Efficient Conversion of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by the Magnetic Laccase Nanoflowers-2,2,6,6-Tetramethylpiperidin-1-Oxyl System
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of MLac-NFs
2.3. Characterization of Nanoflowers
2.4. Determination of Laccase Activity
2.5. Determination of Apparent Kinetic Constants of Laccase and MLac-NFs
2.6. Effects of pH and Temperature on Laccase Activity
2.7. Storage Stability Experiment
2.8. HMF Conversion
2.9. Total Turnover Number
3. Results and Discussion
3.1. Structural Characterization of MLac-NFs
3.1.1. SEM
3.1.2. FT-IR
3.1.3. XRD
3.1.4. VSM
3.2. Enzymatic Properties of MLac-NFs
3.2.1. Effect of pH on MLac-NFs Enzyme Activity
3.2.2. Effect of Temperature on MLac-NFs Enzyme Activity
3.2.3. Apparent Kinetic Constants of MLac-NFs
3.2.4. Storage Stability of MLac-NFs
3.3. MLac-NFs Catalyze the Oxidation of HMF to FDCA
3.3.1. Effect of pH on the Conversion of HMF to FDCA over MLac-NFs Catalyst
3.3.2. Effect of Temperature on the Oxidation of HMF to FDCA over MLac-NFs Catalyst
3.3.3. Effect of TEMPO Concentration on the Catalytic Oxidation of HMF to FDCA by MLac-NFs
3.3.4. Reusability of MLac-NFs
3.3.5. MLac-NFs Successfully Achieved the Complete Conversion of HMF to FDCA
3.3.6. Total Turnover Number (TTN) Analysis
3.3.7. Catalytic Performance Comparison
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Milić, M.; Byström, E.; Domínguez de María, P.; Kara, S. Enzymatic Cascade for the Synthesis of 2,5-Furandicarboxylic Acid in Biphasic and Microaqueous Conditions: ‘Media-Agnostic’ Biocatalysts for Biorefineries. ChemSusChem 2022, 15, e202102704. [Google Scholar] [CrossRef]
- Sajid, M.; Zhao, X.; Liu, D. Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): Recent progress focusing on the chemical-catalytic routes. Green Chem. 2018, 20, 5427–5453. [Google Scholar] [CrossRef]
- Simoska, O.; Rhodes, Z.; Weliwatte, S.; Cabrera-Pardo, J.R.; Gaffney, E.M.; Lim, K.; Minteer, S.D. Advances in Electrochemical Modification Strategies of 5-Hydroxymethylfurfural. ChemSusChem 2021, 14, 1674–1686. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zhao, J.; Du, Z.; Zong, B.; Liu, H. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts. Sci. China Chem. 2017, 60, 950–957. [Google Scholar] [CrossRef]
- Haber, B.; do Nascimento, M.A.; Gomez, M.; Leao, R.A.C.; Pietrowski, M.; Zielinski, M.; de Souza, R.; Wojcieszak, R.; Itabaiana, I., Jr. Optimization of 5-hydroxymethylfurfural oxidation via photo-enzymatic cascade process. Green Chem. 2024, 26, 8211–8219. [Google Scholar] [CrossRef]
- Rajesh, R.O.; Godan, T.K.; Sindhu, R.; Pandey, A.; Binod, P. Bioengineering advancements, innovations and challenges on green synthesis of 2, 5-furan dicarboxylic acid. Bioengineered 2020, 11, 19–38. [Google Scholar] [CrossRef]
- Li, X.; Wu, Z.; Tao, X.; Li, R.; Tian, D.; Liu, X. Gentle one-step co-precipitation to synthesize bimetallic CoCu-MOF immobilized laccase for boosting enzyme stability and Congo red removal. J. Hazard. Mater. 2022, 438, 129525–129538. [Google Scholar] [CrossRef]
- Troiano, D.; Orsat, V.; Dumont, M.J. Status of Biocatalysis in the Production of 2,5-Furandicarboxylic Acid. Acs Catal. 2020, 10, 9145–9169. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Kalia, V.C.; Lee, J.-K. Laccase Immobilization on Copper-Magnetic Nanoparticles for Efficient Bisphenol Degradation. J. Microbiol. Biotechnol. 2022, 33, 127–134. [Google Scholar] [CrossRef]
- Aldhahri, M.M.; Almulaiky, Y.Q.; El-Shishtawy, R.M.; Al-Shawafi, W.; Alngadh, A.; Maghrabi, R. Facile Immobilization of Enzyme via Co-Electrospinning: A Simple Method for Enhancing Enzyme Reusability and Monitoring an Activity-Based Organic Semiconductor. ACS Omega 2018, 3, 6346–6350. [Google Scholar] [CrossRef]
- Cui, J.; Jia, S. Organic–inorganic hybrid nanoflowers: A novel host platform for immobilizing biomolecules. Coord. Chem. Rev. 2017, 352, 249–263. [Google Scholar] [CrossRef]
- Ge, J.; Lei, J.; Zare, R.N. Protein–inorganic hybrid nanoflowers. Nat. Nanotechnol. 2012, 7, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Oshima, S.; Oku, Y.; T.sriwong, K.; Kimura, Y.; Matsuda, T. Immobilization of Thermoplasma acidophilum Glucose Dehydrogenase and Isocitrate Dehydrogenase Through Enzyme-Inorganic Hybrid Nanocrystal Formation. Curr. Microbiol. 2024, 81, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Guo, C.; Yang, L.R.; Liu, C.Z. Magnetic mesoporous silica nanoparticles: Fabrication and their laccase immobilization performance. Bioresour. Technol. 2010, 101, 8931–8935. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Hu, W.; Li, C.M. Spontaneous interfacial reaction between metallic copper and PBS to form cupric phosphate nanoflower and its enzyme hybrid with enhanced activity. Colloids Surf. B Biointerfaces 2015, 135, 613–618. [Google Scholar] [CrossRef]
- Maurya, S.S.; Nadar, S.S.; Rathod, V.K. A rapid self-assembled hybrid bio-microflowers of alpha–amylase with enhanced activity. J. Biotechnol. 2020, 317, 27–33. [Google Scholar] [CrossRef]
- Sun, T.; Fu, M.; Xing, J.; Ge, Z. Magnetic nanoparticles encapsulated laccase nanoflowers: Evaluation of enzymatic activity and reusability for degradation of malachite green. Water Sci. Technol. 2020, 81, 29–39. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Yang, J.; Zhang, Y. A Template Method Leads to Precisely Synthesize SiO2@Fe3O4 Nanoparticles at the Hundred-Nanometer Scale. Materials 2024, 17, 4325–4339. [Google Scholar] [CrossRef]
- Qi, J.; He, X.; Lu, Q. Novel chelating polyacrylonitrile membrane for efficient capture of Cu2+, Pb2+ and Fe3+. Chem. Eng. J. 2022, 450, 138203–138218. [Google Scholar] [CrossRef]
- Lepore, M.; Portaccio, M. Optical detection of different phenolic compounds by means of a novel biosensor based on sol-gel immobilized laccase. Biotechnol. Appl. Biochem. 2017, 64, 782–792. [Google Scholar] [CrossRef]
- Rong, J.; Zhang, T.; Qiu, F.; Zhu, Y. Preparation of Efficient, Stable, and Reusable Laccase-Cu3(PO4)2 Hybrid Microspheres Based on Copper Foil for Decoloration of Congo Red. ACS Sustain. Chem. Eng. 2017, 5, 4468–4477. [Google Scholar] [CrossRef]
- Rezayaraghi, F.; Jafari-Nodoushan, H.; Mojtabavi, S.; Golshani, S.; Jahandar, H.; Faramarzi, M.A. Hybridization of laccase with dendrimer-grafted silica-coated hercynite-copper phosphate magnetic hybrid nanoflowers and its application in bioremoval of gemifloxacin. Environ. Sci. Pollut. Res. 2022, 29, 89255–89272. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Li, Y.; Wang, J.; Li, L.; Xu, L.; Wu, Y.; Wang, Y.; Fei, X.; Tian, J. Synthesis of magnetic nanoflower immobilized lipase and its continuous catalytic application. New J. Chem. 2019, 43, 11082–11090. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, Z.; Zeng, G.; Tang, L.; Pang, Y.; Li, Z.; Liu, C.; Lei, X.; Wu, M.; Ren, P.; et al. Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds. Bioresour. Technol. 2012, 115, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wang, S.; Han, M.; Zhang, W.; Xu, H.; Hu, Y. Co-immobilization of electron mediator and laccase onto dialdehyde starch cross-linked magnetic chitosan nanomaterials for organic pollutants’ removal. Bioprocess. Biosyst. Eng. 2022, 45, 1955–1966. [Google Scholar] [CrossRef] [PubMed]
- Kyomuhimbo, H.D.; Feleni, U.; Brink, H.G. Highly effective antibiotic mineralization via laccase-immobilized nanocomposite beads coupled with fungal phycoremediation. J. Water Process Eng. 2025, 71, 107212–107227. [Google Scholar] [CrossRef]
- Rezagholizade-Shirvan, A.; Ghasemi, A.; Mazaheri, Y.; Shokri, S.; Fallahizadeh, S.; Alizadeh Sani, M.; Mohtashami, M.; Mahmoudzadeh, M.; Sarafraz, M.; Darroudi, M.; et al. Removal of aflatoxin M1 in milk using magnetic laccase/MoS2/chitosan nanocomposite as an efficient sorbent. Chemosphere 2024, 365, 143334–143345. [Google Scholar] [CrossRef]
- Fernandes, R.A.; Daniel-da-Silva, A.L.; Tavares, A.P.M.; Xavier, A.M.R.B. EDTA-Cu (II) chelating magnetic nanoparticles as a support for laccase immobilization. Chem. Eng. Sci. 2017, 158, 599–605. [Google Scholar] [CrossRef]
- Xu, X.; Chen, T.; Xu, L.; Lin, J. Immobilization of laccase on magnetic nanoparticles for enhanced polymerization of phenols. Enzym. Microb. Technol. 2024, 172, 110331–110340. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, Q.; Dong, J.; Xian, M.; Yu, J.; Yin, H.; Chang, Z.; Mu, X.; Hou, T.; Wang, J. Enzyme-inorganic nanoflowers/alginate microbeads: An enzyme immobilization system and its potential application. Process Biochem. 2017, 57, 87–94. [Google Scholar] [CrossRef]
- Mota, L.S.d.O.; Peixoto, B.S.; Leal, A.A.G.; Ronconi, C.M.; de Moraes, M.C. Biochar from green coconut husk as a sustainable support for laccase immobilization: Preparation, characterization, and preliminary application. J. Environ. Chem. Eng. 2025, 13, 116960–116971. [Google Scholar] [CrossRef]
- Kołodziejczak-Radzimska, A.; Budna, A.; Ciesielczyk, F.; Moszyński, D.; Jesionowski, T. Laccase from Trametes versicolor supported onto mesoporous Al2O3: Stability tests and evaluations of catalytic activity. Process Biochem. 2020, 95, 71–80. [Google Scholar] [CrossRef]
- Zayed, M.E.M.; Obaid, A.Y.; Almulaiky, Y.Q.; El-Shishtawy, R.M. Enhancing the sustainable immobilization of laccase by amino-functionalized PMMA-reinforced graphene nanomaterial. J. Environ. Manag. 2024, 351, 119503–119514. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, H.; Lu, Y.; Liu, Z.; Ma, Z.; Zhang, Y. Quantitative Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by TEMPO in a Single Aqueous Phase under Mild Conditions. ACS Sustain. Chem. Eng. 2025, 13, 4242–4251. [Google Scholar] [CrossRef]
- Dong, W.; Yan, J.; Yang, Y.; Wu, Q.; Hu, X. Immobilization of laccase on magnetic mesoporous silica as a recoverable biocatalyst for the efficient degradation of benzo[a]pyrene. Chemosphere 2024, 346, 140642–140653. [Google Scholar] [CrossRef]
- Cheon, H.J.; Adhikari, M.D.; Chung, M.; Tran, T.D.; Kim, J.; Kim, M.I. Magnetic Nanoparticles-Embedded Enzyme-Inorganic Hybrid Nanoflowers with Enhanced Peroxidase-Like Activity and Substrate Channeling for Glucose Biosensing. Adv. Healthc. Mater. 2019, 8, e1801507. [Google Scholar] [CrossRef]
- Klinyod, S.; Yodsin, N.; Nguyen, M.T.; Pasom, Z.; Assavapanumat, S.; Ketkaew, M.; Kidkhunthod, P.; Yonezawa, T.; Namuangruk, S.; Wattanakit, C. Unraveling the Electrocatalytic Activity in HMF Oxidation to FDCA by Fine-Tuning the Degree of NiOOH Phase over Ni Nanoparticles Supported on Graphene Oxide. Small 2024, 20, 2400779–2400791. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Ruan, Y.; Xu, T.; Wu, S.; Lu, W. Efficient photocatalytic preparation of 2,5-furandicarboxylic acid on bimetallic Fe/Au decorated TiO2. App. Surf. Sci. 2024, 672, 160771–160783. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Wang, X.; Zhao, Y.; Zhao, Y.; Sui, W.; Wang, D.; Si, C. Oriented Conversion of HMF to FDCA under Mild Conditions over Lignin-Tailored Co Single-Atom Catalyst with Enhanced Co Loadings. ACS Catal. 2024, 14, 16003–16013. [Google Scholar] [CrossRef]
- Alpdağtaş, S.; Jankowski, N.; Urlacher, V.B.; Koschorreck, K. Identification of redox activators for continuous reactivation of glyoxal oxidase from Trametes versicolor in a two-enzyme reaction cascade. Sci. Rep. 2024, 14, 5932. [Google Scholar] [CrossRef]
- Troiano, D.; Orsat, V.; Dumont, M.-J. Use of filamentous fungi as biocatalysts in the oxidation of 5-(hydroxymethyl)furfural (HMF). Bioresour. Technol. 2022, 344, 126169. [Google Scholar] [CrossRef]
- He, A.; Dong, L.; Xu, N.; El-Hout, S.I.; Xia, J.; Qiu, Z.; He, J.; Deng, Y.; Liu, X.; Hu, L.; et al. Complete oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid by a novel enzyme–nanozyme hybrid catalyst. Chem. Eng. J. 2022, 449, 137797. [Google Scholar] [CrossRef]
Apparent Km Parameters | Laccase | MLac-NFs | * p |
---|---|---|---|
Km (mM) | 1.75 ± 0.21 | 1.08 ± 0.09 | <0.001 |
Vmax (mM min−1) | 2.9 ± 0.34 | 12.75 ± 1.02 | <0.001 |
Vmax/Km (min−1) | 1.66 ± 0.18 | 11.8 ± 0.95 | <0.001 |
Catalytic Method | Catalyst | HMF (mM) | Time (h) | FDCA Yield |
---|---|---|---|---|
Electrocatalysis [37] | 50-NiN/GO-Ni-Foam (50 mg) | 5 | 10 | 86.9 ± 4.1% |
Photocatalysis [38] | 30%FePc-Au/TiO2 (50 mg) | 0.1 | 15 | 97% |
Mon-atomic catalysis [39] | Co–N/F1 (50 mg) | 0.2 | 3 | 99.20% |
Biocatalysis [40] | TvGLOX (2 μM) | 10 | 24 | 99% |
Cascade Catalysis [41] | T. reesei cell (1 g L−1), Laccase(2.5 μM) | 8 | 80 | 88% |
Immobilized enzyme [42] | AAO (3 μM), HP-7@Fe3(PO4)2 (5 μM) | 5 | 48 | 100% |
This study | MLac-NFs (8 mg) | 10 | 24 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Duan, A.; Liu, Z.; Wei, T.; Liu, C. Efficient Conversion of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by the Magnetic Laccase Nanoflowers-2,2,6,6-Tetramethylpiperidin-1-Oxyl System. Materials 2025, 18, 3780. https://doi.org/10.3390/ma18163780
Yang L, Duan A, Liu Z, Wei T, Liu C. Efficient Conversion of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by the Magnetic Laccase Nanoflowers-2,2,6,6-Tetramethylpiperidin-1-Oxyl System. Materials. 2025; 18(16):3780. https://doi.org/10.3390/ma18163780
Chicago/Turabian StyleYang, Lei, Anbang Duan, Zhanyin Liu, Tingying Wei, and Chunzhao Liu. 2025. "Efficient Conversion of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by the Magnetic Laccase Nanoflowers-2,2,6,6-Tetramethylpiperidin-1-Oxyl System" Materials 18, no. 16: 3780. https://doi.org/10.3390/ma18163780
APA StyleYang, L., Duan, A., Liu, Z., Wei, T., & Liu, C. (2025). Efficient Conversion of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by the Magnetic Laccase Nanoflowers-2,2,6,6-Tetramethylpiperidin-1-Oxyl System. Materials, 18(16), 3780. https://doi.org/10.3390/ma18163780