High-Compressive-Strength Silicon Carbide Ceramics with Enhanced Mechanical Performance
Abstract
1. Introduction
2. Experimental Procedure
2.1. Preparation of Raw Materials
2.2. Slurry Preparation
2.3. Slip Casting and Green Body Formation
2.4. Liquid Silicon Infiltration (LSI)
2.5. Sample Processing and Characterization
3. Results and Discussion
3.1. Selection of Carbon Sources
3.2. Properties of Slurry
3.3. Blank Aperture Distribution
3.4. Microstructures of Si/SiC Ceramic
3.5. Mechanical Properties of Si/SiC Ceramic
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paik, U.; Park, H.C.; Choi, S.C.; Ha, C.G.; Kim, J.W.; Jung, Y.G. Effect of particle dispersion on microstructure and strength of reaction-bonded silicon carbide. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2002, 334, 267–274. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, D.; Luo, Q.; Huang, A.; Fu, L.; Gu, H. Improved mechanical properties of reaction-bonded SiC through in-situ formation of Ti3SiC2. Ceram. Int. 2023, 49, 32750–32757. [Google Scholar] [CrossRef]
- Wing, B.L.; Halloran, J.W. Relaxation of residual microstress in reaction bonded silicon carbide. Ceram. Int. 2018, 44, 11745–11750. [Google Scholar] [CrossRef]
- Li, W.; Zhang, G.; Cui, C.; Bao, J.; Guo, C.; Xu, C.; Zhang, W.; Zhu, W. Structure Evolution and Properties Modification for Reaction-Bonded Silicon Carbide. Materials 2022, 15, 8721. [Google Scholar] [CrossRef]
- El Shafei, K.; Kassem, R.; Holloway, P.; Nayel, A.; Dear, J.P.; Nowell, D. Fracture behaviour of reaction-bonded silicon carbide-boron carbide using digital image correlation. Eng. Fract. Mech. 2024, 307, 110281. [Google Scholar] [CrossRef]
- Shevchenko, V.Y.; Dolgin, A.S.; Sychov, M.M.; Makogon, A.I.; Perevislov, S.N. Ideal: A promising diamond-silicon carbide composite for enhanced ceramic armor. Ceram. Int. 2024, 50, 4264–4273. [Google Scholar] [CrossRef]
- Lapitskaya, V.; Kuznetsova, T.; Grinchuk, P.; Khabarava, A.; Chizhik, S. Micromechanical properties of reaction-bonded silicon carbide using atomic force microscopy and nanoindentation. Ceram. Int. 2024, 50, 52981–52998. [Google Scholar] [CrossRef]
- Li, F.; Zhu, M.; Chen, J.; Huang, C.; Zhu, Y.; Huang, Z. High-strength and low-silicon SiC ceramics prepared by extrusion molding 3D printing. J. Eur. Ceram. Soc. 2024, 44, 617–625. [Google Scholar] [CrossRef]
- Jang, B.K.; Kim, S.Y.; Han, I.S.; Seo, D.W.; Hong, K.S.; Woo, S.K.; Sakka, Y. Influence of uni and bi-modal SiC composition on mechanical properties and microstructure of reaction-bonded SiC ceramics. J. Ceram. Soc. Jpn. 2010, 118, 1028–1031. [Google Scholar] [CrossRef]
- Zhang, N.-L.; Yang, J.-F.; Deng, Y.-C.; Wang, B.; Yin, P. Preparation and properties of reaction bonded silicon carbide (RB-SiC) ceramics with high SiC percentage by two-step sintering using compound carbon sources. Ceram. Int. 2019, 45, 15715–15719. [Google Scholar] [CrossRef]
- Liu, R.; Chen, Y.; Chen, Z.; Hai, W.; Liu, M. Effect of gradation on thermal and mechanical properties of reaction-bonded silicon carbide ceramics. Int. J. Appl. Ceram. Technol. 2024, 22, e14964. [Google Scholar] [CrossRef]
- Wilhelm, M.; Kornfeld, M.; Wruss, W. Development of SiC–Si composites with fine-grained SiC microstructures. J. Eur. Ceram. Soc. 1999, 19, 2155–2163. [Google Scholar] [CrossRef]
- Zhou, Y.; Sha, W.; Liu, Y.; Lyu, Y.; Huang, Y. Influence of Carbon Source on Microstructural and Mechanical Properties of High-Performance Reaction-Bonded Silicon Carbide. Materials 2022, 15, 5250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, D.; Gu, Z.; Huang, A.; Fu, L. Effects of Carbon Sources on Properties of Reaction-Bonded Silicon Carbide. Bull. Chin. Ceram. Soc. 2024, 1, 312–316. [Google Scholar]
- Pan, X.L.; Zhang, M.J.; Wang, B.; Yang, J.F. Influence of the inert carbon source on the microstructure and properties of. J. Funct. Mater. 2025, 56, 1179–1183. [Google Scholar]
- Li, S.; Zhang, Y.; Han, J.; Zhou, Y. Fabrication and characterization of SiC whisker reinforced reaction bonded SiC composite. Ceram. Int. 2013, 39, 449–455. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Han, J.; Zhou, Y. Fabrication and characterization of random chopped fiber reinforced reaction bonded silicon carbide composite. Ceram. Int. 2012, 38, 1261–1266. [Google Scholar] [CrossRef]
- Pittari, J.; Subhash, G.; Trachet, A.; Zheng, J.; Halls, V.; Karandikar, P. The Rate—Dependent Response of Pressureless-Sintered and Reaction-bonded Silicon Carbide-Based Ceramics. Int. J. Appl. Ceram. Technol. 2014, 12, E207–E216. [Google Scholar] [CrossRef]
- Kiyashko, M.V.; Grinchuk, P.S.; Kuznetsova, T.A.; Kren, A.P.; Abuhimd, H.M. Determination of Elastic Modulus of SiC-Based Composite Ceramics. Tech. Phys. Lett. 2021, 47, 150–153. [Google Scholar] [CrossRef]
- Wang, Z.; Li, P.; Song, W. Inelastic deformation micromechanism and modified fragmentation model for silicon carbide under dynamic compression. Mater. Des. 2018, 157, 244–250. [Google Scholar] [CrossRef]
- Venkatesan, J.; Iqbal, M.A.; Madhu, V. Experimental and numerical study of the dynamic response of B4C ceramic under uniaxial compression. Thin-Walled Struct. 2020, 154, 106785. [Google Scholar] [CrossRef]
- DeVries, M.; Pittari, J.; Subhash, G.; Mills, K.; Haines, C.; Zheng, J.Q.; Zok, F. Rate-Dependent Mechanical Behavior and Amorphization of Ultrafine-Grained Boron Carbide. J. Am. Ceram. Soc. 2016, 99, 3398–3405. [Google Scholar] [CrossRef]
- Swab, J.J.; Meredith, C.S.; Casem, D.T.; Gamble, W.R. Static and dynamic compression strength of hot-pressed boron carbide using a dumbbell-shaped specimen. J. Mater. Sci. 2017, 52, 10073–10084. [Google Scholar] [CrossRef]
- Ness, J.N.; Page, T.F. Microstructural evolution in reaction-bonded silicon carbide. J. Mater. Sci. 1986, 21, 1377–1397. [Google Scholar] [CrossRef]
- Ovsienko, A.I.; Rumyantsev, V.I.; Ordan’yan, S.S. Ceramics Based on Reactively Sintered Boron Carbide. Refract. Ind. Ceram. 2019, 59, 507–513. [Google Scholar] [CrossRef]
- Hogan, J.D.; Farbaniec, L.; Sano, T.; Shaeffer, M.; Ramesh, K.T. The effects of defects on the uniaxial compressive strength and failure of an advanced ceramic. Acta Mater. 2016, 102, 263–272. [Google Scholar] [CrossRef]
- Hsu, C.-y.; Zhang, Y.; Xie, Y.; Deng, F.; Karandikar, P.; Xiao, J.Q.; Ni, C. In-situ measurement of SiC/Si interfacial tensile strength of reaction bonded SiC/Si composite. Compos. Part B Eng. 2019, 175, 107116. [Google Scholar] [CrossRef]
- Forquin, P.; Rossiquet, G.; Zinszner, J.-L.; Erzar, B. Microstructure influence on the fragmentation properties of dense silicon carbides under impact. Mech. Mater. 2018, 123, 59–76. [Google Scholar] [CrossRef]
Samples | SiC Particle Size Distribution (D50) | Loading | ||||
---|---|---|---|---|---|---|
85 µm | 10 µm | 4 µm | 2 µm | 0.5 µm | ||
YX-1/YX-1’ | 70 wt% | 30 wt% | 0 | 0 | 54.3 vol% | |
YX-2/YX-2’ | 70 wt% | 30 wt% | 43.5 vol% | |||
CX-1/CX-1’ | 70 wt% | 30 wt% | 32.1 vol% | |||
CX-2/CX-2’ | 70 wt% | 30 wt% | 30.8 vol% |
Samples | YX-2 | YX-1 | CX-1 | CX-2 |
---|---|---|---|---|
Si/wt% | 23.6 | 20.0 | 27.6 | 28.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Z.; Li, K.; Zhou, Y.; Xu, H.; Qian, H.; Huang, Y. High-Compressive-Strength Silicon Carbide Ceramics with Enhanced Mechanical Performance. Materials 2025, 18, 3598. https://doi.org/10.3390/ma18153598
Qian Z, Li K, Zhou Y, Xu H, Qian H, Huang Y. High-Compressive-Strength Silicon Carbide Ceramics with Enhanced Mechanical Performance. Materials. 2025; 18(15):3598. https://doi.org/10.3390/ma18153598
Chicago/Turabian StyleQian, Zijun, Kang Li, Yabin Zhou, Hao Xu, Haiyan Qian, and Yihua Huang. 2025. "High-Compressive-Strength Silicon Carbide Ceramics with Enhanced Mechanical Performance" Materials 18, no. 15: 3598. https://doi.org/10.3390/ma18153598
APA StyleQian, Z., Li, K., Zhou, Y., Xu, H., Qian, H., & Huang, Y. (2025). High-Compressive-Strength Silicon Carbide Ceramics with Enhanced Mechanical Performance. Materials, 18(15), 3598. https://doi.org/10.3390/ma18153598