The Thermography Analysis of the Fine-Grained Materials Agglomeration Process in Closed Dies
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
- Material M1—90.9% by mass of calcium hydroxide Ca(OH)2 manufactured by Lhoist according to EN 459-1 CL 90-S and 9.1% by mass of water. The mixture was thoroughly mixed for five minutes by hand
- Material M2—hydrated lime consisting of 100% calcium hydroxide Ca(OH manufactured by Lhoist according to EN 459-1 CL 90-S.
- Material M3—47.7% by weight of Electric Arc Furnace Dust (EAFD), 36.7% mill scale, 7.3% coke breeze, 2.8% hydrated lime (EN 459-1 CL 90-S), and 5.5% of a molasses-water mixture (57.9% molasses and 42.1% water by weight). The dry ingredients were mixed manually in one container and the molasses-water mixture in another. The solution was then gradually added to the dry mixture, stirring for five minutes.
- Material M4—96% charcoal and 4% starch.
2.2. Equipment
2.3. Research Methodology
3. Results and Discussion
3.1. Measurement Results for the Opening Die
3.2. Measurement Results for the Closed Die
4. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brunerová, A.; Brozek, M.; Roubík, H. Manual wooden low-pressure briquetting press: An alternative technology of waste biomass utilisation in developing countries of Southeast Asia. J. Clean. Prod. 2024, 436, 140624. [Google Scholar] [CrossRef]
- Deng, W.Y.; Hu, M.T.; Su, Y.X. Pyrolysis of sludge briquettes for the preparation of cylindrical-shaped biochar and comparison between CO2 and steam activation. Fuel 2023, 338, 127317. [Google Scholar] [CrossRef]
- Bembenek, M.; Uhrynski, A. The use of thermography to determine the agglomeration of a saddle-shaped briquette produced in an innovative roller press agglomeration unit. Acta Mech. Autom. 2022, 16, 340–346. [Google Scholar]
- Yunusa, S.U.; Mensah, E.; Preko, K.; Narra, S.; Saleh, A.; Sanfo, S. A comprehensive review on the technical aspects of biomass briquetting. Biomass Convers. Biorefinery 2023, 14, 21619–21644. [Google Scholar] [CrossRef]
- Wang, F.M.; Marcuson, S.; Elsawi, R.; Liu, L.; Ramos, J.M.; Walker, M.; Barati, M. Effect of agglomeration on nickel extraction and sulfur release from ultramafic nickel sulfide concentrates. Miner. Eng. 2024, 211, 108684. [Google Scholar] [CrossRef]
- Ngene, G.I.; Bouesso, B.; Martínez, M.G.; Nzihou, A. A review on biochar briquetting: Common practices and recommendations to enhance mechanical properties and environmental performances. J. Clean. Prod. 2024, 469, 143193. [Google Scholar] [CrossRef]
- Marques, L.D.; Stefanutti, R. Estimation of energy generation and reduction of greenhouse gas emissions through briquetting from lignocellulosic waste. Int. J. Environ. Waste Manag. 2024, 33, 383–395. [Google Scholar]
- Palanisamy, E.; Velusamy, S.; Al-Zaqri, N.; Boshaala, A. Characterization and energy evaluation analysis of agro biomass briquettes produced from Gloriosa superba wastes and turmeric leave wastes using cassava starch as binder. Biomass Convers. Biorefinery 2023, 13, 11321–11337. [Google Scholar] [CrossRef]
- Faitli, J.; Abdulfattah, Z.N.; Kioko, D.; Nagy, S. Fundamental drying and agglomeration experiments with bio-fraction and refuse derived fuel for the development of pyrolysis reactor feed. Waste Manag. Res. 2024, 42, 715–725. [Google Scholar] [CrossRef]
- Amponsem, B.; Bensah, E.C.; Boahen, B. Cleaner energy potential analysis for composite biomass residues from decentralized sawmills in Ghana: A case study for Oforikrom Municipality. Clean. Eng. Technol. 2022, 11, 100563. [Google Scholar] [CrossRef]
- Zhirnov, B.S.; Suslikov, A.V.; Balykova, D.V.; Demidenko, V.P. Recycling waste from coal and petroleum coke production. Coke Chem. 2023, 66, 89–93. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Li, R.Y.; Xing, X.; Ju, J.; Li, X.; Zu, J. Removal behavior of Zn and alkalis from blast furnace dust in pre-reduction sinter process. Green Process. Synth 2023, 12, 20230045. [Google Scholar] [CrossRef]
- Janewicz, A.; Kosturkiewicz, B. Comparative studies of the briquetting of mill scale sludge in a roll press. Przemysł Chem. 2022, 101, 676–679. [Google Scholar]
- Kosturkiewicz, B.; Janewicz, A. Research on the briquetting process of bronze bearing shavings in the roll press. Przemysł Chem. 2022, 101, 672–675. [Google Scholar]
- Dyakonov, O.M.; Litvinko, A.A. Research of the Influence of the Scheme and Modes of Pressing Steel and Cast Iron Chips on the Energy-Power Parameters of the Briquetting Process. Sci. Tech. 2024, 23, 279–288. [Google Scholar] [CrossRef]
- Baiul, K.; Vashchenko, S.; Khudyakov, O.; Bembenek, M.; Zinchenko, A.; Krot, P.V.; Solodka, N. A novel approach to the screw feeder design to improve the reliability of briquetting process in the roller press. Eksploat. Niezawodn.-Maint. Reliab. 2023, 25, 167967. [Google Scholar] [CrossRef]
- Du, W.; Shan, Z.; Liu, F.; Wu, X.; Chen, Z.; Zou, G. Research on ultrasonic-assisted vibration multi-cycle agglomeration method of flexible guided 3D weaving. Ultrasonics 2025, 145, 107461. [Google Scholar] [CrossRef]
- Weissbach, R.; Praegla, P.M.; Wall, W.A.; Hart, A.J.; Meier, C. Exploration of improved, roller-based spreading strategies for cohesive powders in additive manufacturing via coupled DEM-FEM simulations. Powder Technol. 2024, 443, 119956. [Google Scholar] [CrossRef]
- Kabas, O.; Ercan, U.; Dinca, M.N. Prediction of Briquette Deformation Energy via Ensemble Learning Algorithms Using Physico-Mechanical Parameters. Appl. Sci. 2024, 14, 652. [Google Scholar] [CrossRef]
- Kosturkiewicz, B.; Kosturkiewicz, L. Research on the briquetting process of a mixture of high-calcium filtration sludge and concrete rubble. Przemysł Chem. 2023, 102, 1100–1103. [Google Scholar]
- Lepiarczyk, D. Zastosowanie statystycznej analizy w procesie fosforanowania części maszyn. Przemysł Chem. 2016, 95, 1502–1505. [Google Scholar]
- Tan, Y.K.; Thumboo, J. Understanding Ultrasound Power Doppler Synovitis at Clinically Quiescent Joints and Thermographic Joint Inflammation Assessment in Patients with Rheumatoid Arthritis. Diagnostics 2024, 14, 2384. [Google Scholar] [CrossRef]
- Lepiarczyk, D.; Uhryński, A. Thermovision analysis of iron foundry production process concerning secondary usage of heat. Pol. J. Environ. Stud. 2014, 23, 1017–1023. [Google Scholar]
- Figueiredo, A.A.A.; D’Alessandro, G.; Perilli, S.; Sfarra, S.; Fernandes, H. Exploring the potentialities of thermal asymmetries in composite wind turbine blade structures via numerical and thermographic methods: A thermophysical perspective. J. Therm. Anal. Calorim. 2024, 150, 8107–8121. [Google Scholar] [CrossRef]
- Liu, H.C.; Wang, S.Z.; Chen, Z.M. A cyclic self-enhancement technique for complex defect profile reconstruction based on thermographic evaluation. Acta Mech. Sin. 2025, 41, 424076. [Google Scholar] [CrossRef]
- Ogasawara, N.; Saito, J.; Yamada, H. Infrared emissivity measurement based on polarized reflection characteristics of non-transmissive insulators. Mech. Eng. J. 2024, 11, 24-00115. [Google Scholar] [CrossRef]
- Xiao, W.B.; Lyu, Y. Human computer interaction product for infrared thermographic fundus retinal vessels image segmentation using U-Net. J. Radiat. Res. Appl. Sci. 2024, 17, 101003. [Google Scholar] [CrossRef]
- Uhryński, A.; Bembenek, M. The Thermographic Analysis of the Agglomeration Process in the Roller Press of Pillow-Shaped Briquettes. Materials 2022, 15, 2870. [Google Scholar] [CrossRef]
- Szcześniak, P. Projekt Stanowiska Do Scalania Materiałów Sypkich Oraz Analiza Możliwości Jego Zastosowania. Bachelor’s Thesis, AGH-UST, Kraków, Poland, 2022. [Google Scholar]
- Simoes, L.M.S.; Setter, C.; Sousa, N.G.; Cardoso, C.R.; de Oliveira, T.J.P. Biomass to biofuel densification of coconut fibers: Kinetic triplet and thermodynamic evaluation. Biomass Convers. Biorefinery 2024, 14, 631–648. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uhryński, A.; Lepiarczyk, D.; Matachowski, F.; Bembenek, M. The Thermography Analysis of the Fine-Grained Materials Agglomeration Process in Closed Dies. Materials 2025, 18, 3796. https://doi.org/10.3390/ma18163796
Uhryński A, Lepiarczyk D, Matachowski F, Bembenek M. The Thermography Analysis of the Fine-Grained Materials Agglomeration Process in Closed Dies. Materials. 2025; 18(16):3796. https://doi.org/10.3390/ma18163796
Chicago/Turabian StyleUhryński, Andrzej, Dariusz Lepiarczyk, Filip Matachowski, and Michał Bembenek. 2025. "The Thermography Analysis of the Fine-Grained Materials Agglomeration Process in Closed Dies" Materials 18, no. 16: 3796. https://doi.org/10.3390/ma18163796
APA StyleUhryński, A., Lepiarczyk, D., Matachowski, F., & Bembenek, M. (2025). The Thermography Analysis of the Fine-Grained Materials Agglomeration Process in Closed Dies. Materials, 18(16), 3796. https://doi.org/10.3390/ma18163796