Numerical Simulation and Experimental Study of Millisecond Percussion Drilling in Titanium Alloy
Abstract
1. Introduction
2. Experimental Details
2.1. Material
2.2. Setup of the ANSYS
2.3. Experimental Parameters
3. Results and Discussion
3.1. Simulation Results
3.1.1. Effect of Pulse Energy on Hole Quality
3.1.2. Effect of Pulse Width on Hole Quality
3.1.3. Effect of Pulse Number on the Quality of Small Holes
3.2. Experimental Verification and Comparison
3.2.1. Effect of Pulse Energy on Hole Quality
3.2.2. Effect of Pulse Width on Hole Quality
3.2.3. Effect of Number of Pulses on Hole Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, C.G.; Pramanik, A.; Basak, A.K.; Prakash, C.; Shankar, S. Drilling of titanium alloy (Ti6Al4V)—A review. Mach. Sci. Technol. 2021, 25, 637–702. [Google Scholar] [CrossRef]
- Wang, J.J.; Wang, B.; Yuan, C.H.; Yu, A.B.; Zhang, W.B. Experimental Study on Water-Assisted Laser Drilling of Titanium Alloys. Aeronaut. Manuf. Technol. 2023, 66, 99–111. [Google Scholar]
- Liu, Y.; Ouyang, P.; Zhang, Z.; Zhu, H.; Chen, X.; Wang, Y.; Li, B.; Xu, K.; Wang, J.; Lu, J. Numerical Simulation and Experimental Study on Nanosecond Laser Drilling of Titanium Alloy. High Power Laser Part. Beams 2018, 30, 171–178. [Google Scholar]
- Hou, H.L.; Wu, C.; Lv, R.H. Research on Laser Drilling and Cutting Process of TC4 Titanium Alloy. Appl. Laser 2019, 39, 614–620. [Google Scholar]
- Deepu, P.; Jagadesh, T.; Duraiselvam, M. Investigations into Morphology and Surface Integrity of Micro-Hole During Femtosecond Laser Drilling of Titanium Alloy. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 516. [Google Scholar] [CrossRef]
- Namdev, S.; Pandey, A.; Pandey, A.K.; Kumar, R.; Goyal, A. Optimization of Exit Diameter of Hole on Ti-6Al-4V Superalloy Using Laser Drilling. In Lecture Notes on Multidisciplinary Industrial Engineering Optimization Methods in Engineering; Springer: Singapore, 2020; pp. 291–302. [Google Scholar]
- Singh, B.K.; Sarma, U.; Kapil, S.; Joshi, S.N. Numerical Modelling and Simulation of Laser-Based Micro-drilling of Titanium Alloy. In Advances in Simulation, Product Design and Development; Springer: Singapore, 2022; pp. 295–307. [Google Scholar]
- Liang, Y.; Feng, G.; Li, X.; Sun, H.; Xue, W.; Zhang, K.; Li, F. Simulation Analysis of Nanosecond Laser Processing of Titanium Alloy Based on Helical Trepanning. Appl. Sci. 2022, 12, 9024. [Google Scholar] [CrossRef]
- Zhou, K.P.; He, L.M.; Zhao, X.M. Research on the Application of Femtosecond Laser New Technology. Aviat. Precis. Manuf. Technol. 2020, 56, 34–37. [Google Scholar]
- Xia, B.; Jiang, L.; Li, X.W. Femtosecond Laser High-Quality and High Aspect Ratio Micro-Hole Machining Mechanism and Online Observation. Met. Process. Cold Process. 2017, 4, 65. [Google Scholar]
- Yao, J.H.; Ye, Z.; Shen, H.W. Application of Laser Processing Technology in Steam Turbine Blade Manufacturing. Laser Optoelectron. Prog. 2012, 49, 108–113. [Google Scholar]
- Gu, J.; Liu, Z.; Xu, Y.; Xia, Q.; Song, B.; Wang, J. Application of Titanium Alloy and Its Laser Processing Technology in Aviation Manufacturing. Appl. Laser 2020, 40, 547–555. [Google Scholar]
- Yue, F.; Du, S.F.; Zhang, J.Q. Research on High-Efficiency Cutting Process Performance of Titanium Alloy Materials. Natl. Def. Manuf. Technol. 2019, 01, 16–21. [Google Scholar]
- Jia, Y.M. Application of Laser Additive Manufacturing in the Field of Aerospace. New Mater. Ind. 2019, 07, 52–56. [Google Scholar]
- Liu, Q.; Ren, N.F.; Da, Y. Experiment and Simulation of Millisecond Laser Inclined Drilling on GH4037 Alloy. Aero Engine 2022, 48, 111–115. [Google Scholar]
- Otto, A.; Koch, H.; Vazquez, G.R. Multiphysical Simulation of Laser Material Processing. Phys. Procedia 2012, 39, 843–852. [Google Scholar] [CrossRef]
Chemical Composition | Content% | |||||||
---|---|---|---|---|---|---|---|---|
Ti | Al | V | Fe | C | N | H | O | |
Ti-6Al-4V | Surplus | 5.5~6.8 | 3.5~4.5 | 0.3 | 0.1 | 0.05 | 0.015 | 0.2 |
Temperature (°C) | ENTH (1.0 × 109 J·m−3) | Specific Heat (1.0 × 103 J·kg−1·°C−1) | Thermal Conductivity (W·m−1·°C−1) |
---|---|---|---|
25 | 0.7 | 0.52 | 21.9 |
500 | 1.81 | 0.52 | 21.9 |
1000 | 2.99 | 0.52 | 21.9 |
1500 | 4.16 | 0.52 | 21.9 |
2000 | 5.33 | 0.52 | 21.9 |
Number | Pulse Energy (J) | Pulse Width (ms) | Number of Pulses (n) |
---|---|---|---|
1 | 22.2, 2.4 2.6, 2.8 | 0.8 | 50 |
2 | 2.5 | 0.6, 0.81 1.2, 1.4 | 50 |
3 | 2 | 0.8 | 40, 45, 50 55, 60 |
Material Thickness (mm) | Pulse Energy (J) | Inlet Diameter (µm) | Outlet Diameter (µm) | Taper (deg) |
---|---|---|---|---|
3 | 2 | 264 | 231 | 0.63 |
2.2 | 300 | 247 | 1 | |
2.4 | 324 | 290 | 0.65 | |
2.6 | 367 | 295 | 1.38 | |
2.8 | 372 | 306 | 1.26 |
Material Thickness (mm) | Pulse Width (ms) | Inlet Diameter (µm) | Outlet Diameter (µm) | Taper (deg) |
---|---|---|---|---|
3 | 0.6 | 268 | 251 | 0.32 |
0.8 | 273 | 262 | 0.21 | |
1.0 | 286 | 278 | 0.15 | |
1.2 | 297 | 277 | 0.38 | |
1.4 | 312 | 274 | 0.73 |
Material Thickness (mm) | Number of Pulses (J) | Inlet Diameter (µm) | Outlet Diameter (µm) | Taper (deg) |
---|---|---|---|---|
3 | 40 | 268 | 251 | 0.32 |
45 | 273 | 262 | 0.21 | |
50 | 286 | 278 | 0.15 | |
55 | 297 | 277 | 0.38 | |
60 | 312 | 274 | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Xu, L.; Wu, C.; Rong, Y.; Xia, K. Numerical Simulation and Experimental Study of Millisecond Percussion Drilling in Titanium Alloy. Materials 2025, 18, 3719. https://doi.org/10.3390/ma18153719
Wang L, Xu L, Wu C, Rong Y, Xia K. Numerical Simulation and Experimental Study of Millisecond Percussion Drilling in Titanium Alloy. Materials. 2025; 18(15):3719. https://doi.org/10.3390/ma18153719
Chicago/Turabian StyleWang, Liang, Long Xu, Changjian Wu, Yefei Rong, and Kaibo Xia. 2025. "Numerical Simulation and Experimental Study of Millisecond Percussion Drilling in Titanium Alloy" Materials 18, no. 15: 3719. https://doi.org/10.3390/ma18153719
APA StyleWang, L., Xu, L., Wu, C., Rong, Y., & Xia, K. (2025). Numerical Simulation and Experimental Study of Millisecond Percussion Drilling in Titanium Alloy. Materials, 18(15), 3719. https://doi.org/10.3390/ma18153719