Enhancing the Elevated-Temperature Mechanical Properties of Levitation Melted NbMoTaW Refractory High-Entropy Alloys via Si Addition
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure and Compositions of NbMoTaWSix RHEAs
3.2. Mechanical Properties of NbMoTaWSix RHEAs
4. Conclusions
- (1)
- The NbMoTaW RHEA exhibits a single BCC structure. Si addition induces the formation of the (Nb,Ta)5Si3 phase, and the volume fraction of the silicide phase increases with higher Si content.
- (2)
- Si addition significantly improves the strength and hardness of the NbMoTaWSix RHEA. However, the plasticity deteriorates with increasing silicide phase content. The fracture mechanism of Si-containing RHEAs reveals brittle fracture behavior, primarily governed by the synergistic interaction between the silicide and matrix fracture modes.
- (3)
- The wear mechanism of NbMoTaWSix RHEAs involves adhesive wear and oxidative wear. Wear resistance is enhanced by Si addition, attributable to an improved hardness and oxidation resistance. Tribological evaluation under different counterface materials demonstrates that Si3N4 counterfaces are more suitable for studying RHEA wear mechanisms.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abd El-Aty, A.; Xu, Y.; Alzahrani, B.; Ali, A.; Shokry, A. Advanced Constitutive Modeling of the Hot Deformation Behavior of Ni-Based Superalloys: Modified Kobayashi-Dodd and Khan-Huang-Liang Models with Experimental Validation. Materials 2025, 18, 2500. [Google Scholar] [CrossRef] [PubMed]
- Zeng, N.F.; Lin, Y.C.; Li, S.X.; Ling, Y.H.; Yang, J.; Chen, M.S.; Cai, H.W.; Chen, Z.J.; Wu, G.C. A Unified Microstructure-Based Constitutive Model for a Ni-Based Superalloy and Its Application in the Forging Processes of Disk. Materials 2025, 18, 2526. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhou, X.Y.; Wang, W.L.; Liu, B.; Lv, Y.K.; Yang, W.; Xu, D.P.; Liu, Y. A review on fundamental of high entropy alloys with promising high-temperature properties. J. Alloys Compd. 2018, 760, 15–30. [Google Scholar] [CrossRef]
- Pollock, T.M.; Tin, S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure, and properties. J. Propuls. Power 2006, 22, 361–374. [Google Scholar] [CrossRef]
- Xia, W.; Zhao, X.; Yue, L.; Zhang, Z. A review of composition evolution in Ni-based single crystal superalloys. J. Mater. Sci. Technol. 2020, 44, 76–95. [Google Scholar] [CrossRef]
- Wang, J.L.; Chen, M.H.; Yang, L.L.; Sun, W.Y.; Zhu, S.L.; Wang, F.H. Nanocrystalline coatings on superalloys against high temperature oxidation: A review. Corros. Commun. 2021, 1, 58–69. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Senkov, O.N.; Miracle, D.B.; Chaput, K.J.; Couzinie, J.-P. Development and exploration of refractory high entropy alloys—A review. J. Mater. Res. 2018, 33, 3092–3128. [Google Scholar] [CrossRef]
- Coury, F.G.; Kaufman, M.; Clarke, A.J. Solid-solution strengthening in refractory high entropy alloys. Acta Mater. 2019, 175, 66–81. [Google Scholar] [CrossRef]
- Tong, Y.; Bai, L.; Liang, X.; Chen, Y.; Zhang, Z.; Liu, J.; Li, Y.; Hu, Y. Influence of alloying elements on mechanical and electronic properties of NbMoTaWX (X = Cr, Zr, V, Hf and Re) refractory high entropy alloys. Intermetallics 2020, 126, 106928. [Google Scholar] [CrossRef]
- Wang, M.; Ma, Z.L.; Xu, Z.Q.; Cheng, X.W. Designing VxNbMoTa refractory high-entropy alloys with improved properties for high-temperature applications. Scr. Mater. 2021, 191, 131–136. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, H.; Li, D.; Chen, Z.; Qi, Z. The effect of configurational entropy on mechanical properties of single BCC structural refractory high-entropy alloys systems. Int. J. Refract. Met. Hard Mater. 2020, 93, 105370. [Google Scholar] [CrossRef]
- Wu, S.; Qiao, D.; Zhang, H.; Miao, J.; Zhao, H.; Wang, J.; Lu, Y.; Wang, T.; Li, T. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures. J. Mater. Sci. Technol. 2022, 97, 229–238. [Google Scholar] [CrossRef]
- Zheng, W.; Lü, S.; Wu, S.; Chen, X.; Guo, W. Development of MoNbVTax refractory high entropy alloy with high strength at elevated temperature. Mater. Sci. Eng. A 2022, 850, 143554. [Google Scholar] [CrossRef]
- Wei, W.; Wang, T.; Wang, C.; Wu, M.; Nie, Y.; Peng, J. Ductile W0.4MoNbxTaTi refractory high-entropy alloys with excellent elevated temperature strength. Mater. Lett. 2021, 295, 129753. [Google Scholar] [CrossRef]
- Ma, S.G.; Zhang, S.F.; Qiao, J.W.; Wang, Z.H.; Gao, M.C.; Jiao, Z.M.; Yang, H.J.; Zhang, Y. Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification. Intermetallics 2014, 54, 104–109. [Google Scholar] [CrossRef]
- Mathiou, C.; Poulia, A.; Georgatis, E.; Karantzalis, A.E. Microstructural features and dry—Sliding wear response of MoTaNbZrTi high entropy alloy. Mater. Chem. Phys. 2018, 210, 126–135. [Google Scholar] [CrossRef]
- Ostovari Moghaddam, A.; Zherebtsov, D.; Shaburova, N.A.; Trofimov, E.A. Single-Phase Medium- to High-Entropy Alloys Developed by a Simple Thermodynamic Approach. JOM 2021, 73, 3430–3438. [Google Scholar] [CrossRef]
- Wen, J.; Chu, X.; Cao, Y.; Li, N. Effects of Al on Precipitation Behavior of Ti-Nb-Ta-Zr Refractory High Entropy Alloys. Metals 2021, 11, 514. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, P.K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765. [Google Scholar] [CrossRef]
- Lu, S.; Li, X.; Liang, X.; Yang, W.; Chen, J. Effect of V and Ti on the Oxidation Resistance of WMoTaNb Refractory High-Entropy Alloy at High Temperatures. Metals 2021, 12, 41. [Google Scholar] [CrossRef]
- Butler, T.M.; Chaput, K.J.; Dietrich, J.R.; Senkov, O.N. High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs). J. Alloys Compd. 2017, 729, 1004–1019. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Hung, S.-B.; Wang, C.-J.; Wei, W.-C.; Lee, J.-W. High temperature electrical properties and oxidation resistance of V-Nb-Mo-Ta-W high entropy alloy thin films. Surf. Coat. Technol. 2019, 375, 854–863. [Google Scholar] [CrossRef]
- Du, Y.; Ding, D.; Lai, L.; Xiao, S.; Guo, N.; Song, B.; Guo, S. Effect of Y on the high-temperature oxidation behavior of CrMoTaTi refractory high entropy alloy. Int. J. Refract. Met. Hard Mater. 2022, 103, 105755. [Google Scholar] [CrossRef]
- Müller, F.; Gorr, B.; Christ, H.-J.; Chen, H.; Kauffmann, A.; Heilmaier, M. Effect of Y Additions on the Oxidation Behaviour of Novel Refractory High-Entropy Alloy NbMoCrTiAl at 1000 °C in Air. Oxid. Met. 2020, 94, 147–163. [Google Scholar] [CrossRef]
- Lu, S.D.; Li, X.X.; Liang, X.Y.; He, J.H.; Shao, W.T.; Li, K.H.; Chen, J. Effect of Y additions on the oxidation behavior of vacuum arc melted refractory high-entropy alloy AlMo0.5NbTa0.5TiZr at elevated temperatures. Vacuum 2022, 201, 111069. [Google Scholar] [CrossRef]
- Müller, F.; Gorr, B.; Christ, H.J.; Chen, H.; Kauffmann, A.; Heilmaier, M. Effect of microalloying with silicon on high temperature oxidation resistance of novel refractory high-entropy alloy Ta-Mo-Cr-Ti-Al. Mater. High Temp. 2018, 35, 168–176. [Google Scholar] [CrossRef]
- Senkov, O.N.; Senkova, S.V.; Woodward, C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 2014, 68, 214–228. [Google Scholar] [CrossRef]
- Senkov, O.N.; Woodward, C.; Miracle, D.B. Microstructure and Properties of Aluminum-Containing Refractory High-Entropy Alloys. JOM 2014, 66, 2030–2042. [Google Scholar] [CrossRef]
- Senkov, O.N.; Woodward, C.F. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Mat Sci Eng A-Struct 2011, 529, 311–320. [Google Scholar] [CrossRef]
- Senkov, O.N.; Senkova, S.V.; Woodward, C.; Miracle, D.B. Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis. Acta Mater. 2013, 61, 1545–1557. [Google Scholar] [CrossRef]
- Guo, N.N.; Wang, L.; Luo, L.S.; Li, X.Z.; Chen, R.R.; Su, Y.Q.; Guo, J.J.; Fu, H.Z. Microstructure and mechanical properties of refractory high entropy (Mo0.5NbHf0.5ZrTi)BCC/M5Si3 in-situ compound. J. Alloys Compd. 2016, 660, 197–203. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Li, Y.X.; Chen, X.; Zhang, H.W. Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite. Mater. Lett. 2016, 174, 82–85. [Google Scholar] [CrossRef]
- Juan, C.C.; Tseng, K.K.; Hsu, W.L.; Tsai, M.H.; Tsai, C.W.; Lin, C.M.; Chen, S.K.; Lin, S.J.; Yeh, J.W. Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys. Mater. Lett. 2016, 175, 284–287. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zhang, H.; Wang, N.J.; Chen, X.; Zhang, H.W.; Li, Y.X. Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites. J. Alloys Compd. 2017, 694, 869–876. [Google Scholar] [CrossRef]
- Zhou, J.R.; Sha, J.B. Microstructural evolution and mechanical properties of an Nb-16Si in-situ composite with Fe additions prepared by arc-melting. Intermetallics 2013, 34, 1–9. [Google Scholar] [CrossRef]
- Yu, J.L.; Weng, X.D.; Zhu, N.L.; Liu, H.; Wang, F.; Li, Y.C.; Cai, X.M.; Hu, Z.W. Mechanical properties and fracture behavior of an Nb-Silicide in situ composite. Intermetallics 2017, 90, 135–139. [Google Scholar] [CrossRef]
- Guan, K.; Jia, L.N.; Kong, B.; Yuan, S.N.; Zhang, H. Study of the fracture mechanism of NbSS/Nb5Si3 in situ composite: Based on a mechanical characterization of interfacial strength. Mat. Sci. Eng. A-Struct. 2016, 663, 98–107. [Google Scholar] [CrossRef]
- Fei, T.; Yu, Y.X.; Zhou, C.G.; Sha, J.B. The deformation and fracture modes of fine and coarsened NbSS phase in a Nb-20Si-24Ti-2Al-2Cr alloy with a NbSS/Nb5Si3 microstructure. Mater. Des. 2017, 116, 92–98. [Google Scholar] [CrossRef]
- Humphreys, C. The significance of Bragg’s law in electron diffraction and microscopy, and Bragg’s second law. Acta Crystallogr. Sect. A 2013, 69, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Senkov, O.N.; Miracle, D.B. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater. Res. Bull. 2001, 36, 2183–2198. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Mater. Trans. 2005, 46, 2817–2829. [Google Scholar] [CrossRef]
- Senkov, O.N.; Semiatin, S.L. Microstructure and properties of a refractory high-entropy alloy after cold working. J. Alloys Compd. 2015, 649, 1110–1123. [Google Scholar] [CrossRef]
- Jiang, L.; Cao, Z.Q.; Jie, J.C.; Zhang, J.J.; Lu, Y.P.; Wang, T.M.; Li, T.J. Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNixVMoy high entropy alloys. J. Alloys Compd. 2015, 649, 585–590. [Google Scholar] [CrossRef]
- Guo, Y.; He, J.; Li, Z.; Jia, L.; Wu, X.; Liu, C. Strengthening and dynamic recrystallization mediated by Si-alloying in a refractory high entropy alloy. Mater. Sci. Eng. A 2022, 832, 142480. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Wang, S.; Sun, Q.; Cheng, J.; Yu, Y.; Yang, J. Tribological properties of h-BN matrix solid-lubricating composites under elevated temperatures. Tribol. Int. 2020, 148, 106333. [Google Scholar] [CrossRef]
- Buljan, S.T.; Wayne, S.F. Wear and design of ceramic cutting tool materials. Wear 1989, 133, 309–321. [Google Scholar] [CrossRef]
Element | W | Mo | Ta | Nb | Si |
---|---|---|---|---|---|
Radius (Å) | 1.41 | 1.40 | 1.48 | 1.48 | 1.11 |
σp (MPa) | E (GPa) | σ0.2 (MPa) | Alloy |
---|---|---|---|
1029.35 | 20.07 | 1029.36 | WMoTaNb |
2519.69 | 26.53 | 2560.45 | WMoTaNbSi0.25 |
1613.36 | 24.94 | 1560.83 | WMoTaNbSi0.5 |
N | Si | Nb | Ta | Mo | W | O | Region | Alloy |
---|---|---|---|---|---|---|---|---|
3.0 | 6.3 | 5.6 | 6.6 | 7.1 | 2.0 | 69.4 | Inside | WMoTaNb |
1.6 | 9.2 | 17.2 | 18.6 | 19.2 | 23 | 11.2 | Outside | |
3.2 | 9.2 | 6.3 | 7.6 | 7.4 | 5.7 | 60.6 | Inside | WMoTaNbSi0.25 |
3.4 | 6.0 | 14 | 24.4 | 27.5 | 12.0 | 12.7 | Outside | |
3.7 | 14.1 | 7.1 | 8.0 | 8.0 | 5.6 | 53.5 | Inside | WMoTaNbSi0.5 |
3.3 | 9.6 | 18.8 | 19.2 | 27.3 | 12.2 | 9.6 | Outside |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Li, X.; Lu, S.; Zhou, J.; Wu, S.; Lin, S.; Wang, L. Enhancing the Elevated-Temperature Mechanical Properties of Levitation Melted NbMoTaW Refractory High-Entropy Alloys via Si Addition. Materials 2025, 18, 3465. https://doi.org/10.3390/ma18153465
Liu Y, Li X, Lu S, Zhou J, Wu S, Lin S, Wang L. Enhancing the Elevated-Temperature Mechanical Properties of Levitation Melted NbMoTaW Refractory High-Entropy Alloys via Si Addition. Materials. 2025; 18(15):3465. https://doi.org/10.3390/ma18153465
Chicago/Turabian StyleLiu, Yunzi, Xiaoxiao Li, Shuaidan Lu, Jialiang Zhou, Shangkun Wu, Shengfeng Lin, and Long Wang. 2025. "Enhancing the Elevated-Temperature Mechanical Properties of Levitation Melted NbMoTaW Refractory High-Entropy Alloys via Si Addition" Materials 18, no. 15: 3465. https://doi.org/10.3390/ma18153465
APA StyleLiu, Y., Li, X., Lu, S., Zhou, J., Wu, S., Lin, S., & Wang, L. (2025). Enhancing the Elevated-Temperature Mechanical Properties of Levitation Melted NbMoTaW Refractory High-Entropy Alloys via Si Addition. Materials, 18(15), 3465. https://doi.org/10.3390/ma18153465