Green Mild Acid Treatment of Recycled Concrete Aggregates: Concentration Thresholds for Mortar Removal While Avoiding Degradation of Original Limestone Aggregate and Concrete
Abstract
1. Introduction
2. Experimental Program
2.1. Materials
2.2. Sample Preparation
2.2.1. Profilometer Testing Samples
2.2.2. SEM Samples
2.2.3. Nanoindentation Samples
2.2.4. Concrete Specimen
2.3. Testing Methods
2.3.1. Test for Aggregate
Physical Properties Tests
Profilometer Testing
SEM Observation
2.3.2. Test for Concrete
Workability and Compressive Strength Test
Nanoindentation Test
3. Results and Discussion
3.1. Evaluation of the Effects of Acid Immersion on Aggregate
3.1.1. Physical Properties
3.1.2. Dissolution Depth of Aggregate
3.1.3. Surface Roughness of Aggregate
3.1.4. SEM Observation
3.2. Evaluation of the Effects of Acid Immersion on Concrete
3.2.1. Workability and Compressive Strength of Concrete
3.2.2. Microproperties of ITZ
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, W.; Li, J.; Cai, Z. Investigating the durability enhancement of recycled construction concrete through the application of nano-montmorillonite. Alex. Eng. J. 2025, 118, 692–699. [Google Scholar] [CrossRef]
- Wu, L.; Sun, Z.; Cao, Y. Modification of recycled aggregate and conservation and application of recycled aggregate concrete: A review. Constr. Build. Mater. 2024, 431, 136567. [Google Scholar] [CrossRef]
- Alharthai, M.; Ali, T.; Qureshi, M.Z.; Ahmed, H. The enhancement of engineering characteristics in recycled aggregates concrete combined effect of fly ash, silica fume and PP fiber. Alex. Eng. J. 2024, 95, 363–375. [Google Scholar] [CrossRef]
- Ma, Y.; You, Q.; Li, J.; Lu, C.; Yin, J.; Li, H.; Meng, W.; Liu, Z.; Wang, Y.; Gao, X.; et al. Study on the use of CO2 to strengthen recycled aggregates and pervious concrete. Constr. Build. Mater. 2024, 418, 135372. [Google Scholar] [CrossRef]
- Obebe, M.D.; Ikumapayi, C.M.; Alaneme, K.K. Structural performance evaluation of concrete mixes containing recycled concrete aggregate and calcined termite mound for low-cost housing. Alex. Eng. J. 2023, 72, 237–246. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, X.; Liu, W.; Zhao, B.; Wang, Q. Influence of the moisture states of aggregate recycled from waste concrete on the performance of the prepared recycled aggregate concrete (RAC)—A review. Constr. Build. Mater. 2022, 326, 126891. [Google Scholar] [CrossRef]
- Vinay Kumar, B.M.; Ananthan, H.; Balaji, K.V.A. Experimental studies on utilization of recycled coarse and fine aggregates in high performance concrete mixes. Alex. Eng. J. 2018, 57, 1749–1759. [Google Scholar] [CrossRef]
- Zhang, T.; Cui, J.; Chen, M.; Yang, J.; Yan, Z.; Zhang, M. Durability of concrete containing carbonated recycled aggregates: A comprehensive review. Cem. Concr. Compos. 2025, 156, 105865. [Google Scholar] [CrossRef]
- Shah, H.A.; Meng, W. Enhancement of recycled concrete aggregate through slag-coated carbonation. Cem. Concr. Compos. 2024, 157, 105912. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Soomro, M.; Evangelista, A.C.J. Quality improvement of recycled concrete aggregate by removal of residual mortar: A comprehensive review of approaches adopted. Constr. Build. Mater. 2021, 288, 123066. [Google Scholar] [CrossRef]
- Thaue, W.; Iwanami, M.; Nakayama, K.; Yodsudjai, W. Influence of acetic acid treatment on microstructure of interfacial transition zone and performance of recycled aggregate concrete. Constr. Build. Mater. 2024, 417, 135355. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, S.; Liu, Y.; Li, B.; Jia, Z.; Zhang, Y.; Wang, J. The hydration, pore structure and strength of cement-based material prepared with waste soaking solution from acetic acid treatment of regenerated aggregates. J. Clean. Prod. 2019, 235, 866–874. [Google Scholar] [CrossRef]
- Al-Bayati, H.K.A.; Das, P.K.; Tighe, S.L.; Baaj, H. Evaluation of various treatment methods for enhancing the physical and morphological properties of coarse recycled concrete aggregate. Constr. Build. Mater. 2016, 112, 284–298. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Tam, C.M.; Le, K.N. Removal of cement mortar remains from recycled aggregate using pre-soaking approaches. Resour. Conserv. Recycl. 2007, 50, 82–101. [Google Scholar] [CrossRef]
- Mistri, A.; Bhattacharyya, S.K.; Dhami, N.; Mukherjee, A.; Barai, S.V. A review on different treatment methods for enhancing the properties of recycled aggregates for sustainable construction materials. Constr. Build. Mater. 2020, 233, 117894. [Google Scholar] [CrossRef]
- Zhang, S.; Jia, Z.; Xiong, Y.; Cao, R.; Zhang, Y.; Banthia, N. Wave amplitude of embedded ultrasonic transducer-based damage monitoring of concrete due to steel bar corrosion. Struct. Health Monit. 2022, 21, 1694–1709. [Google Scholar] [CrossRef]
- Poursaee, A.; Hansson, C.M. Potential pitfalls in assessing chloride-induced corrosion of steel in concrete. Cem. Concr. Res. 2009, 39, 391–400. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y.; Zhang, Y.; Liu, Z.; Chen, Y.; Liu, C.; Pang, B.; Ren, J.; Xie, Z. Test of Cl− and SO42− in concrete exposed to composite salt environment by conductivity titration. Constr. Build. Mater. 2024, 443, 137525. [Google Scholar] [CrossRef]
- Lyu, B.; Guo, L.; Wu, J.; Fei, X.; Bian, R. The impacts of calcium acetate on reaction process, mechanical strength and microstructure of ordinary Portland cement paste and alkali-activated cementitious paste. Constr. Build. Mater. 2022, 359, 129492. [Google Scholar] [CrossRef]
- Chen, P.; Wang, J.; Wang, L.; Xu, Y.; Qian, X.; Ma, H. Producing vaterite by CO2 sequestration in the waste solution of chemical treatment of recycled concrete aggregates. J. Clean. Prod. 2017, 149, 735–742. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Qian, X.; Chen, P.; Xu, Y.; Guo, J. An environmentally friendly method to improve the quality of recycled concrete aggregates. Constr. Build. Mater. 2017, 144, 432–441. [Google Scholar] [CrossRef]
- Verma, A.; Babu, V.S.; Srinivasan, A. Strength and durability properties of treated recycled aggregate concrete by soaking and mechanical grinding method: Influence of processing technique. J. Mater. Civ. Eng. 2021, 33, 04021286. [Google Scholar] [CrossRef]
- Verma, A.; Babu, V.S.; Arunachalam, S. Influence of acetic acid soaking and mechanical grinding treatment on the properties of treated recycled aggregate concrete. J. Mater. Cycles Waste Manage. 2022, 24, 877–899. [Google Scholar] [CrossRef]
- Bhartesh; Singh, G.J. High-quality recycled concrete aggregates developed through an integrated thermomechanical approach. J. Sustain. Cem.-Based Mater. 2024, 13, 1132–1148. [Google Scholar] [CrossRef]
- Beshr, H.; Almusallam, A.A.; Maslehuddin, M. Effect of coarse aggregate quality on the mechanical properties of high strength concrete. Constr. Build. Mater. 2003, 17, 97–103. [Google Scholar] [CrossRef]
- Maslehuddin, M.; Sharif, A.M.; Shameem, M.; Ibrahim, M.; Barry, M.S. Comparison of properties of steel slag and crushed limestone aggregate concretes. Constr. Build. Mater. 2003, 17, 105–112. [Google Scholar] [CrossRef]
- Bentz, D.P.; Ardani, A.; Barrett, T.; Jones, S.Z.; Lootens, D.; Peltz, M.A.; Sato, T.; Stutzman, P.E.; Tanesi, J.; Weiss, W.J. Multi-scale investigation of the performance of limestone in concrete. Constr. Build. Mater. 2015, 75, 1–10. [Google Scholar] [CrossRef]
- Cao, R.; Jia, Z.; Zhang, Z.; Zhang, Y.; Banthia, N. Leaching kinetics and reactivity evaluation of ferronickel slag in alkaline conditions. Cem. Concr. Res. 2020, 137, 106202. [Google Scholar] [CrossRef]
- Jia, Z.; Cao, R.; Chen, C.; Zhang, Y. Using in-situ observation to understand the leaching behavior of Portland cement and alkali-activated slag pastes. Compos. Part B Eng. 2019, 177, 107366. [Google Scholar] [CrossRef]
- GB/T 14685-2022; Pebble and Crushed Stone for Construction. Standardization Administration of the People’s Republic of China: Beijing, China, 2022. (In Chinese)
- GB/T 50080-2016; Standard for Test Method of Performance on Ordinary Fresh Concrete. Standardization Administration of the People’s Republic of China: Beijing, China, 2016. (In Chinese)
- GB/T 50081-2019; Standard for Test Methods of Concrete Physical and Mechanical Properties. Standardization Administration of the People’s Republic of China: Beijing, China, 2019. (In Chinese)
- ISO 25178-2-2016; Geometrical Product Specifications (GPS)—Surface Texture: Areal. International Organization for Standardization: Geneva, Switzerland, 2016.
- Zhan, B.J.; Xuan, D.X.; Poon, C.S.; Scrivener, K.L. Characterization of interfacial transition zone in concrete prepared with carbonated modeled recycled concrete aggregates. Cem. Concr. Res. 2020, 136, 106175. [Google Scholar] [CrossRef]
- Fang, G.; Wang, Q.; Zhang, M. Micromechanical analysis of interfacial transition zone in alkali-activated fly ash-slag concrete. Cem. Concr. Compos. 2021, 119, 103990. [Google Scholar] [CrossRef]
- Wang, A.; Lyu, B.; Zhu, Y.; Liu, K.; Guo, L.; Sun, D. A gentle acid-wash and pre-coating treatment of coral aggregate to manufacture high-strength geopolymer concrete. Constr. Build. Mater. 2021, 274, 121780. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Z.; Yue, D.; Belko, V.O.; Maksimenko, S.A.; Deng, J.; Sun, Y.; Yang, Z.; Fu, Q.; Liu, B.; et al. Recent progress in degradation and recycling of epoxy resin. J. Mater. Res. Technol. 2024, 32, 2891–2912. [Google Scholar] [CrossRef]
- Chu, Y.; Wang, A.; Zhu, Y.; Wang, H.; Liu, K.; Ma, R.; Guo, L.; Sun, D. Enhancing the performance of basic magnesium sulfate cement-based coral aggregate concrete through gradient composite design technology. Compos. Part B Eng. 2021, 227, 109382. [Google Scholar] [CrossRef]
- Wu, K.; Luo, S.; Zheng, J.; Yan, J.; Xiao, J. Influence of carbonation treatment on the properties of multiple interface transition zones and recycled aggregate concrete. Cem. Concr. Compos. 2022, 127, 104402. [Google Scholar] [CrossRef]
- Zhao, Y.; Peng, L.; Zeng, W.; Poon, C.S.; Lu, Z. Improvement in properties of concrete with modified RCA by microbial induced carbonate precipitation. Cem. Concr. Compos. 2021, 124, 104251. [Google Scholar] [CrossRef]
- Qudoos, A.; Atta-ur, R.; Kim, H.G.; Ryou, J.-S. Influence of the surface roughness of crushed natural aggregates on the microhardness of the interfacial transition zone of concrete with mineral admixtures and polymer latex. Constr. Build. Mater. 2018, 168, 946–957. [Google Scholar] [CrossRef]
- Gao, S.; Guo, X.; Ban, S.; Ma, Y.; Yu, Q.; Sui, S. Influence of supplementary cementitious materials on ITZ characteristics of recycled concrete. Constr. Build. Mater. 2023, 363, 129736. [Google Scholar] [CrossRef]
- Yue, G.; Ma, Z.; Liu, M.; Liang, C.; Ba, G. Damage behavior of the multiple ITZs in recycled aggregate concrete subjected to aggressive ion environment. Constr. Build. Mater. 2020, 245, 118419. [Google Scholar] [CrossRef]
Physical Property | Untreated Aggregate | Aggregate Soaking in Different Acid Solutions (M) | |||
---|---|---|---|---|---|
0.1 | 0.2 | 0.3 | 0.4 | ||
Apparent density (g/cm3) | 2.62 ± 0.12 | 2.62 ± 0.08 | 2.62 ± 0.14 | 2.62 ± 0.11 | 2.60 ± 0.13 |
Crushing index (%) | 7.2 ± 0.9 | 7.2 ± 0.8 | 7.2 ± 0.6 | 7.2 ± 0.5 | 7.4 ± 0.8 |
Water absorption (%) | 2.7 ± 0.3 | 2.7 ± 0.5 | 2.8 ± 0.3 | 2.8 ± 0.5 | 3.2 ± 0.6 |
Property | Untreated Aggregate | Aggregate Soaking in Different Acid Solutions (M) | |||
---|---|---|---|---|---|
0.1 | 0.2 | 0.3 | 0.4 | ||
Slump (mm) | 55 ± 3 | 55 ± 2 | 54 ± 2 | 53 ± 3 | 50 ± 3 |
Compressive strength (MPa) | 43.5 ± 1.3 | 43.4 ± 2.1 | 43.3 ± 2.3 | 43.1 ± 3.5 | 42.2 ± 4.1 |
Average ITZ thickness (μm) | 42 ± 5 | 44 ± 5 | 47 ± 5 | 48 ± 5 | 61 ± 5 |
Average elastic modulus in ITZ (GPa) | 33.74 ± 17.20 | 44.83 ± 20.64 | 36.48 ± 15.84 | 34.16 ± 11.77 | 27.14 ± 15.29 |
Average hardness in ITZ (GPa) | 1.17 ± 0.73 | 1.76 ± 1.06 | 1.57 ± 0.93 | 1.35 ± 0.82 | 0.92 ± 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zhang, Y. Green Mild Acid Treatment of Recycled Concrete Aggregates: Concentration Thresholds for Mortar Removal While Avoiding Degradation of Original Limestone Aggregate and Concrete. Materials 2025, 18, 3673. https://doi.org/10.3390/ma18153673
Zhang S, Zhang Y. Green Mild Acid Treatment of Recycled Concrete Aggregates: Concentration Thresholds for Mortar Removal While Avoiding Degradation of Original Limestone Aggregate and Concrete. Materials. 2025; 18(15):3673. https://doi.org/10.3390/ma18153673
Chicago/Turabian StyleZhang, Shunquan, and Yifan Zhang. 2025. "Green Mild Acid Treatment of Recycled Concrete Aggregates: Concentration Thresholds for Mortar Removal While Avoiding Degradation of Original Limestone Aggregate and Concrete" Materials 18, no. 15: 3673. https://doi.org/10.3390/ma18153673
APA StyleZhang, S., & Zhang, Y. (2025). Green Mild Acid Treatment of Recycled Concrete Aggregates: Concentration Thresholds for Mortar Removal While Avoiding Degradation of Original Limestone Aggregate and Concrete. Materials, 18(15), 3673. https://doi.org/10.3390/ma18153673