Progress in the Circular Arc Source Structure and Magnetic Field Arc Control Technology for Arc Ion Plating
Abstract
1. Introduction
2. Structural Features of Circular Arc Sources
3. Magnetic Field Configuration Design
3.1. Permanent Magnet Rotating Magnetic Field Arc Source
3.2. Axially Symmetric Magnetic Field Arc Source
3.3. Rotating Transverse Magnetic Field Arc Source
3.4. Multi-Mode Alternating Electromagnetic Coupled Arc Source
3.5. Multi-Magnetic Field Structure Coupled Arc Source
3.5.1. Multi-Level Magnetic Field Coupling
3.5.2. Static and Dynamic Magnetic Field Coupling
3.5.3. Overview of Multi-Mode Magnetic Field Coupling
4. Conclusions and Outlook
4.1. Conclusions
4.2. Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Crowell, J.E. Chemical methods of thin film deposition: Chemical vapor deposition, atomic layer deposition, and related technologies. J. Vac. Sci. Technol. A Vac. Surf. Film. 2003, 21, S88–S95. [Google Scholar] [CrossRef]
- Abegunde, O.O.; Akinlabi, E.T.; Oladijo, O.P.; Akinlabi, S.; Ude, A.U. Overview of thin film deposition techniques. AIMS Mater. Sci. 2019, 6, 174–199. [Google Scholar] [CrossRef]
- Budida, J.; Srinivasan, K. Review of thin film deposition and techniques. Mater. Today Proc. 2023, 92, 1030–1033. [Google Scholar] [CrossRef]
- Bunshah, R.F.; Deshpandey, C.V. Plasma assisted physical vapor deposition processes: A review. J. Vac. Sci. Technol. A Vac. Surf. Film. 1998, 3, 553. [Google Scholar] [CrossRef]
- Helmersson, U.; Lattemann, M.; Bohlmark, J.; Ehiasarian, A.P.; Gudmundsson, J.T. Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Film. 2006, 513, 1–24. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, Y.; Yao, T.; Ding, W. Investigating the growth behavior of titanium dioxide film prepared with direct current pulsed–magnetron sputtering technology. Mater. Lett. 2024, 373, 137140. [Google Scholar] [CrossRef]
- Ghaemi, M.; Lopez-Cazalilla, A.; Sarakinos, K.; Rosaz, G.J.; Carlos, C.P.A.; Leith, S.; Calatroni, S.; Himmerlich, M.; Djurabekova, F. Growth of Nb films on Cu for superconducting radio frequency cavities by direct current and high power impulse magnetron sputtering: A molecular dynamics and experimental study. Surf. Coat. Technol. 2024, 476, 130199. [Google Scholar] [CrossRef]
- Bai, H.; Li, J.; Gao, J.; Ni, J.; Bai, Y.; Jian, J.; Zhao, L.; Bai, B.; Cai, Z.; He, J.; et al. Comparison of CrN coatings prepared using high-power impulse magnetron sputtering and direct current magnetron sputtering. Materials 2023, 16, 6303. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, J.; Dong, X. A review of physical vapor deposition coatings for rolling bearings. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2022, 236, 786–803. [Google Scholar] [CrossRef]
- Rai, D.P.; Teli, S.B.; Rai, S.P.; Rai, B.P.; Prasad, S.R.; Sinha, P.; Sinha, A.; Sinha, P.; Saxena, M.; Rai, R.P.; et al. A review on thin film technology and nanomaterial characterization techniques. ES Mater. Manuf. 2024, 25, 1–47. [Google Scholar]
- Jüttner, B. Cathode spots of electric arcs. J. Phys. D Appl. Phys. 2001, 34, R103–R123. [Google Scholar] [CrossRef]
- Beilis, I.I. A mechanism for nanosecond cathode spot operation in vacuum arcs. IEEE Trans. Plasma Sci. 2001, 29, 844–847. [Google Scholar] [CrossRef]
- Beilis, I.I. State of the theory of vacuum arcs. IEEE Trans. Plasma Sci. 2001, 29, 657–670. [Google Scholar] [CrossRef]
- Tay, B.K.; Zhao, Z.W.; Chua, D.H.C. Review of metal oxide films deposited by filtered cathodic vacuum arc technique. Mater. Sci. Eng. R Rep. 2006, 52, 1–48. [Google Scholar] [CrossRef]
- Keidar, M.; Aharonov, R.; Beilis, I.I. Influence of an electrical field on the macroparticle size distribution in a vacuum arc. J. Vac. Sci. Technol. A Vac. Surf. Film. 1999, 17, 3067–3073. [Google Scholar] [CrossRef]
- Wang, Q.M.; Kim, K.H. Effect of negative bias voltage on CrN films deposited by arc ion plating. II. Film composition, structure, and properties. J. Vac. Sci. Technol. A Vac. Surf. Film. 2008, 26, 1267–1276. [Google Scholar] [CrossRef]
- Panjan, P.; Drnovšek, A.; Gselman, P.; Čekada, M.; Panjan, M. Review of Growth Defects in Thin Films Prepared by PVD Techniques. Coatings 2020, 10, 447. [Google Scholar] [CrossRef]
- Warcholinski, B.; Gilewicz, A.; Ratajski, J.; Kuklinski, Z.; Rochowicz, J. An analysis of macroparticle-related defects on CrCN and CrN coatings in dependence of the substrate bias voltage. Vacuum 2012, 86, 1235–1239. [Google Scholar] [CrossRef]
- Anders, A. Approaches to rid cathodic arc plasmas of macro- and nanoparticles: A review. Surf. Coat. Technol. 1999, 120, 319–330. [Google Scholar] [CrossRef]
- Ryabchikov, A.I.; Sivin, D.O.; Bumagina, A.I. Reprint of: Physical mechanisms of macroparticles number density decreasing on a substrate immersed in vacuum arc plasma at negative high-frequency short-pulsed biasing. Appl. Surf. Sci. 2014, 310, 115–119. [Google Scholar] [CrossRef]
- Hu, Y.W.; Li, L.H.; Dai, H.; Li, X.L.; Cai, X.; Chu, P.K. Effects of pulsing parameters on production and distribution of macroparticles in cathodic vacuum arc deposition. J. Vac. Sci. Technol. A Vac. Surf. Film. 2006, 24, 957–961. [Google Scholar] [CrossRef]
- Miernik, K.; Walkowicz, J.; Bujak, J. Design and performance of the microdroplet filtering system used in cathodic arc coating deposition. Plasmas Ions 2000, 3, 41–51. [Google Scholar] [CrossRef]
- Wang, H.W.; Stack, M.M.; Lyon, S.B.; Hovsepian, P.; Münz, W.-D. The corrosion behaviour of macroparticle defects in arc bond-sputtered CrN/NbN superlattice coatings. Surf. Coat. Technol. 2000, 126, 279–287. [Google Scholar] [CrossRef]
- Anders, A.; MacGill, R.A. Twist filter for the removal of macroparticles from cathodic arc plasmas. Surf. Coat. Technol. 2000, 133, 96–100. [Google Scholar] [CrossRef]
- Swift, P.D. Macroparticles in films deposited by steered cathodic arc. J. Phys. D Appl. Phys. 1996, 29, 2025–2031. [Google Scholar] [CrossRef]
- Anders, A. Cathodic Arc Sources. In Cathodic Arcs: From Fractal Spots to Energetic Condensation; Springer: Cham, Switzerland, 2008; pp. 227–263. [Google Scholar]
- Beilis, I.I. Applications. In Plasma and Spot Phenomena in Electrical Arcs; Springer: Cham, Switzerland, 2020; pp. 895–1109. [Google Scholar]
- Wang, F.Z. Advances in cathode arc ion plating technology. Vac. Cryog. 2020, 26, 87–95. [Google Scholar]
- Zhitomirsky, V.N.; Zarchin, O.; Boxman, R.L.; Goldsmith, S. Transport of a Vacuum-Arc Produced Plasma Beam in a Magnetized Cylindrical Duct. IEEE Trans. Plasma Sci. 2003, 31, 977–982. [Google Scholar] [CrossRef]
- Welty, R.P. Rectangular Vacuum-Arc Plasma Source. U.S. Patent 5840163, 24 November 1998. [Google Scholar]
- Wang, F.Z.; Hou, T. Rotating Magnetron Cylindrical Cathode arc Source. Chinese Patent CN1040234C, 24 November 1998. [Google Scholar]
- Gorokhovsky, V.I. Rectangular Cathodic Arc Source and Method of Steering an Arc Spot. U.S. Patent 6645354B1, 11 November 2003. [Google Scholar]
- Tamagaki, H.; Kawaguchi, H.; Fujii, H.; Shimojima, K.; Suzuki, T.; Hanaguri, K. Vacuum Arc Deposition Apparatus. European Patent EP0658634A1, 21 June 1995. [Google Scholar]
- Vetter, J.; Esser, S.; Mueller, J.; Erkens, G. Cylindrical Evaporation Source. U.S. Patent 10811239B2, 20 October 2020. [Google Scholar]
- Tsventoukh, M.M. Plasma parameters of the cathode spot explosive electron emission cell obtained from the model of liquid-metal jet tearing and electrical explosion. Phys. Plasmas 2018, 25, 053504. [Google Scholar] [CrossRef]
- Krassnitzer, S.; Hagmann, J. Arc Source. U.S. Patent US2020/0255932A1, 13 August 2020. [Google Scholar]
- Sanders, D.M.; Anders, A. Review of cathodic arc deposition technology at the start of the new millennium. Surf. Coat. Technol. 2000, 133, 78–90. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, G.D.; Zhu, Y.Y.; Shi, C.L.; Lu, G.Y.; Han, Y.Y.; Yuan, Y.Y.; Xu, J.H.; Lan, R. Critical processing parameters optimization and characterization of CrAlSiWN coating by industrial arc ion plating. Vacuum 2024, 226, 113313. [Google Scholar] [CrossRef]
- Boxman, R.L.; Beilis, I.I.; Gidalevich, E.; Zhitomirsky, V.N. Magnetic control in vacuum arc deposition: A review. IEEE Trans. Plasma Sci. 2005, 33, 1618–1625. [Google Scholar] [CrossRef]
- Kundu, S.; Ramachandrappa, P.K.B.; Acharya, S.D.; Herle, S.P.; Bagul, N.C.; Sivaramakrishnan, V. Evaporation Source Cooling Mechanism. U.S. Patent US20220333231A1, 20 October 2022. [Google Scholar]
- Yoshikawa, T. Method of Controlling an Arc Spot in Vacuum Arc Vapor Deposition and an Evaporation Source. European Patent EP0495447A1, 22 July 1992. [Google Scholar]
- Takahara, K.; Fujii, H. Vacuum Arc Evaporation Source and Vacuum Arc Vapor Deposition Apparatus. U.S. Patent US6334405B1, 1 January 2002. [Google Scholar]
- Ram, U.; Widrig, B.; Lendi, D.; Derflinger, V.; Reiter, A. Method for Operating a Pulsed Arc Evaporation Source and Vacuum Process System Comprising Said Pulsed Arc Evaporation Source. U.S. Patent US20080173536A1, 24 July 2008. [Google Scholar]
- Tsujii, K.; Nishimura, K. Arc Evaporation Source. European Patent EP2116630A1, 11 November 2009. [Google Scholar]
- Tanifuji, S.; Yamamoto, K.; Fujii, H.; Kurokawa, Y. Arc Evaporation Source and Method for Manufacturing Film Using Same. European Patent EP2426231A1, 7 March 2012. [Google Scholar]
- Tanifuji, S.; Yamamoto, K.; Nomura, H.; Kurokawa, Y. Arc Evaporation Source Having Fast Film-Forming Speed, Film Formation Device and Manufacturing Method for Coating Film Using the Arc Evaporation Source. European Patent EP2586888A1, 1 May 2013. [Google Scholar]
- Tanifuji, S.; Yamamoto, K.; Hirota, S.; Kurokawa, Y.; Nomura, N. Arc Evaporation Source Having Fast Film-Forming Speed, Coating Film Manufacturing Method and Film Formation Apparatus Using the Arc Evaporation Source. U.S. Patent US20130098881A1, 25 April 2013. [Google Scholar]
- Per, M.; Poicik, P.; Forstrau, G. Arc Evaporation Coating Source Having a Permanent Magnet. U.S. Patent US20160099134A1, 7 April 2016. [Google Scholar]
- Tanifuji, S.; Yamamoto, K.; Fujii, H.; Kurokawa, Y. Arc Evaporation Source. U.S. Patent US9818586B2, 14 November 2017. [Google Scholar]
- Kurokawa, Y.; Hirota, S.; Tanifuji, S. Arc Evaporation Source. European Patent EP3156516A1, 19 April 2017. [Google Scholar]
- Lang, W.C. Design and performance of the transverse rotating magnetic field steered arc source used in vacuum arc deposition. Adv. Mater. Res. 2011, 337, 70–76. [Google Scholar] [CrossRef]
- Lang, W.C.; Xu, Y.L.; Du, H.; Xiao, J.Q.; Gao, B.; Wu, B.Z. Analysis on magnetic field aided arc source in arc ion plating for application in tool coating and its discharge characteristic. Chin. Vac. 2015, 52, 39–44. [Google Scholar]
- Takikawa, H.; Tanoue, H. Review of Cathodic Arc Deposition for Preparing Droplet-Free Thin Films. IEEE Trans. Plasma Sci. 2007, 35, 992–999. [Google Scholar] [CrossRef]
- Miyano, R.; Saito, T.; Takikawa, H.; Sakakibara, T. Influence of gap length and pressure on medium vacuum arc with Ti cathode in various ambient gases. Thin Solid Film. 2002, 407, 221–226. [Google Scholar] [CrossRef]
- Sablev, L.P.; Atamansky, N.P.; Gorbunov, V.N.; Dolotov, J.I.; Lutseenko, V.N.; Usov, V.V. Apparatus for Metal Evaporation Coating. U.S. Patent US3793179A, 19 February 1974. [Google Scholar]
- Beilis, I.I. Vacuum arc cathode spot grouping and motion in magnetic fields. IEEE Trans. Plasma Sci. 2002, 30, 2124–2132. [Google Scholar] [CrossRef]
- Juttner, B.; Kleberg, I. The retrograde motion of arc cathode spots in vacuum. J. Phys. D Appl. Phys. A Europhys. J. 2000, 33, 2025–2036. [Google Scholar] [CrossRef]
- Zabello, K.K.; Barinov, Y.A.; Chaly, A.M.; Logatchev, A.A.; Shkol’nik, S.M. Experimental Study of Cathode Spot Motion and Burning Voltage of Low-Current Vacuum Arc in Magnetic Field. IEEE Trans. Plasma Sci. 2005, 33, 1553–1559. [Google Scholar] [CrossRef]
- Wang, C.; Shi, Z.; Li, W.; Song, X.; Jia, S.; Wang, L. Stepwise and Statistical Simulation on the Random and Retrograde Motion of a Single Cathode Spot of Vacuum Arc. IEEE Trans. Plasma Sci. 2015, 43, 2267–2274. [Google Scholar] [CrossRef]
- Tsventoukh, M.M.; Barengolts, S.A.; Mesyats, V.G.; Shmelev, D.L. Retrograde Motion of Cathode Spots of the First Type in a Tangential Magnetic Field. Tech. Phys. Lett. Lett. Russ. J. Appl. Phys. 2013, 39, 933–937. [Google Scholar] [CrossRef]
- Wen, L.S.; Lang, W.C.; Xiao, J.Q.; Huang, R.F.; Sun, C.; Gong, J. Rotating Magnetic Field Controlled Cathodic Arc Ion Plating Arc Source. Chinese Patent CN101363115B, 23 November 2011. [Google Scholar]
- Li, L.; Zhu, Y.; He, F.; Dun, D.; Li, F.; Chu, P.K.; Li, J. Control of cathodic arc spot motion under external magnetic field. Vacuum 2013, 91, 20–23. [Google Scholar] [CrossRef]
- Beilis, I.I. Vacuum arc cathode spot motion in oblique magnetic fields: An interpretation of the Robson experiment. Phys. Plasmas 2016, 23, 093501. [Google Scholar] [CrossRef]
- Ma, Y.H.; Gong, C.Z.; Tian, Q.W.; Chu, P.K.; Golosov, D.A.; Tian, X.B. Discharge and Plasma Characteristics of Pulse-Enhanced Vacuum Arc Evaporation (PEVAE) for Titanium Cathode. IEEE Trans. Plasma Sci. 2018, 46, 2619–2625. [Google Scholar] [CrossRef]
- Phan, H.L.; Tashiro, S.; Bui, V.H.; Tanaka, M. Behaviors of cathode spot in alternative current helium TIG welding of aluminum. J. Smart Process. 2018, 7, 243–250. [Google Scholar] [CrossRef]
- Ramalingam, S. Dynamic Magnetic Field Design for Arc Ion Plating. U.S. Patent 4673477, 16 June 1987. [Google Scholar]
- Ramalingam, S.; Qiu, L.; Kim, K. Controlled Vacuum Arc Material Deposition, Method and Apparatus. WO1985003954A1, 12 September 1985. World Intellectual Property Organization. [Google Scholar]
- Yin, J.; Wang, Q.; Wu, X.; Cheng, C.; Ba, D.; Lin, Z. Magnetic field enhanced radio frequency ion source and its application for Si-incorporation diamond-like carbon film preparation. Plasma Sci. Technol. 2020, 22, 025502. [Google Scholar] [CrossRef]
- Lang, W.C.; Gao, B.; Du, H.; Xiao, J.Q.; Xie, T.T.; Wang, X.H. Analysis of the influence of multi-mode rotating magnetic field on arc spot discharge in arc ion plating. Chin. J. Vac. Sci. Technol. 2015, 35, 662–670. [Google Scholar]
- Lang, W.C.; Xu, Y.L.; Du, H.; Xiao, J.Q.; Gao, B.; Wu, B.Z. Analysis of magnetic field-assisted arc sources and their discharge characteristics for tool coating. Vacuum 2015, 52, 39–44. [Google Scholar]
- Lang, W.C.; Zhao, Y.H.; Xiao, J.Q.; Gong, J.; Sun, C.; Yu, B.H.; Wen, L.S. Influence of rotating transverse magnetic field on arc spot motion in arc ion plating. Chin. J. Vac. Sci. Technol. 2015, 35, 316–322. [Google Scholar]
- Lang, W.C.; Zhao, Z.; Du, H.; Gao, B.; Wang, X.; Cheng, Q. Novel arc-spot control unit in arc ion plating assisted by multi-mode AC magnetic fields. Chin. J. Vac. Sci. Technol. 2015, 35, 913–918. [Google Scholar]
- Lang, W.C.; Xiao, J.Q.; Gong, J.; Sun, C.; Huang, R.F.; Wen, L.S. Study on cathode spot motion and macroparticles reduction in axisymmetric magnetic field-enhanced vacuum arc deposition. Vacuum 2010, 84, 1111–1117. [Google Scholar] [CrossRef]
- Lang, W.C.; Xiao, J.Q.; Gong, J.; Sun, C.; Huang, R.F.; Wen, L.S. Influence of axisymmetric magnetic field on cathode spots motion in arc ion plating. Chin. Acta Metall. Sin. 2010, 46, 372–379. [Google Scholar] [CrossRef]
- Xiao, J.Q.; Lang, W.C.; Sun, C.; Gong, J.; Zhao, Y.H.; Hua, W.G.; Wen, L.S. Variable Speed and Amplitude Adjustable Rotating Magnetic Field Controlled Arc Ion Plating Arc Source. Chinese Patent ZL200820011674, 10 December 2008. [Google Scholar]
- Xiao, J.Q.; Lang, W.C.; Sun, C.; Gong, J.; Zhao, Y.H.; Wen, L.S. Multi-Mode Programmable Modulated Rotating Transverse Magnetic Field Controlled Arc Ion Plating Device. Chinese Patent CN101363116B, 9 June 2010. [Google Scholar]
- Xiao, J.Q.; Lang, W.C.; Sun, C.; Gong, J.; Zhao, Y.H.; Yang, Y.; Hua, W.G.; Wen, L.S. PLC-Controlled Rotating Transverse Magnetic Field-Assisted Arc Ion Plating Device. Chinese Patent ZL200820011753, 10 December 2008. [Google Scholar]
- Lang, W.C.; Wang, X.; Li, M. Multi-Mode Alternating Coupled Magnetic Field Assisted Arc Ion Plating Deposition Arc Source Device. Chinese Patent CN102953035B, 9 April 2014. [Google Scholar]
- Lang, W.C. A Non-Equilibrium Dynamic Arch-Shaped Compatible Axial Guiding Magnetic Field Assisted Ion Plating Device. Chinese Patent CN103205711B, 16 September 2015. [Google Scholar]
- Lang, W.C.; Zhu, H.W.; Hu, X.Z. A Multi-Mode Modulated Arc Source Device. Chinese Patent CN111621751B, 21 March 2023. [Google Scholar]
- Lang, W.C.; Hu, X.Z.; Liu, W. A Multi-Magnetic Field Integrated Cathodic Arc Source. Chinese Patent CN112048701B, 29 November 2022. [Google Scholar]
- Lin, Z.; Wang, S.; Wang, Q.; Xin, Y.F. A Cathodic Arc Spot Control Device and Control Method for Ion Plating. Chinese Patent CN107245700A, 13 October 2017. [Google Scholar]
- Lin, Z.; Chen, B.; Wang, H. A Process Method for Preparing Nitrogen-Based Hard Coatings by Controllable Magnetic Field Arc Ion Plating. Chinese Patent CN107338409A, 10 November 2017. [Google Scholar]
- Lin, Z.; Qiao, H.; Wang, S.H.; Xin, Y.F. An Intelligent Arc Ion Source. Chinese Patent CN107385397A, 24 November 2017. [Google Scholar]
- Lin, Z.; Qiao, H.; Wang, G.W.; Li, W.X. An Arc Ion Source and Arc Ion Source Coating Method. Chinese Patent CN109680250A, 26 April 2019. [Google Scholar]
- Siemroth, P.; Schultrich, B.; Schülke, T. Fundamental processes in vacuum arc deposition. Surf. Coat. Technol. 1995, 74, 92–96. [Google Scholar] [CrossRef]
- Song, X.; Wang, Q.; Lin, Z.; Zhang, P.H.; Wang, S.H. Control of vacuum arc source cathode spots contraction motion by changing electromagnetic field. Plasma Sci. Technol. 2018, 20, 025402. [Google Scholar] [CrossRef]
- Ma, Y.H.; Gong, C.Z.; Tian, X.B.; Chu, P.K. Imaging and motion of cathode group spots during pulse-enhanced vacuum arc evaporation. Vacuum 2017, 139, 37–43. [Google Scholar] [CrossRef]
- Lang, W.C.; Zhang, K.; Du, H.; Zhao, Z.F.; Wang, D.; Wang, X.H.; Gao, B. Study on the microspot splitting characteristics of pulsed cathodic vacuum arc. Vacuum 2024, 221, 112920. [Google Scholar] [CrossRef]
- Mesyats, G.A. Ecton Mechanism of the Vacuum Arc Cathode Spot. IEEE Trans. Plasma Sci. 1995, 23, 879–883. [Google Scholar] [CrossRef]
- Mesyats, G.A. Ectons and their role in plasma processes. Plasma Phys. Control. Fusion 2005, 47, A109–A151. [Google Scholar] [CrossRef]
- Mesyats, G.A. Ecton Mechanism of the Cathode Spot Phenomena in a Vacuum Arc. IEEE Trans. Plasma Sci. 2013, 41, 676–694. [Google Scholar] [CrossRef]
- Karpov, D.A. Cathodic arc sources and macroparticle filtering. Surf. Coat. Technol. 1997, 96, 22–33. [Google Scholar] [CrossRef]
- Wei, Y.Q.; Zong, X.Y.; Jiang, Z.Q.; Wen, Z.H.; Chen, L.J. Multi-Stage Magnetic Field Straight-Tube Magnetic Filtering Combined with Pulsed Bias Arc Ion Plating Method. China Patent CN103276362B, 19 August 2015. [Google Scholar]
- Wei, Y.Q.; Zong, X.Y.; Jiang, Z.Q.; Wu, Z.Z.; Liu, Y. Multi-Stage Magnetic Field Arc Ion Plating and Rf Magnetron Sputtering Composite Deposition Method. China Patent CN104975263A, 14 October 2015. [Google Scholar]
- Pan, J.J.; Lu, H.T. A Magnetic Field-Assisted Cathodic Arc Ion Plating Evaporation Source. China Patent CN114086127B, 27 October 2023. [Google Scholar]
- Wang, N.; Sun, Y.B.; Zhang, X.; Yin, Z.W.; Chen, D.Y. A Multi-Arc Source Cathodic Arc Ion Plating Device and Method. China Patent CN116875944A, 13 October 2023. [Google Scholar]
- Lang, W.C.; Wang, X.H.; Hu, X.Z. A Rotating Magnetic Field Cathodic Arc Source. Chinese Patent CN109468598A, 15 March 2019. [Google Scholar]
- Lang, W.C. A Compact and Efficient Quasi-Diffusion Arc Cold Cathode Arc Source. Chinese Patent CN102936717A, 20 February 2013. [Google Scholar]
- Lang, W.C.; Wang, X.H.; Li, M.X. A Multi-Structure Coupled Magnetic Field Adaptive Rotating Arc Ion Plating Device. Chinese Patent CN102936718A, 20 February 2013. [Google Scholar]
- Xiao, J.Q.; Lang, W.C.; Sun, C.; Gong, J.; Yang, Y.; Zhao, Y.H.; Du, H.; Wen, L.S. A Coupled Magnetic Field Assisted Arc Ion Plating Deposition Device. Chinese Patent CN201158701Y, 3 December 2008. [Google Scholar]
Arc Source Type | Structural Characteristics | Limitations |
---|---|---|
Circular Arc Source | Simple structure and easy installation, enabling flexible combination of multiple targets for multi-element coatings | Limited target utilization under traditional fixed magnetic field design Single magnetic field configuration cannot completely avoid macroparticles ejection |
Conical Arc Source | Conical structure with complex design | High production and processing costs, with magnetic field interference issues Poor arc control effect and low cooling efficiency |
Rectangular Planar Arc Source | Rectangular planar target with a single structure | Single target, difficult to prepare multi-element coatings Low target utilization and high coating cost Prone to forming V-shaped grooves after long-term use |
Cylindrical Arc Source | Cylindrical target with fixed installation position | Single installation position, low coating efficiency Poor flexibility in deposition process, small discharge area Requires complex motion devices |
Magnetic Field Configuration Type | Structural Characteristics | Core Advantages |
---|---|---|
Permanent Magnet Rotating Magnetron Arc Source | - Adopts rotatable permanent magnet devices (e.g., eccentric monopolar axial magnetic field, eccentric transverse magnetic field, eccentric arched magnetic field) - Dynamically adjustable magnetic field configurations (e.g., eccentric monopolar magnetic field forming an asymmetric axial distribution on the target surface) | - Dynamically adjusts the arc spot motion area through rotating magnetic fields, improving arc uniformity - Expands the discharge area, reduces power density, and decreases macroparticles ejection - Significantly improves target utilization (e.g., eccentric monopolar magnetic field makes arc spots form a “semicircular” trajectory covering the entire target surface) |
Axisymmetric Magnetron Arc Source | - Installs an adjustable current electromagnetic coil behind the target, with a high-permeability pure iron core at the center - Magnetic field shows axisymmetric distribution on the target surface (maximum transverse magnetic field strength at the edge, zero at the center) | - Precisely controls magnetic field strength by adjusting current, enabling accurate regulation of arc spot motion - As magnetic field strengthens, arc spots transform from random motion to stable rotation at the edge, covering the entire target surface - Improves target utilization and coating uniformity |
Rotating Transverse Magnetron Arc Source | - Sets up a rotating magnetic field generator around the target (multiple magnetic poles + excitation coils), powered by two-phase/three-phase excitation with phase differences - Magnetic field rotation speed and strength can be adjusted via current frequency and magnitude | - Dynamic rotating magnetic field transforms arc spots from concentrated spots to dispersed arc lines, completely covering the target surface - Reduces macroparticles ejection, achieves distributed discharge, and significantly improves coating quality and uniformity - Strong adjustability of magnetic field parameters to adapt to different process requirements |
Multi-Mode Alternating Electromagnetic Coupling Arc Source | - Composed of axisymmetric magnetic field and focusing guidance magnetic field devices - Dynamically coupled magnetic fields (e.g., axisymmetric divergent magnetic field + reverse focusing magnetic field) can change periodically to form arched coupled magnetic fields | - Precisely controls arc spot motion through dynamically superimposed magnetic fields (e.g., pushing arc spots outward or constraining them at the center) - Enhances plasma ionization rate and transmission efficiency, reducing macroparticles ejection - Driven by multi-waveform currents, enabling multiple arc spot control modes |
Multi-Magnetic Field Structure Coupling Arc Source | Multi-Level Magnetic Field Coupling - Inner coupled magnetic field (behind the target) coordinates with two sets of outer coupled magnetic fields (in front of the target) to form dynamic arched magnetic fields and axial focusing magnetic fields Static-Dynamic Magnetic Field Coupling - Combination of permanent magnets (static) and electromagnetic coils (dynamic), e.g., central transverse + edge longitudinal permanent magnets combined with alternating coil currents Multi-Mode Magnetic Field Coupling - Integration of axisymmetric, transverse, and rotating magnetic fields, e.g., central magnetic group + secondary transverse rotating magnetic field + axial focusing guidance magnetic field | Multi-Level Coupling - Multi-level adjustable arc spot motion modes, optimizing plasma transmission efficiency Static-Dynamic Coupling - Combines stability and flexibility, reducing local over-etching of the target and improving ionization rate Multi-Mode Coupling - Comprehensive control of arc spot trajectories (spiral/annular motion), enhancing target utilization and coating adhesion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, H.; Zhang, K.; Liu, D.; Lang, W. Progress in the Circular Arc Source Structure and Magnetic Field Arc Control Technology for Arc Ion Plating. Materials 2025, 18, 3498. https://doi.org/10.3390/ma18153498
Du H, Zhang K, Liu D, Lang W. Progress in the Circular Arc Source Structure and Magnetic Field Arc Control Technology for Arc Ion Plating. Materials. 2025; 18(15):3498. https://doi.org/10.3390/ma18153498
Chicago/Turabian StyleDu, Hao, Ke Zhang, Debin Liu, and Wenchang Lang. 2025. "Progress in the Circular Arc Source Structure and Magnetic Field Arc Control Technology for Arc Ion Plating" Materials 18, no. 15: 3498. https://doi.org/10.3390/ma18153498
APA StyleDu, H., Zhang, K., Liu, D., & Lang, W. (2025). Progress in the Circular Arc Source Structure and Magnetic Field Arc Control Technology for Arc Ion Plating. Materials, 18(15), 3498. https://doi.org/10.3390/ma18153498