Flexible Sensor with Material–Microstructure Synergistic Optimization for Wearable Physiological Monitoring
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of the Sensing Layer
2.2.1. Fabrication of the Gradient Crack Microstructure
2.2.2. Construction of the Bilayer Electrode
2.2.3. Sensor Integration
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, P.; Hou, Z.; Chen, S.; Ren, S.; Zhao, M.; Yang, L. Biomaterials for Flexible Pressure Sensors: Innovations and Advancements. J. Mater. Chem. C 2024, 12, 18138–18166. [Google Scholar] [CrossRef]
- Nabeel, M.; Mousa, M.; Viskolcz, B.; Fiser, B.; Vanyorek, L. Recent Advances in Flexible Foam Pressure Sensors: Manufacturing, Characterization, and Applications–a Review. Polym. Rev. 2024, 64, 449–489. [Google Scholar] [CrossRef]
- Shu, Q.; Pang, Y.; Li, Q.; Gu, Y.; Liu, Z.; Liu, B.; Li, J.; Li, Y. Flexible Resistive Tactile Pressure Sensors. J. Mater. Chem. A 2024, 12, 9296–9321. [Google Scholar] [CrossRef]
- Qin, J.; Tang, Y.; Zeng, Y.; Liu, X.; Tang, D. Recent Advances in Flexible Sensors: From Sensing Materials to Detection Modes. TrAC Trends Anal. Chem. 2024, 181, 118027. [Google Scholar] [CrossRef]
- Khalid, M.A.U.; Chang, S.H. Flexible Strain Sensors for Wearable Applications Fabricated Using Novel Functional Nanocomposites: A Review. Compos. Struct. 2022, 284, 115214. [Google Scholar] [CrossRef]
- Yang, J.C.; Mun, J.; Kwon, S.Y.; Park, S.; Bao, Z.; Park, S. Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics. Adv. Mater. 2019, 31, 1904765. [Google Scholar] [CrossRef]
- Ferreira, R.G.; Silva, A.P.; Nunes-Pereira, J. Current On-Skin Flexible Sensors, Materials, Manufacturing Approaches, and Study Trends for Health Monitoring: A Review. ACS Sens. 2024, 9, 1104–1133. [Google Scholar] [CrossRef]
- Li, S.; Guo, R.; Zhang, Y.; Li, P.; Chen, F.; Wang, X.; Li, J.; Jie, Z.; Lv, Q.; Jin, H.; et al. A Catalog of 48,425 Nonredundant Viruses from Oral Metagenomes Expands the Horizon of the Human Oral Virome. iScience 2022, 25, 104418. [Google Scholar] [CrossRef]
- Liu, L.; Yang, J.; Zhang, H.; Ma, J.; Zheng, J.; Wang, C. Recent Advances of Flexible MXene Physical Sensor to Wearable Electronics. Mater. Today Commun. 2023, 35, 106014. [Google Scholar] [CrossRef]
- Duan, H.; Peng, S.; He, S.; Tang, S.-Y.; Goda, K.; Wang, C.H.; Li, M. Wearable Electrochemical Biosensors for Advanced Healthcare Monitoring. Adv. Sci. 2025, 12, e2411433. [Google Scholar] [CrossRef]
- Sengupta, D.; Kottapalli, A.G.P. Nanomaterials-Based Bioinspired Next Generation Wearable Sensors: A State-of-the-Art Review. Adv. Electron. Mater. 2024, 10, 2300436. [Google Scholar] [CrossRef]
- Wu, H.; Wang, C.; Liu, L.; Liu, Z.; He, J.; Zhang, C.; Duan, J. Bioinspired Stretchable Strain Sensor with High Linearity and Superhydrophobicity for Underwater Applications. Adv. Funct. Mater. 2025, 35, 2431552. [Google Scholar] [CrossRef]
- Gao, K.; Zhang, Z.; Weng, S.; Zhu, H.; Yu, H.; Peng, T. Review of Flexible Piezoresistive Strain Sensors in Civil Structural Health Monitoring. Appl. Sci. 2022, 12, 9750. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Lu, C. Flexible Piezoelectric Materials and Strain Sensors for Wearable Electronics and Artificial Intelligence Applications. Chem. Sci. 2024, 15, 16436–16466. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Pan, J.; Cui, T.; Zhang, S.; Yang, Y.; Ren, T.-L. Recent Progress of Tactile and Force Sensors for Human–Machine Interaction. Sensors 2023, 23, 1868. [Google Scholar] [CrossRef]
- Lin, Y.; Qiu, W.; Kong, D. Stretchable and Body-Conformable Physical Sensors for Emerging Wearable Technology. Sens. Diagn. 2024, 3, 1442–1455. [Google Scholar] [CrossRef]
- Qiao, Y. Research on the Application of Flexible Pressure Sensors in Wearable Devices. Sens. Actuators A Phys. 2025, 330, 59–65. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Lin, J.; Li, W.; Chu, W.; Zhang, M.; Lu, Y.; He, X.; Zhao, Q. Highly Stretchable Electronic-Skin Sensors with Porous Microstructure for Efficient Multimodal Sensing with Wearable Comfort. Adv. Mater. Interfaces 2023, 10, 2201958. [Google Scholar] [CrossRef]
- Chen, H.; Li, B.; Himmel, B.; Wang, X.; Hoffmann, M. Robot Skin with Touch and Bend Sensing Using Electrical Impedance Tomography. arXiv 2025, arXiv:2503.13048. [Google Scholar]
- Pannen, T.J.; Puhlmann, S.; Brock, O. A Low-Cost, Easy-to-Manufacture, Flexible, Multi-Taxel Tactile Sensor and Its Application to In-Hand Object Recognition. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; IEEE: New York, NY, USA, 2022; pp. 10939–10944. [Google Scholar]
- Ozin, G.; Siler, T.; Qian, C.; Zhou, W. The Curiosity-Creativity Element in HI-AI Materials Discovery. Matter 2024, 7, 718–722. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, D.; An, Y.; Chen, W.; Huang, Z.; Jiang, B. Wearable Flexible Pressure Sensors: An Intriguing Design towards Microstructural Functionalization. J. Mater. Chem. A 2023, 12, 6826–6874. [Google Scholar] [CrossRef]
- Garg, M.; Parihar, A.; Rahman, M.S. Advanced and Personalized Healthcare through Integrated Wearable Sensors (Versatile). Mater. Adv. 2023, 5, 432–452. [Google Scholar] [CrossRef]
- Hu, J.; Dun, G.; Geng, X.; Chen, J.; Wu, X.; Ren, T.L. Recent Progress in Flexible Micro-Pressure Sensors for Wearable Health Monitoring. Nanoscale Adv. 2023, 5, 3131–3145. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zeng, S.; Liu, Q.; Sun, J.; Zhu, M.; Li, L.; Deng, T. Review of the Pressure Sensor Based on Graphene and Its Derivatives. Microelectron. Eng. 2024, 288, 112167. [Google Scholar] [CrossRef]
- Suo, J.; Liu, Y.; Cheng, C.Y.M.; Wang, K.; Chen, M.; Chan, H.-Y.; Vellaisamy, R.; Xi, N.; Lou, V.W.; Li, W.J. Ultra-Sensitive Flexible Sponge-Sensor Array for Muscle Activities Detection and Human Limb Motion Recognition. arXiv 2022, arXiv:2205.03238. [Google Scholar]
- Ma, G.; Zhang, M.; Gao, F.; Wang, Y.; Pu, L.; Song, Y.; She, J.; Wang, D.; Yu, B.; Ba, K.; et al. Bioinspired, Fiber-Based, Flexible Self-Powered Sensor for Wearable Applications. Device 2024, 2, 100508. [Google Scholar] [CrossRef]
- Yang, M.; Peng, K.; Li, Z.; Gao, Y.; Tian, Q.; Zhou, Z.; Chen, Y. Recent Progress in Flexible Materials for Wearable Devices for Body Function and Athletic Performance Monitoring. Chem. Eng. J. 2025, 505, 159659. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, W.; Ma, Z.; Zhao, H.; Ren, L. Self-Powered Flexible Electronic Skin Tactile Sensor with 3D Force Detection. Mater. Today 2024, 81, 84–94. [Google Scholar] [CrossRef]
- Zhao, L.; Lin, Z.; Lai, K.W.C. Skin-Integrated, Stretchable Electronic Skin for Human Motion Capturing and Pressure Mapping. Adv. Sens. Res. 2024, 3, 2300025. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, G.; Jin, Z.; Chen, J. A Review on Magnetic Smart Skin as Human–Machine Interfaces. Adv. Electron. Mater. 2024, 10, 2300677. [Google Scholar] [CrossRef]
- Ye, G.; Jin, T.; Wang, X.; Chen, Y.; Wu, Q.; Wan, Y.; Yang, P. Multimodal Integrated Flexible Electronic Skin for Physiological Perception and Contactless Kinematics Pattern Recognition. Nano Energy 2023, 113, 108580. [Google Scholar] [CrossRef]
- Kim, K.; Hong, J.H.; Bae, K.; Lee, K.; Lee, D.J.; Park, J.; Zhang, H.; Sang, M.; Ju, J.E.; Cho, Y.U.; et al. Extremely Durable Electrical Impedance Tomography-Based Soft and Ultrathin Wearable e-Skin for Three-Dimensional Tactile Interfaces. Sci. Adv. 2024, 10, eadr1099. [Google Scholar] [CrossRef] [PubMed]
- Sankar, V.; Sankar, V.; Nambi, A.; Bhat, V.N.; Sethy, D.; Balasubramaniam, K.; Das, S.; Guha, M.; Sundara, R. Waterproof Flexible Polymer-Functionalized Graphene-Based Piezoresistive Strain Sensor for Structural Health Monitoring and Wearable Devices. ACS Omega 2020, 5, 12682–12691. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; D’hooge, D.R.; Cardon, L. Recent Progress on Flexible and Stretchable Piezoresistive Strain Sensors: From Design to Application. Prog. Mater. Sci. 2020, 114, 100617. [Google Scholar] [CrossRef]
- Luan, J.; Wang, Q.; Zheng, X.; Li, Y. Flexible Strain Sensor with Good Durability and Anti-Corrosion Property Based on Metal/Polymer Composite Films Embedded with Silver Nanowires. Arch. Civ. Mech. Eng. 2020, 20, 133. [Google Scholar] [CrossRef]
- Zhao, H.; Shu, M.; Ai, Z.; Lou, Z.; Sou, K.W.; Lu, C.; Jin, Y.; Wang, Z.; Wang, J.; Wu, C.; et al. A Highly Sensitive Triboelectric Vibration Sensor for Machinery Condition Monitoring. Adv. Energy Mater. 2022, 12, 30–31. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Song, Y.; Sun, Y.; Zhang, X.; Hu, Y.; Guo, R.; Han, X. A Novel Ultrasound-Vibration Composite Sensor for Defects Detection of Electrical Equipment. IEEE Trans. Power Deliv. 2022, 37, 4477–4480. [Google Scholar] [CrossRef]
- Sivagami, A.; Jayakumar, S.; Kandavalli, M.A. Structural Health Monitoring Using Smart Sensors. AIP Conf. Proc. 2020, 2281, 020034. [Google Scholar] [CrossRef]
- He, S.; Xin, B.; Chen, Z.; Liu, Y. Flexible and Highly Conductive Ag/G-Coated Cotton Fabric Based on Graphene Dipping and Silver Magnetron Sputtering. Cellulose 2018, 25, 3691–3701. [Google Scholar] [CrossRef]
- Samoei, V.K.; Jayatissa, A.H.; Sano, K. Flexible Pressure Sensor Based on Carbon Black/PVDF Nanocomposite. Chem. Sci. Int. J. 2024, 33, 19669–19681. [Google Scholar] [CrossRef]
- Pradeep, A.; Ardra, S.; Unnikrishnan, A.; Athira, S.; Sreenidhi, P.R.; Baby Sreeja, S.D. Material Optimization for Capacitive Pressure Sensor-A COMSOL Study. In Proceedings of the 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 4–6 August 2021; IEEE: New York, NY, USA, 2021; pp. 97–102. [Google Scholar]
- Cao, P.; Wang, C.; Mu, Z.; Niu, S.; Liu, X.; Feng, X.; Liu, L.; Han, Z. Bioinspired Microgroove’s Geometry Design and Finite Element Analysis of Bursting Influence Parameters for Metal-Based Rupture Diaphragms. J. Bionic Eng. 2025, 22, 293–305. [Google Scholar] [CrossRef]
- Xu, K.; Tang, Y.; Liang, J.; Zhao, T.; Guo, H. Flexible Capacitive Pressure Sensor Sensitized by Tilted Micropillar Structures Fabricated by Two-Photon Polymerization. J. Mater. Sci. Mater. Electron. 2024, 35, 1579. [Google Scholar] [CrossRef]
- Wang, C.; Quan, J.; Liu, L.; Cao, P.; Ding, K.; Ding, Y.; Jia, X.; Yan, D.; Lin, N.; Duan, J. A Rigid-Soft Hybrid Paper-Based Flexible Pressure Sensor with an Ultrawide Working Range and Frequency Bandwidth. J. Mater. Chem. A 2024, 12, 13994–14004. [Google Scholar] [CrossRef]
- Du, Q.; Liu, L.; Tang, R.; Ai, J.; Wang, Z.; Fu, Q.; Li, C.; Chen, Y.; Feng, X. High-Performance Flexible Pressure Sensor Based on Controllable Hierarchical Microstructures by Laser Scribing for Wearable Electronics. Adv. Mater. Technol. 2021, 6, 2100122. [Google Scholar] [CrossRef]
- Yang, X.; Sun, H.; Feng, Y.; Yu, X.; Zhang, H.; Chen, M.; Zhang, G.; Li, W.J. Dual-Sided Microstructured RGO–CNT Flexible Sensors for High-Sensitivity and Wide-Range Pressure Detection. ACS Appl. Electron. Mater. 2025, 7, 3244–3254. [Google Scholar] [CrossRef]
- del Bosque, A.; Fernández Sánchez-Romate, X.X.; De La Llana Calvo, Á.; Fernández, P.R.; Borromeo, S.; Sánchez, M.; Ureña, A. Highly Flexible Strain Sensors Based on CNT-Reinforced Ecoflex Silicone Rubber for Wireless Facemask Breathing Monitoring via Bluetooth. ACS Appl. Polym. Mater. 2023, 5, 8589–8599. [Google Scholar] [CrossRef]
- Fraser, D.P. Pressure Sensing. In Comparative High Pressure Biology; Science Publishers: Enfield, NH, USA, 2010; pp. 143–159. [Google Scholar]
- Li, X.; Liu, Y.; Ding, Y.; Zhang, M.; Lin, Z.; Hao, Y.; Li, Y.; Chang, J. Capacitive Pressure Sensor Combining Dual Dielectric Layers with Integrated Composite Electrode for Wearable Healthcare Monitoring. ACS Appl. Mater. Interfaces 2024, 16, 12974–12985. [Google Scholar] [CrossRef]
- Jie, Z.; Pengyue, Z.; Yimin, D.; Xiaolei, Z.; Jiamin, Q.; Yong, Z. Ag-Cu Nanoparticles Encaptured by Graphene with Magnetron Sputtering and CVD for Surface-Enhanced Raman Scattering. Plasmonics 2016, 11, 1495–1504. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mou, Y.; Wang, C.; Jiang, X.; Wang, J.; Zhang, C.; Liu, L.; Duan, J. Flexible Sensor with Material–Microstructure Synergistic Optimization for Wearable Physiological Monitoring. Materials 2025, 18, 3707. https://doi.org/10.3390/ma18153707
Mou Y, Wang C, Jiang X, Wang J, Zhang C, Liu L, Duan J. Flexible Sensor with Material–Microstructure Synergistic Optimization for Wearable Physiological Monitoring. Materials. 2025; 18(15):3707. https://doi.org/10.3390/ma18153707
Chicago/Turabian StyleMou, Yaojia, Cong Wang, Xiaohu Jiang, Jingxiang Wang, Changchao Zhang, Linpeng Liu, and Ji’an Duan. 2025. "Flexible Sensor with Material–Microstructure Synergistic Optimization for Wearable Physiological Monitoring" Materials 18, no. 15: 3707. https://doi.org/10.3390/ma18153707
APA StyleMou, Y., Wang, C., Jiang, X., Wang, J., Zhang, C., Liu, L., & Duan, J. (2025). Flexible Sensor with Material–Microstructure Synergistic Optimization for Wearable Physiological Monitoring. Materials, 18(15), 3707. https://doi.org/10.3390/ma18153707