adv. Mater. Sci. Eng. 2020, 2020, 04525. [Google Scholar] [CrossRef]
- Manaia, J.P.; Manaia, A.; Rodriges, L. Industrial hemp fibers: An overview. Fibers 2019, 7, 106. [Google Scholar] [CrossRef]
- Celep, G.; Tetik, G.D.; Yilmaz, F. Limitations of Textile Recycling: The Reason behind the Development of Alternative Sustainable Fibers. Next-Gener. Text. 2022. [Google Scholar] [CrossRef]
- Verma, A.; Jain, N.; Mishra, R.R. Applications and Drawbacks of Epoxy/Natural Fiber Composites. In Handbook of Epoxy/Fiber Composites; Mavinkere Rangappa, S., Parameswaranpillai, J., Siengchin, S., Thomas, S., Eds.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Sydow, Z.; Bieńczak, K. The overview on the use of natural fibers reinforced composites for food packaging. J. Nat. Fibers 2019, 16, 1189–1200. [Google Scholar] [CrossRef]
- Geremew, A.; Winne, P.D.; Demissie, T.A.; Backer, H.D. Treatment of Natural Fiber for Application in Concrete Pavement. Adv. Civ. Eng. 2021, 2021, 6667965. [Google Scholar] [CrossRef]
- de Azevedo, A.R.G.; Cruz, A.S.A.; Marvila, M.T.; de Oliveira, L.B.; Monteiro, S.N.; Vieira, C.M.F.; Fediuk, R.; Timokhin, R.; Vatin, N.; Daironas, M. Natural Fibers as an Alternative to Synthetic Fibers in Reinforcement of Geopolymer Matrices: A Comparative Review. Polymers 2021, 13, 2493. [Google Scholar] [CrossRef]
- Lotfi, A.; Li, H.; Dao, D.V.; Prusty, G. Natural fiber–reinforced composites: A review on material, manufacturing, and machinability. J. Thermoplast. Compos. Mater. 2019, 34, 238–284. [Google Scholar] [CrossRef]
- Keya, K.N.; Kona, N.A.; Koly, F.A.; Maraz, K.M.; Islam, M.N.; Khan, R.A. Natural fiber reinforced polymer composites: History, types, advantages and applications. Mater. Eng. Res. 2019, 1, 69–87. [Google Scholar] [CrossRef]
- Jagadeesh, P.; Puttegowda, M.; Boonyasopon, P.; Rangappa, S.M.; Khan, A.; Siengchin, S. Recent developments and challenges in natural fiber composites: A review. Polym. Compos. 2022, 43, 2545–2561. [Google Scholar] [CrossRef]
- Mohammed, M.; Jawad, A.J.M.; Mohammed, A.M.; Oleiwi, J.K.; Adam, T.; Osman, A.F.; Dahham, O.S.; Betar, B.O.; Gopinath, S.C.; Jaafar, M. Challenges and advancement in water absorption of natural fiber-reinforced polymer composites. Polym. Test. 2023, 124, 108083. [Google Scholar] [CrossRef]
- Peças, P.; Carvalho, H.; Salman, H.; Leite, M. Natural Fibre Composites and Their Applications: A Review. J. Compos. Sci. 2018, 2, 66. [Google Scholar] [CrossRef]
- Xie, L.; Wang, X.; Bai, Y.; Zou, X.; Liang, S.; Wei, C.; Zhou, Y.; Bai, Z.; Yue, O.; Guo, J.; et al. Bioinspired natural fibers-derived wearable thermochromic materials for all-season self-adapting thermal management. J. Energy Chem. 2025, 104, 628–643. [Google Scholar] [CrossRef]
- Chauhan, V.; Kärki, T.; Varis, J. Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. J. Thermoplast. Compos. Mater. 2019, 35, 1169–1209. [Google Scholar] [CrossRef]
- Zhao, J.R.; Zheng, R.; Tang, J.; Sun, H.J.; Wang, J. A mini-review on building insulation materials from perspective of plastic pollution: Current issues and natural fibres as a possible solution. J. Hazard. Mater. 2022, 438, 129449. [Google Scholar] [CrossRef]
- Adamkiewicz, J.; Kochańska, E.; Adamkiewicz, I.; Łukasik, R.M. Greenwashing and sustainable fashion industry. Curr. Opin. Green Sustain. Chem. 2022, 38, 100710. [Google Scholar] [CrossRef]
- Adekomaya, O. Adaption of green composite in automotive part replacements: Discussions on material modification and future patronage. Environ. Sci. Pollut. Res. 2020, 27, 8807–8813. [Google Scholar] [CrossRef] [PubMed]
- Wellbrock, W.; Ludin, D.; Röhrle, L.; Gerstlberger, W. Sustainability in the automotive industry, importance of and impact on automobile interior—Insights from an empirical survey. Int. J. Corp. Soc. Responsib. 2020, 5, 10. [Google Scholar] [CrossRef]
- Bąk, A.; Mikuła, J.; Oliinyk, I.; Łach, M. Basic research on layered geopolymer composites with insulating materials of natural origin. Sci. Rep. 2024, 14, 12576. [Google Scholar] [CrossRef]
- Przybek, A.; Łach, M. Research on the Physical Properties of an Eco-Friendly Layered Geopolymer Composite. Materials 2024, 17, 4937. [Google Scholar] [CrossRef] [PubMed]
Method | Main Materials | Geographic Reach | Advantages | Disadvantages | Historical/Modern Examples |
---|---|---|---|---|---|
Wooden construction | Wood | Northern Europe, North America, Asia | Lightweight, flexible, easy to process | Moisture, susceptibility to fire | Log houses, frame houses |
Masonry construction | Brick, stone | Europe, Middle East, Asia | Durability, thermal insulation | Weight, low flexibility | Traditional brick houses |
Earthworks | Earth, clay | Latin America, Africa, Asia | Low costs, ecology, insulation | Sensitive to moisture, requires maintenance | Adobe, rammed earth |
Concrete construction | Concrete, reinforced concrete | Globally | Strength, prefabrication | High carbon footprint, heavy weight | Skyscrapers, prefabricated houses |
Natural construction | Straw, bamboo, hemp | Europe, Asia, South America | Ecology, insulation | Requires protection against moisture and fire | Straw houses, bamboo houses |
Prefabricated and modular construction | Various (wood, concrete) | Globally | Speed, quality control | Limited customization | Prefabricated housing estates |
Stone construction | Stone | Ancient cultures | Durability, monumentality | Lack of flexibility, weight | Pyramids, Stonehenge |
Clay and wicker construction | Clay, wood, straw | Europe, Africa, Asia | Availability of materials, insulation | Maintenance, sensitivity to conditions | Wattle and daub |
Method | Advantages | Disadvantages | Application |
---|---|---|---|
Alkalization | Better adhesion to the matrix | Possibility of fiber degradation | Composites with cement and polymers |
Acetylation | Reduced water absorption | Expensive | Wood-based composites |
Silanization | Good compatibility with resins | A complex process | Polymer laminates |
Fermentation | Eco-friendly, natural | Long process time | Composites of bioactive materials |
Matrix | Fiber Type | Flexural Strength [MPa] | Thermal Conductivity [W/m·K] | Application |
---|---|---|---|---|
PLA | Flax | 60–90 | 0.04–0.07 | Wall panels |
Cement | Hemp | 5–10 | 0.10–0.15 | Wall blocks, plaster |
Bio-resin | Coconut | 15–30 | 0.05–0.08 | Thermal insulation |
Epoxy | Jute | 40–80 | 0.03–0.06 | Facades, roofing |
Feature | Flax | Hemp | Cotton | Coconut | Jute | Sisal | Carbon | Aramid (Kevlar) | Glass (E-glass) | Basalt |
---|---|---|---|---|---|---|---|---|---|---|
Tensile strength [MPa] | 500–900 | 550–900 | 287–597 | 175–220 | 400–800 | 500–700 | 3000–6000 | 3000–3600 | 2000–3500 | 2000–4800 |
Modulus of elasticity [GPa] | 27–80 | 30–70 | 5.5–12.6 | 4–6 | 20–55 | 9–22 | 230–600 | 70–130 | 70–85 | 85–95 |
Elongation at break [%] | 1.2–3.2 | 1.6–2.8 | 3–10 | 15–45 | 1.5–2.0 | 2–3 | 0.5–1.5 | 2.5–4.5 | 2.5–4.8 | 3.1–4.5 |
Density [g/cm3] | 1.4–1.5 | 1.47 | 1.5–1.6 | 1.2–1.3 | 1.3–1.5 | 1.45 | 1.75–2.00 | 1.44 | 2.5–2.6 | 2.7–2.9 |
Thermal conductivity [W/m·K] | ~0.04–0.06 | ~0.04–0.06 | ~0.03–0.05 | ~0.045–0.06 | ~0.04–0.05 | ~0.04–0.05 | 5–20 | 0.04–0.05 | 0.9–1.2 | 0.03–0.038 |
Melting/degradation point [°C] | ~200 | ~200 | ~210 | ~200 | ~200 | ~200 | >3500 (don’t melt) | ~500 (degradation) | ~850 | ~1450 |
Biodegradability | Yes | Yes | Yes | Yes | Yes | Yes | No | No | No | No |
Raw material renewability | Yes | Yes | Yes | Yes | Yes | Yes | No | No | No | No |
Environmental impact (production) | Low | Low | Medium-high | Low | Low | Low | Very high | High | High | Medium |
Recyclability | Limited | Limited | Limited | Limited | Limited | Limited | Yes (partial) | Yes | Yes | Yes |
Fiber Type | Equilibrium Moisture Content (%) | Water Absorption After 24 h (%) | Decrease in Tensile Strength (%) |
---|---|---|---|
Flax | 7–12 | 10–15 | 15–25 |
Hemp | 8–10 | 10–14 | 10–20 |
Jute | 12–13 | 15–20 | 20–30 |
Coconut | 8–10 | 8–12 | 10–18 |
Cotton | 7–9 | 15–25 | 20–35 |
Sisal | 10–11 | 12–18 | 15–30 |
Glass fiber | ~0.1 | <0.5 | ~0 |
Aramid (Kevlar) | 3–7 | 4–6 | <5 |
Basalt | ~0.2 | <1 | <2 |
Polipropylen (PP) | ~0.05 | <0.5 | negligible |
Carbon | <0.1 | <0.2 | <2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przybek, A. The Role of Natural Fibers in the Building Industry—The Perspective of Sustainable Development. Materials 2025, 18, 3803. https://doi.org/10.3390/ma18163803
Przybek A. The Role of Natural Fibers in the Building Industry—The Perspective of Sustainable Development. Materials. 2025; 18(16):3803. https://doi.org/10.3390/ma18163803
Chicago/Turabian StylePrzybek, Agnieszka. 2025. "The Role of Natural Fibers in the Building Industry—The Perspective of Sustainable Development" Materials 18, no. 16: 3803. https://doi.org/10.3390/ma18163803
APA StylePrzybek, A. (2025). The Role of Natural Fibers in the Building Industry—The Perspective of Sustainable Development. Materials, 18(16), 3803. https://doi.org/10.3390/ma18163803