Oxidation Kinetics, Morphology Evolution, and Formation Mechanisms of the High-Temperature Oxide Scale for Cr-Alloyed Automotive Beam Steels
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Oxidation Behavior
3.2. Oxide Morphology
3.3. Cross-Sectional Morphology
4. Discussion
4.1. Morphological Evolution of the Oxide Scale
4.2. Oxidation Kinetics and the Formation Mechanisms of the Oxide Scale
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kwok, T.W.J.; Dye, D. A review of the processing, microstructure and property relationships in medium Mn steels. Int. Mater. Rev. 2023, 68, 1098–1134. [Google Scholar] [CrossRef]
- Huang, C.Y.; Chen, Y.; Lin, C.S. High-temperature oxidation resistance of hot stamping steel with chromium coating electroplated in trivalent chromium bath. Mater. Today Commun. 2022, 33, 104663. [Google Scholar] [CrossRef]
- Wang, X.; Yan, H.; Li, N.; Jiang, Z. High-temperature oxidation behavior of 301 stainless steel containing Cu. Mater. Today Commun. 2023, 35, 106121. [Google Scholar] [CrossRef]
- Wang, Y.; Mao, B.; Chu, S.; He, L.; Wang, Y.; Xing, H.; Tian, G.; Zhao, H.; Wang, S.; Zhang, J.; et al. Revealing the oxidation mechanism of high vanadium high-speed steel using multi-scale characterization. Corros. Sci. 2023, 225, 111592. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Hu, J.; Wang, Z.; Xue, J.; Yu, H.; Zhang, C.; Wang, X.; Cai, Q.; Wang, C.; et al. Effect of Mo on the high-temperature oxidation behavior of Cr-Ni-Mo hot-work die steels. Corros. Sci. 2023, 224, 111487. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, N.; Peng, Y.; Gong, J. Stability of low-temperature-gaseous-carburization layer in AISI316L stainless steel at high temperature. Surf. Interfaces 2021, 23, 100898. [Google Scholar] [CrossRef]
- Matsuno, F. Blistering and hydraulic removal of scale films of rimmed steel at high temperature. Trans. Iron Steel Inst. Jpn. 1980, 20, 413–421. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, K.; Yu, H.; Jenkins, B.; Ren, Y.; Saravanan, N.; He, G.; Luo, X.; Bagot, P.A.J.; Moody, M.P.; et al. New insights into the oxidation mechanisms of a Ferritic-Martensitic steel in high-temperature steam. Acta Mater. 2020, 194, 522–539. [Google Scholar] [CrossRef]
- Mouayd, A.A.; Orazem, M.E.; Sutter, E.M.M.; Tribollet, B.; Koltsov, A. Contribution of electrochemical dissolution during pickling of low carbon steel in acidic solutions. Corros. Sci. 2014, 82, 362–368. [Google Scholar] [CrossRef]
- Birks, N.; Meier, G.H. Introduction to High Temperature Oxidation of Metals; Edward Arnold: London, UK, 1983. [Google Scholar] [CrossRef]
- Asai, T.; Soshiroda, T.; Miyahara, M. Influence of Ni impurity in steel on the removability of primary scale in hydraulic descaling. ISIJ Int. 1997, 37, 272–277. [Google Scholar] [CrossRef]
- Mouayd, A.A.; Koltsov, A.; Sutter, E.; Tribollet, B. Effect of silicon content in steel and oxidation temperature on scale growth and morphology. Mater. Chem. Phys. 2014, 143, 996–1004. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, S.; Mao, W.; Wu, G.; Jin, X. Influence of Si content on selective oxidation and oxide scale phase transition during hot-rolled coiling. J. Mater. Res. Technol. 2023, 25, 3212–3221. [Google Scholar] [CrossRef]
- Li, Z.F.; Cao, G.M.; He, Y.Q.; Liu, Z.Y.; Wang, G.D. Effect of chromium and water vapor of low carbon steel on oxidation behavior at 1050 °C. Steel Res. Int. 2016, 87, 1469–1477. [Google Scholar] [CrossRef]
- Li, L.; Wang, L.; Liang, Z.; He, J.; Qiu, J.; Pyczak, F.; Song, M. Effects of Ni and Cr on the high-temperature oxidation behavior and mechanisms of Co-and CoNi-base superalloys. Mater. Des. 2022, 224, 111291. [Google Scholar] [CrossRef]
- Won, Y.J.; Kim, S.B.; Kwon, Y.J.; Park, S.S.; Cho, K.S. Oxidation behavior and corrosion properties of 2-GPa grade Co-reduced ultrahigh-strength stainless steel. J. Alloys Comp. 2023, 968, 171736. [Google Scholar] [CrossRef]
- Saunders, S.R.J.; Monteiro, M.; Rizzo, F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review. Prog. Mater. Sci. 2008, 53, 775–837. [Google Scholar] [CrossRef]
- Santacreu, P.O.; Badinier, G.; Moreau, J.B.; Herbelin, J.M. Fatigue Properties of a New Martensitic Stainless Steel for Hot Stamped Chassis Parts; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Wang, Z.; Zhang, T.; Wang, J.; Xu, W. Oxidation mechanisms of a CrSi alloyed coating-free press-hardened steel under simulated press hardening conditions. Mater. Charact. 2023, 206, 113446. [Google Scholar] [CrossRef]
- Zhu, R.; Yang, Y.; Zhang, B.; Zhang, B.; Li, L.; Wu, Y.; Mi, Z. Improving mechanical properties and high-temperature oxidation of press hardened steel by adding Cr and Si. Int. J. Miner. Metall. Mater. 2024, 31, 1865–1875. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, J.; Zhu, B. Low cycle fatigue properties of a 9–12% Cr martensitic steel welded joint with Ni-based weld metal based on a local strain approach. Eng. Fail. Anal. 2022, 138, 106347. [Google Scholar] [CrossRef]
- Sriba, A.; Vogt, J.-B.; Amara, S.-E. Microstructure, Micro-hardness and impact toughness of welded austenitic stainless steel 316L. Trans. Indian Inst. Met. 2018, 71, 2303–2314. [Google Scholar] [CrossRef]
- Wang, D.; Ni, D.R.; Xiao, B.L.; Ma, Z.Y.; Wang, W.; Yang, K. Microstructural evolution and mechanical properties of friction stir welded joint of Fe–Cr–Mn–Mo–N austenite stainless steel. Mater. Des. 2014, 64, 355–359. [Google Scholar] [CrossRef]
- Gong-Ye, F.J.; Zhou, J.; Wang, X.; Zhang, H.C.; Peng, S.X.; Li, S.S.; Deng, H.P.; Zhang, J.S. Effect of high-temperature on oxidation behavior of 300 M steel. Mater. Today Commun. 2022, 32, 103987. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, H.; Jiang, D.; Zhang, N. Temperature Dependence of Oxidation Behaviour of a Ferritic–Martensitic Steel in Supercritical Water at 600–700 °C. Oxid. Met. 2016, 86, 483–496. [Google Scholar] [CrossRef]
- Matsumoto, R.; Osumi, Y.; Utsunomiya, H. Reduction of friction of steel covered with oxide scale in hot forging. J. Mater. Process. Technol. 2014, 214, 651–659. [Google Scholar] [CrossRef]
- Cao, G.M.; Liu, X.J.; Sun, B.; Liu, Z.Y. Morphology of oxide scale and oxidation kinetics of low carbon steel. J. Iron Steel Res. Int. 2014, 21, 335–341. [Google Scholar] [CrossRef]
- Liu, S.; Tang, D.; Wu, H.; Wang, L. Oxide scales characterization of micro-alloyed steel at high temperature. J. Mater. Process. Technol. 2013, 213, 1068–1075. [Google Scholar] [CrossRef]
- Kondo, Y.; Tanei, H.; Suzuki, N.; Ushioda, K.; Maeda, M. Blistering behavior during oxide scale formation on steel surface. ISIJ Int. 2011, 51, 1696–1702. [Google Scholar] [CrossRef][Green Version]
- Fujii, C.T.; Meussner, R.A. The mechanism of the high-temperature oxidation of iron-chromium alloys in water vapor. J. Electrochem. Soc. 1964, 111, 1215. [Google Scholar] [CrossRef]
- Rahmel, A.; Tobolski, J. Einfluss von wasserdampf und kohlendioxyd auf die oxydation von eisen in sauerstoff bei hohen temperaturen. Corros. Sci. 1965, 5, 333–346. [Google Scholar] [CrossRef]
- Liu, T.; Cui, Y.; Zheng, K.; Yin, F.; Luo, Z. Synergistic effect of grain size and second-phase particle on the oxidation behaviour of a high-manganese austenitic heat-resistant steel. Corros. Sci. 2023, 215, 111054. [Google Scholar] [CrossRef]
- Kim, B.K.; Ko, Y.S.; Jung, I.H.; Han, H.N.; Yi, K.W.; Kim, D.I. Role of the alloy grain boundaries in the high-temperature oxidation and Cr volatilization of 22 wt% Cr ferritic stainless steel for SOFC applications. Corros. Sci. 2023, 213, 110940. [Google Scholar] [CrossRef]
- Jiang, H.; Dong, J.; Zhang, M.; Zheng, L.; Yao, Z. Oxidation behavior and mechanism of Inconel 740H alloy for advanced ultra-supercritical power plants between 1050 and 1170 °C. Oxid. Met. 2015, 84, 61–72. [Google Scholar] [CrossRef]
- Jung, I.H. Critical evaluation and thermodynamic modeling of the Mn–Cr–O system for the oxidation of SOFC interconnect. Solid State Ion. 2006, 177, 765–777. [Google Scholar] [CrossRef]
- HSC Chemistry Software, version 6.1; Outotec (Finland) Oy: Helsinki, Finland, 2008.
- Kwon, G.H.; Park, H.; Choi, B.; Lee, Y.K.; Moon, K. Influence of Cr Content on the High-Temperature Oxidation Behavior and Mechanism of Low-Alloy Steels. Materials 2023, 16, 4964. [Google Scholar] [CrossRef]
- Graham, H.C.; Davis, H.H. Oxidation/vaporization kinetics of Cr2O3. J. Am. Ceram. Soc. 1971, 54, 89–93. [Google Scholar] [CrossRef]
- Dorcheh, A.S.; Schütze, M.; Galetz, M.C. Factors affecting isothermal oxidation of pure chromium in air. Corros. Sci. 2018, 130, 261–269. [Google Scholar] [CrossRef]
- Takeda, M.; Kushida, H.; Onishi, T.; Toyama, M.; Koizumi, F.; Fujimoto, S. Influence of oxidation temperature and cr content on the adhesion and microstructure of scale on low Cr steels. Oxid. Met. 2009, 73, 1–13. [Google Scholar] [CrossRef]
- Yin, L.; Balaji, S.; Sridhar, S. Effects of nickel on the oxide/metal interface morphology and oxidation rate during high-temperature oxidation of Fe–Cu–Ni alloys. Metall. Mater. Trans. B 2010, 41, 598–611. [Google Scholar] [CrossRef]
- Suárez, L.; Rodríguez-Calvillo, P.; Houbaert, Y.; Colás, R. Oxidation of ultra-low carbon and silicon bearing steels. Corros. Sci. 2010, 52, 2044–2049. [Google Scholar] [CrossRef]
Materials | C | Si | Mn | Nb | Cr | Fe |
---|---|---|---|---|---|---|
Cr0.015 | 0.06 | 0.02 | 0.75 | 0.016 | 0.016 | Bal. |
Cr0.15 | 0.06 | 0.02 | 0.78 | 0.020 | 0.170 | Bal. |
Cr1 | 0.06 | 0.02 | 0.82 | 0.016 | 1.002 | Bal. |
Kp (mg2/(mm−4·min−1)) | Isothermal Oxidation Temperature | ||||
---|---|---|---|---|---|
950 °C | 1050 °C | 1150 °C | 1250 °C | ||
Materials | Cr0.015 | 1.35 × 10−3 | 1.89 ×10−3 | 3.79 × 10−3 | 9.45 × 10−3 |
Cr0.15 | 0.987 × 10−3 | 1.59 × 10−3 | 3.70 × 10−3 | 9.03 × 10−3 | |
Cr1 | 0.434 × 10−3 | 3.80 × 10−3 | 5.00 × 10−3 | 10.0 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, J.; Hu, Y.; Yang, Y.; Jiang, C.; Liu, J.; Zhang, B.; Yang, X.; Mi, Z. Oxidation Kinetics, Morphology Evolution, and Formation Mechanisms of the High-Temperature Oxide Scale for Cr-Alloyed Automotive Beam Steels. Materials 2025, 18, 3774. https://doi.org/10.3390/ma18163774
Chang J, Hu Y, Yang Y, Jiang C, Liu J, Zhang B, Yang X, Mi Z. Oxidation Kinetics, Morphology Evolution, and Formation Mechanisms of the High-Temperature Oxide Scale for Cr-Alloyed Automotive Beam Steels. Materials. 2025; 18(16):3774. https://doi.org/10.3390/ma18163774
Chicago/Turabian StyleChang, Jiang, Yuantao Hu, Yonggang Yang, Chen Jiang, Jianling Liu, Borui Zhang, Xiong Yang, and Zhenli Mi. 2025. "Oxidation Kinetics, Morphology Evolution, and Formation Mechanisms of the High-Temperature Oxide Scale for Cr-Alloyed Automotive Beam Steels" Materials 18, no. 16: 3774. https://doi.org/10.3390/ma18163774
APA StyleChang, J., Hu, Y., Yang, Y., Jiang, C., Liu, J., Zhang, B., Yang, X., & Mi, Z. (2025). Oxidation Kinetics, Morphology Evolution, and Formation Mechanisms of the High-Temperature Oxide Scale for Cr-Alloyed Automotive Beam Steels. Materials, 18(16), 3774. https://doi.org/10.3390/ma18163774