Potential Utilization of End-of-Life Vehicle Carpet Waste in Subfloor Mortars: Incorporation into Portland Cement Matrices
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Characterization
2.2. Sample Preparation
2.3. Property Evaluation
3. Results and Discussion
3.1. Characterization of Automotive Carpet
3.2. Cementitious Composites with ACW: Characterization and Analysis
- The samples with 2%, 5%, and 20% ACW presented cracks propagating from the point of impact.
- The sample with 15% ACW showed the formation of both cracks and fissures.
- The sample with 10% ACW exhibited no visible damage.
3.3. Microscopy Analysis of Cementitious Composites with ACW
3.4. Dynamic Stiffness of Cementitious Composites Incorporating ACW
4. Conclusions
- i.
- The incorporation of ACW leads to a notable reduction in the mass density of subfloor mortars. Nevertheless, the mixture with 2% ACW maintains density values statistically equivalent to the reference sample without ACW. Additionally, mortars with higher ACW contents, specifically between 10% and 20%, exhibit no significant differences in density among themselves.
- ii.
- The addition of ACW significantly reduced the dynamic modulus of elasticity of the composites. However, no statistically significant differences were observed between the 10% and 15% ACW contents.
- iii.
- The results of the capillarity test did not reveal a consistent behavioral trend, highlighting the need for additional studies to better understand whether higher ACW incorporation facilitates or impairs the development of the pore network governing water transport within the cementitious matrix.
- iv.
- The axial and splitting tensile strength test demonstrated a progressive reduction in mechanical performance as the percentage of ACW incorporated into the cementitious matrix increased.
- v.
- The results of flexural tensile strength showed a similar reduction trend. However, at higher ACW contents, the presence of carpet fibers appears to contribute to a partial recovery or improvement in flexural performance, suggesting a potential reinforcing effect provided by the fibers.
- vi.
- The impact resistance, despite the mortar mix not being optimized for maximum, the results indicate that the incorporation of ACW fibers enhanced the material’s ability to resist crack formation under impact energies of 10 and 20 joules. Furthermore, the sample with 10% ACW exhibited a significant improvement under a 30-joule impact, remaining intact without rupture, highlighting the potential contribution of the fibrous components to energy absorption and damage mitigation.
- vii.
- The dynamic stiffness test demonstrated that all levels of ACW incorporation in the subfloor mortar led to reductions in dynamic stiffness values. This trend suggests that increasing the ACW content leads to a decrease in the dynamic stiffness of the subfloor composite. Such behavior suggests that ACW incorporation in the cementitious matrix can effectively contribute to acoustic insulation against impact noise.
- viii.
- The reductions in impact sound pressure level (∆L), calculated by ISO 12354-2, were consistent with values reported in the literature and exhibited improvements as the percentage of ACW increased, confirming the enhanced acoustic performance of the composites.
- ix.
- The results of microscopy analyses using Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) demonstrated the effective integration of ACW fibers within the mortar matrix, exhibiting good fiber–matrix adhesion and a homogeneous microstructure.
- x.
- The mixture of the four different automotive carpets analyzed in this study resulted in a residue composed of PET, PES, and cotton fibers. This composite residue demonstrated effectiveness in reducing impact noise when incorporated into subfloor mortar.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cho, S.-J.; Jang, H.-N.; Cho, S.-J.; Yoon, Y.-S.; Yoo, H.-M. Material Recycling for Manufacturing Aggregates Using Melting Slag of Automobile Shredder Residues. Materials 2023, 16, 2664. [Google Scholar] [CrossRef] [PubMed]
- Örücü, E.; Türkmen, B.A. Evaluating the sustainability of car mat manufacturing. Sustain. Mater. Technol. 2022, 32, e00402. [Google Scholar] [CrossRef]
- Cai, Z.; Al Faruque, M.A.; Kiziltas, A.; Mielewski, D.; Naebe, M. Sustainable Lightweight Insulation Materials from Tex-tile-Based Waste for the Automobile Industry. Materials 2021, 14, 1241. [Google Scholar] [CrossRef]
- Widmer, R.; Du, X.; Haag, O.; Restrepo, E.; Wager, P.A. Scarce metals in conventional passenger vehicles and end-of-life vehicle shredder output. Environ. Sci. Technol. 2015, 49, 4591–4599. [Google Scholar] [CrossRef]
- Wong, Y.C.; Al-Obaidi, K.; Mahyuddin, N. Recycling of end-of-life vehicles (ELVs) for building products: Concept of processing framework from automotive to construction industries in Malaysia. J. Clean. Prod. 2018, 190, 285–302. [Google Scholar] [CrossRef]
- Arese, M.; Cavallo, B.; Ciaccio, G.; Brunella, V. Characterization of Morphological, Thermal, and Mechanical Performances and UV Ageing Degradation of Post-Consumer Recycled Polypropylene for Automotive Industries. Materials 2025, 18, 1090. [Google Scholar] [CrossRef]
- Erbs, A.; Nagalli, A.; Mymrine, V.; Carvalho, K.Q. Determinação das propriedades físicas e mecânicas do gesso reciclado proveniente de chapas de gesso acartonado. Cerâmica 2015, 61, 482–487. [Google Scholar] [CrossRef]
- Xu, L.Y.; Yu, J.; Huang, B.T.; Lao, J.C.; Wu, H.L.; Jiang, X.; Xie, T.Y.; Dai, J.G. Green and low-carbon matrices for Engineered/Strain-Hardening Cementitious Composites (ECC/SHCC): Toward sustainable and resilient infrastructure. J. Clean. Prod. 2025, 496, 144968. [Google Scholar] [CrossRef]
- Coffetti, D.; Crotti, E.; Gazzaniga, G.; Carrara, M.; Pastore, T.; Coppola, L. Pathways towards sustainable concrete. Cem. Concr. Res. 2022, 154, 106718. [Google Scholar] [CrossRef]
- Susunaga, M.P.; Gongora, I.A.G.; Palmeira, E.M. Evaluation of the Impact of Sustainable Infrastructure on the Perception of the Community Through the Use of Geocells Made of Recycled Tires in an Educational Environment. Sustainability 2025, 17, 1791. [Google Scholar] [CrossRef]
- Ming, Y.; Chen, P.; Li, L.; Gan, G.; Pan, G. A Comprehensive Review on the Utilization of Recycled Waste Fibers in Ce-ment-Based Composites. Materials 2021, 14, 3643. [Google Scholar] [CrossRef]
- Souayfane, F.; Fardoun, F.; Biwolfe, P. Phase change materials (PCM) for cooling applications in buildings: A review. Energy Build. 2016, 129, 396–431. [Google Scholar] [CrossRef]
- Vasconcelos, G.; Lourenço, P.B.; Camões, A.; Martins, A.; Cunha, S. Evaluation of the performance of recycled textile fibres in the mechanical behaviour of a gypsum and cork composite material. Cem. Concr. Compos. 2015, 58, 29–39. [Google Scholar] [CrossRef]
- Handoko, W.; Pahlevani, F.; Emmanuelawati, I.; Sahajwalla, V. Transforming automotive waste into TiN and TiC ceramics. Mater. Lett. 2016, 176, 17–20. [Google Scholar] [CrossRef]
- Go, T.F.; Wahab, D.A.; Rahman, M.N.A.; Ramli, R.; Azhari, C.H. Disassemblability of end-of-life vehicle: A critical review of evaluation methods. J. Clean. Prod. 2011, 19, 1536–1546. [Google Scholar] [CrossRef]
- Liu, P.; Farzana, R.; Rajarao, R.; Sahajwalla, V. Lightweight expanded aggregates from the mixture of waste automotive plastics and clay. Constr. Build. 2017, 145, 283–291. [Google Scholar] [CrossRef]
- Rashad, A.M. A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials. Int. J. Sustain. Built Environ. 2016, 5, 46–82. [Google Scholar] [CrossRef]
- Ataria, R.B.; Wang, Y.C. Mechanical Properties and Durability Performance of Recycled Aggregate Concrete Containing Crumb Rubber. Materials 2022, 15, 1776. [Google Scholar] [CrossRef]
- Khaloo, A.R.; Esrafili, A.; Kalani, M.; Mobini, M.H. Use of polymer fibers recovered from waste car timing belts in high-performance concrete. Constr. Build. Mater. 2015, 80, 31–37. [Google Scholar] [CrossRef]
- Eusuf, M.A.; Al Hasan, A. Study the heat transfer potentiality of a building envelope integrated with elt at foundation. World Appl. Sci. J. 2013, 24, 58–63. [Google Scholar]
- Yu, J.; Wu, Q.; Zhao, D.; Jiao, Y. Influence of Recycled Tire Steel Fiber Content on the Mechanical Properties and Fracture Characteristics of Ultra-High-Performance Concrete. Materials 2025, 18, 3300. [Google Scholar] [CrossRef] [PubMed]
- Innovation in Textiles. Automotive Fabrics: Expanding Opportunities in the Vehicles of Tomorrow. Technical Textile Market. 2012, pp. 1–20. Available online: https://www.innovationintextiles.com/automotive-fabrics-expanding-opportunities-in-the-vehicles-of-tomorrow/ (accessed on 25 September 2022).
- Atakan, R.; Sezer, S.; Karakas, H. Development of nonwoven automotive carpets made of recycled PET fibers with improved abrasion resistance. J. Ind. Text. 2018, 49, 835–857. [Google Scholar] [CrossRef]
- Coimbra, N.S. Development of composites for civil construction incorporating automotive carpet waste. Ph.D. Thesis, Engineering School, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2024; 167p. [Google Scholar]
- Lesiak, P.; Kisielowska, A.; Walkowiak, K.; Wiktorczyk, A.; Kramek, G.; Wypych, M.; Sadkowski, L.; Zielinski, J.; Paszkiewicz, S.; Irska, I.; et al. Preparation and characterization of polymer blends based on waste from automotive coverings. Polimery 2020, 65, 232–239. [Google Scholar] [CrossRef]
- NBR 16697; Cimento Portland—Requisitos. Associação Brasileira de Normas Técnicas—ABNT: Rio de Janeiro, Brazil, 2018.
- NBR 17054; Agregados—Determinação da Composição Granulométrica—Método de Ensaio. Associação Brasileira de Normas Técnicas—ABNT: Rio de Janeiro, Brazil, 2022.
- Führ, G.; Masuero, A.B.; Pagnussat, D.T.; Menna Barreto, M.F.F. Impact sound attenuation of subfloor mortars made with exfoliated vermiculite and chrome sawdust. Appl. Acoust. 2021, 174, 107725. [Google Scholar] [CrossRef]
- Batezini, R. Estudo preliminar de concretos permeáveis como revestimento de pavimento para áreas de veículos leves (Preliminary study on pervious concrete as the surface layer for light traffic areas). Master’s Thesis, Polytechnic School of São Paulo University, São Paulo, Brazil, 2013; 133p. [Google Scholar]
- Borges, J.G.K. Análise das propriedades acústicas de contrapisos produzidos com materiais reciclados. Master’s Thesis, University of Vale do Rio dos Sinos, São Leopoldo, Brazil, 2015; 125p. [Google Scholar]
- Rossignolo, J.A. Concreto Leve Estrutural: Produção, Propriedades, Microestrutura e Aplicações, 1st ed.; Pini: São Paulo, Brazil, 2009. [Google Scholar]
- ISO 9052-1; Acoustics—Determination of Dynamics Stiffness—Part 1: Materials Used Under Floating Floors in Dwellings. International Organization for Standardization—ISO: Geneva, Switzerland, 1989.
- NBR 13279; Argamassa Para Assentamento e Revestimento de Paredes e Tetos—Determinação da Resistência à Tração na Flexão e à Compressão. Associação Brasileira de Normas Técnicas—ABNT: Rio de Janeiro, Brazil, 2005.
- NBR 12041; Argamassa de Alta Resistência Mecânica Para Pisos—Determinação da Resistência à Compressão Simples e Tração por Compressão Diametral. Associação Brasileira de Normas Técnicas—ABNT: Rio de Janeiro, Brazil, 2012.
- ASTM E1252; Standard Practice for General Techniques for Obtaining Infrared Spectra for Qualitative Analysis. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D3418; Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM E1131; Standard Test Method for Compositional Analysis by Thermogravimetry. ASTM International: West Conshohocken, PA, USA, 2020.
- NBR 13280; Argamassa Para Assentamento e Revestimento de Paredes e Tetos—Determinação da Densidade de Massa Aparente no Estado Endurecido. Associação Brasileira de Normas Técnicas—ABNT: Rio de Janeiro, Brazil, 2005.
- NBR 15630; Argamassa Para Assentamento e Revestimento de Paredes e Tetos—Determinação do Módulo de Elasticidade Dinâmico Através da Propagação de Onda Ultrassônica. Associação Brasileira de Normas Técnicas—ABNT: Rio de Janeiro, Brazil, 2008.
- NBR 15259; Argamassa Para Assentamento e Revestimento de Paredes e Tetos—Determinação da Absorção de Água por Capilaridade e do Coeficiente de Capilaridade. Associação Brasileira de Normas Técnicas—ABNT: Rio de Janeiro, Brazil, 2005.
- NBR 15575-3; Edificações Habitacionais—Desempenho. Associação Brasileira de Normas Técnicas—ABNT: Rio de Janeiro, Brazil, 2023.
- ISO 12354-2; Building Acoustics—Estimation of Acoustic Performance of Buildings from the Performance of Elements—Part 2: Impact Sound Insulation Between Rooms. International Organization for Standardization—ISO: Geneva, Switzerland, 2017.
- Schiavi, A.; Belli, A.P.; Russo, F.; Corallo, M. Acoustical and mechanical characterization of an innovative expanded sintered elasticized polystyrene (EPS-E) used as underlayer in floating floors. In Proceedings of the 19th International Congress on Acoustics 2007 (ICA 2007), Madrid, Spain, 2–7 September 2007. [Google Scholar]
- Brancher, L.R.; Nunes, M.F.O.; Grisa, A.M.C.; Pagnussat, D.T.; Zeni, M. Acoustic behavior of subfloor lightweight mortars containing micronized poly (Ethylene Vinyl Acetate) (EVA). Materials 2016, 9, 51. [Google Scholar] [CrossRef]
- Borges, J.K.; Pacheco, F.; Tutikian, B.; Oliveira, M.F. An experimental study on the use of waste aggregate for acoustic attenuation: EVA and rice husk composites for impact polystyrene expanded reduction. Constr. Build. Mater. 2018, 161, 501–508. [Google Scholar] [CrossRef]
- Ahmed, H.U.; Faraj, R.H.; Hilal, N.; Mohammed, A.A.; Sherwani, A.F.H. Use of recycled fibers in concrete composites: A systematic comprehensive review. Compos. Part B Eng. 2021, 215, 108769. [Google Scholar] [CrossRef]
- Siddique, R.; Khatib, J.; Kaur, I. Use of recycled plastic in concrete: A review. Waste Manag. 2008, 28, 1835–1852. [Google Scholar] [CrossRef]
- Rubin, A.P. Argamassas autonivelantes industrializadas para contrapiso: Análise do desempenho físico-mecânico frente às argamassas dosadas em obra. Master’s Thesis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil, 2015; 207p. [Google Scholar]
- Fashandi, H.; Pakravan, H.R.; Latifi, M. Application of modified carpet waste cuttings for production of eco-efficient lightweight concrete. Constr. Build. Mater. 2019, 198, 629–637. [Google Scholar] [CrossRef]
- Asasutjarit, C.; Hirunlabh, J.; Khedari, J.; Charoenvai, S.; Zeghmati, B.; Cheul, U.S. Development of coconut coir-based lightweight cement board. Constr. Build. Mater. 2007, 21, 277–288. [Google Scholar] [CrossRef]
- Olmeda, J.; Frías, M.; Olaya, M.; Frutos, B.; Sánchez de Rojas, M.I. Recycling petroleum coke in blended cement mortar to produce lightweight material for Impact Noise Reduction. Cem. Concr. Compos. 2012, 34, 1194–1201. [Google Scholar] [CrossRef]
- Awal, A.A.; Mohammadhosseini, H. Green concrete production incorporating waste carpet fiber and palm oil fuel ash. J. Clean. Prod. 2016, 137, 157–166. [Google Scholar] [CrossRef]
- Tutikian, B.F.; Zuchetto, L.K.; Souza, R.P.; Oliveira, M.F. The use of EVA in mortar floor coverings for impact noise insulation in residential building. Ambient. Constr. 2017, 17, 295–306. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties, and Materials, 2nd ed.; IBRACON: São Paulo, Brazil, 2014; 243p. [Google Scholar]
- Quinino, U.C.M. Investigação experimental das propriedades mecânicas de compósitos de concreto com adições híbridas de fibras. Ph.D. Thesis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil, 2015. [Google Scholar]
- Balaguru, P.N.; Shah, S.P. Fiber Reinforced Cement Composites; Mc Graw Hill Book Co.: New York, NY, USA, 1992. [Google Scholar]
- Banthia, N.; Yan, C.; Sakai, K. Impact Resistance of Concrete Plates Reinforced with a Fiber Reinforced Plastic Grid. Mater. J. 1998, 95, 11–18. [Google Scholar]
- Bayasi, Z.; Zeng, J. Properties of polypropylene fiber reinforced concrete. Mater. J. 1993, 90, 605–610. [Google Scholar]
- Esaker, M.; Thermou, G.E.; Neves, L. Impact resistance of concrete and fibre-reinforced concrete: A review. Int. J. Impact Eng. 2023, 180, 104722. [Google Scholar] [CrossRef]
- Zuchetto, L.K.; Nunes, M.F.O.; Tutikian, B.F. Dynamic stiffness evaluation of floor covering system made out of recycled EVA—Ethylene Vinyl Acetate. In Proceedings of the INTER-NOISE 2015—44th International Congress and Exposition on Noise Control Engineering, San Francisco, CA, USA, 9–12 August 2015. [Google Scholar]
- Tutikian, B.F.; Nunes, M.F.O.; Leal, L.C.; Marquetto, L. Hormigón ligero con agregado reciclado de EVA para atenuación del ruido de impacto. Mater. Constr. 2013, 63, 309–316. [Google Scholar] [CrossRef]
- Neves, A.; António, J.; Nossa, A. Resultados experimentais da rigidez dinâmica de materiais usados sob pavimentos flutuantes. In Tecniacústica 2008: Conferencias y Comunicaciones de Acústica 2008, Proceedings of the V Congreso Ibérico de Acústica y Tecniacustica 2008; 39.º Congreso Español de Acústica, Coimbra, Portugal, 20–22 October 2008; Dialnet: San Diego, CA, USA, 2008; Available online: https://documentacion.sea-acustica.es/publicaciones/Coimbra08/id212.pdf (accessed on 12 November 2023).
Sample | % ACW | Bulk Density (kg/m3) | Dynamic Modulus of Elasticity (GPa) | Capillary Water Absorption (g/cm2) | Flexural Tensile Strength (MPa) | Axial Compressive Strength (MPa) | Splitting Tensile Strength (MPa) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std. Dev. | Mean | Std. Dev. | Mean | Max Relative Deviation (%) | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Max Relative Deviation (%) | ||
CP0 | 0 | 1687.59 | 13.22 | 14.10 | 0.53 | 2.00 | 10.00 | 1.51 | 0.10 | 3.52 | 0.30 | 2.64 | 5.61 |
CP2 | 2 | 1644.09 | 47.76 | 11.56 | 1.16 | 2.60 | 9.10 | 1.00 | 0.20 | 2.06 | 0.30 | 2.04 | 5.13 |
CP5 | 5 | 1570.07 | 17.72 | 9.37 | 0.56 | 3.20 | 18.80 | 0.76 | 0.20 | 1.40 | 0.30 | 1.89 | 7.66 |
CP10 | 10 | 1291.91 | 14.96 | 6.64 | 0.11 | 2.00 | 10.00 | 0.12 | 0.00 | 0.43 | 0.20 | 1.41 | 7.78 |
CP15 | 15 | 1465.52 | 19.55 | 6.16 | 0.76 | 0.90 | 7.10 | 0.33 | 0.10 | 0.71 | 0.20 | 0.93 | 7.59 |
CP20 | 20 | 1305.02 | 22.03 | 3.98 | 0.07 | 2.60 | 15.40 | 0.47 | 0.20 | 0.30 | 0.10 | 0.90 | 3.92 |
Sample | Bulk Density (kg/m3) | Dynamic Modulus of Elasticity (GPa) | Capillary Water Absorption (g/cm2) | Flexural Tensile Strength (MPa) | Axial Compressive Strength (MPa) | Splitting Tensile Strength (MPa) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mortar | Error | Mortar | Error | Mortar | Error | Mortar | Error | Mortar | Error | Mortar | Error | |
Sum of Square | 429,466 | 7724 | 181,141,101 | 4,506,239 | 7 | 2 | 4 | 0 | 45 | 2 | 7 | 0 |
Degrees of Freedom | 5 | 12 | 5 | 10 | 5 | 12 | 5 | 12 | 5 | 30 | 5 | 12 |
Mean Square | 85,893 | 644 | 9.37 | 450,624 | 1 | 0 | 1 | 0 | 9 | 0 | 1 | 0 |
F-Test | 133.45 | - | 80.40 | - | 7.71 | - | 31.40 | - | 152.92 | - | 115.02 | - |
p-Value | 0.000000 | - | 0.000000 | - | 0.001870 | - | 0.000002 | - | 0.000000 | - | 0.000000 | - |
Significance | Yes | - | Yes | - | Yes | - | Yes | - | Yes | - | Yes | - |
Sample | % ACW | Resonance Frequency (Hz) | Dynamic Stiffness (MN/m3) | Potential Sound Pressure Level Reduction (dB) | ||
---|---|---|---|---|---|---|
Mean | Std. Dev. | Mean | Std. Dev. | |||
CP0 | 0 | 151.27 | 2.18 | 170.74 | 4.92 | 7.00 |
CP2 | 2 | 136.90 | 1.51 | 139.84 | 3.08 | 8.12 |
CP5 | 5 | 107.77 | 1.45 | 86.66 | 2.35 | 10.94 |
CP10 | 10 | 85.53 | 2.25 | 54.61 | 2.87 | 12.69 |
CP15 | 15 | 72.60 | 2.59 | 39.36 | 2.82 | 15.65 |
CP20 | 20 | 57.70 | 4.34 | 24.93 | 3.82 | 17.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coimbra, N.d.S.; Danilevicz, Â.d.M.F.; Pagnussat, D.T.; Fernandes, T.G. Potential Utilization of End-of-Life Vehicle Carpet Waste in Subfloor Mortars: Incorporation into Portland Cement Matrices. Materials 2025, 18, 3680. https://doi.org/10.3390/ma18153680
Coimbra NdS, Danilevicz ÂdMF, Pagnussat DT, Fernandes TG. Potential Utilization of End-of-Life Vehicle Carpet Waste in Subfloor Mortars: Incorporation into Portland Cement Matrices. Materials. 2025; 18(15):3680. https://doi.org/10.3390/ma18153680
Chicago/Turabian StyleCoimbra, Núbia dos Santos, Ângela de Moura Ferreira Danilevicz, Daniel Tregnago Pagnussat, and Thiago Gonçalves Fernandes. 2025. "Potential Utilization of End-of-Life Vehicle Carpet Waste in Subfloor Mortars: Incorporation into Portland Cement Matrices" Materials 18, no. 15: 3680. https://doi.org/10.3390/ma18153680
APA StyleCoimbra, N. d. S., Danilevicz, Â. d. M. F., Pagnussat, D. T., & Fernandes, T. G. (2025). Potential Utilization of End-of-Life Vehicle Carpet Waste in Subfloor Mortars: Incorporation into Portland Cement Matrices. Materials, 18(15), 3680. https://doi.org/10.3390/ma18153680