Experimental Investigation of Environmental Factors Affecting Cable Bolt Corrosion in Simulated Underground Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Testing Specimens
2.2. Experimental Setups
2.3. Testing Procedures
3. Results and Analysis
3.1. Water Chemistry Analysis
3.2. Corrosion Patterns
3.3. Ion Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C. Field Observations of Rock Bolts in High Stress Rock Masses. Rock Mech. Rock Eng. 2010, 43, 491–496. [Google Scholar] [CrossRef]
- Wu, S.; Ma, X.; Zhang, X.; Chen, J.; Yao, Y.; Li, D. Investigation into hydrogen induced fracture of cable bolts under deep stress corrosion coupling conditions. Tunn. Undergr. Space Technol. 2024, 147, 105729. [Google Scholar] [CrossRef]
- Wu, S.; Hao, W.; Yao, Y.; Li, D. Investigation into durability degradation and fracture of cable bolts through laboratorial tests and hydrogeochemical modelling in underground conditions. Tunn. Undergr. Space Technol. 2023, 138, 105198. [Google Scholar] [CrossRef]
- Chen, J.H.; Saydam, S.; Hagan, P.C. Numerical simulation of the pull-out behaviour of fully grouted cable bolts. Constr. Build. Mater. 2018, 191, 1148–1158. [Google Scholar] [CrossRef]
- Li, D.; Li, Y.; Chen, J.; Masoumi, H. An analytical model for axial performance of rock bolts under constant confining pressure based on continuously yielding criterion. Tunn. Undergr. Space Technol. 2021, 113, 103955. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Z.; Chen, J.; Yao, Y.; Li, D. Characterisation of stress corrosion durability and time-dependent performance of cable bolts in underground mine environments. Eng. Fail. Anal. 2023, 150, 107292. [Google Scholar] [CrossRef]
- Gamboa, E.; Atrens, A. Environmental influence on the stress corrosion cracking of rock bolts. Eng. Fail. Anal. 2003, 10, 521–558. [Google Scholar] [CrossRef]
- Zou, J.F.; Sheng, Y.M.; Xia, M.Y.; Wang, F. A novel numerical-iterative-approach for strain-softening surrounding rock incorporating rockbolts effectiveness and hydraulic-mechanical coupling based on Three-Dimensional Hoek-Brown strength criterion. Tunn. Undergr. Space Technol. 2020, 101, 23. [Google Scholar] [CrossRef]
- Hadjigeorgiou, J.; Potvin, Y. A critical assessment of dynamic rock reinforcement and support testing facilities. Rock Mech. Rock Eng. 2011, 44, 565–578. [Google Scholar] [CrossRef]
- Wu, S.; Cao, X.; Zhu, Y.; Skrzypkowski, K.; Zagórski, K. Examination of Stress Corrosion Cracking of Rock Bolts in Simulated Underground Environments. Materials 2025, 18, 1275. [Google Scholar] [CrossRef]
- Peng, Y.; Timms, W. Hydrogeochemical modelling of corrosive environment contributing to premature failure of anchor bolts in underground coal mines. J. Cent. South Univ. 2020, 27, 1599–1610. [Google Scholar] [CrossRef]
- Woodtli, J.; Kieselbach, R. Damage due to hydrogen embrittlement and stress corrosion cracking. Eng. Fail. Anal. 2000, 7, 427–450. [Google Scholar] [CrossRef]
- Gamboa, E.; Atrens, A. Stress corrosion cracking fracture mechanisms in rock bolts. J. Mater. Sci. 2003, 38, 16. [Google Scholar] [CrossRef]
- Craig, P.; Serkan, S.; Hagan, P.; Hebblewhite, B.; Vandermaat, D.; Crosky, A.; Elias, E. Investigations into the corrosive environments contributing to premature failure of Australian coal mine rock bolts. Int. J. Min. Sci. Technol. 2016, 26, 59–64. [Google Scholar] [CrossRef]
- Nürnberger, U. Corrosion induced failure mechanisms of prestressing steel. Mater. Corros. 2002, 53, 591–601. [Google Scholar] [CrossRef]
- Parrot, R. An Investigation into the Effects of Corrosion on the Mechanical Properties of Strata Bolts; Report CN96/110/HSE; Independent Metallurgical Practice: West Perth, WA, Australia, 1997. [Google Scholar]
- Hadjigeorgiou, J.; Dorion, J.; Ghali, E. Support system performance under different corrosion conditions. J. South. Afr. Inst. Min. Metall. 2008, 108, 359–365. [Google Scholar]
- Guo, Q.F.; Liu, H.L.; Xi, X.; Ma, H.C.; Pan, J.L.; Cai, M.F. Experimental investigation of corrosion-induced degradation of rockbolt considering natural fracture and continuous load. J. Cent. South Univ. 2023, 30, 947–961. [Google Scholar] [CrossRef]
- Vandermaat, D.; Saydam, S.; Hagan, P.C.; Crosky, A.G. Laboratory-based coupon testing for the understanding of SCC in rockbolts. Min. Technol. 2016, 125, 174–183. [Google Scholar] [CrossRef]
- Kang, H.; Wu, Y.; Gao, F.; Lin, J.; Jiang, P. Fracture characteristics in rock bolts in underground coal mine roadways. Int. J. Rock Mech. Min. Sci. 2013, 62, 105–112. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, S.; Wang, W.; Li, D. Experimental study on mechanical aging properties of self-swelling anchorage bolt under chemical corrosion. Int. J. Min. Reclam. Environ. 2024, 39, 309–324. [Google Scholar] [CrossRef]
- Bylapudi, G.; Spearing, A.; Mondal, K.; Bhagwat, A. Stress corrosion testing of roof bolt grade 60 steel in simulated underground coal mine atmosphere. Min. Technol. 2019, 128, 206–215. [Google Scholar] [CrossRef]
- Hassell, R.; Villaescusa, E.; Thompson, A.G.; Kinsella, B. Corrosion assessment of ground support systems. In Ground Support in Mining and Underground Construction; Taylor & Francis: Abingdon, UK, 2004; pp. 521–528. [Google Scholar]
- Vandermaat, D.; Saydam, S.; Hagan, P.C.; Crosky, A.G. Back-calculation of failure stress of rockbolts affected by Stress Corrosion Cracking in underground coal mines. Int. J. Rock Mech. Min. Sci. 2017, 100, 310–317. [Google Scholar] [CrossRef]
- Niazi, H.; Eadie, R.; Chen, W.; Zhang, H. High pH stress corrosion cracking initiation and crack evolution in buried steel pipelines: A review. Eng. Fail. Anal. 2021, 120, 105013. [Google Scholar] [CrossRef]
- Villalba, E.; Atrens, A. Hydrogen embrittlement and rock bolt stress corrosion cracking. Eng. Fail. Anal. 2009, 16, 164–175. [Google Scholar] [CrossRef]
- Chen, H.; Kimyon, Ö.; Ramandi, H.L.; Craig, P.; Gunawan, C.; Wu, S.; Manefield, M.; Crosky, A.; Saydam, S. Microbiologically influenced stress corrosion cracking responsible for catastrophic failure of cable bolts. Eng. Fail. Anal. 2021, 131, 105884. [Google Scholar] [CrossRef]
- Crosky, A.; Smith, B.; Elias, E.; Chen, H.; Craig, P.; Hagan, P.; Saydam, S.; Hebblewhite, B. Stress corrosion cracking failure of rockbolts in underground mines in Australia. In Proceedings of the Seventh International Conference on Rockbolting and Rock Mechanics in Mining, Aachen, Germany, 30–31 May 2012. [Google Scholar]
- Villaescusa, E.; Hassell, R.; Thompson, A. Development of a corrosivity classification for cement grouted cable strand in underground hard-rock mining excavations. In Proceedings of 5th International Conference and Exhibition on Mass Mining, Luleå, Sweden, 9–11 June 2008; pp. 9–11. [Google Scholar]
- Craig, P.; Ramandi, H.L.; Chen, H.; Vandermaat, D.; Crosky, A.; Hagan, P.; Hebblewhite, B.; Saydam, S. Stress corrosion cracking of rockbolts: An in-situ testing approach. Constr. Build. Mater. 2021, 269, 121275. [Google Scholar] [CrossRef]
- Wu, S.; Zhu, M.; Zhang, Z.; Yao, Y.; Li, Y.; Li, D. Prediction and risk assessment of stress corrosion failures of prestressed anchors in underground mines. Int. J. Min. Reclam. Environ. 2025, 1–15. [Google Scholar] [CrossRef]
- Aziz, N.; Craig, P.; Nemcik, J.; Hai, F. Rock bolt corrosion—An experimental study. Min. Technol. 2014, 123, 69–77. [Google Scholar] [CrossRef]
- Toribio, J.; Ovejero, E. Failure analysis of cold drawn prestressing steel wires subjected to stress corrosion cracking. Eng. Fail. Anal. 2005, 12, 654–661. [Google Scholar] [CrossRef]
- Ramandi, H.L.; Chen, H.; Crosky, A.; Saydam, S. Interactions of stress corrosion cracks in cold drawn pearlitic steel wires: An X-ray micro-computed tomography study. Corros. Sci. 2018, 145, 170–179. [Google Scholar] [CrossRef]
- Sartola, I.; Aromaa, J. Corrosion of Rock Bolts and the Effect of Corrosion Protection on the Axial Behaviour of Cable Bolts, SRM 2013—Technology Roadmap of Rock Mechanics; South African Institute of Mining and Metallurgy: Johannesburg, South Africa, 2003. [Google Scholar]
- Wu, S. Laboratory Based Investigation of Stress Corrosion Cracking of Cable Bolts. Ph.D. Thesis, University of New South Wales, Sydney, Australia, 2018. [Google Scholar] [CrossRef]
- JIS G 3536:2022; Steel Wire Ropes. Japanese Standards Association: Tokyo, Japan, 2022.
- DIN 50929:2018-09; Corrosion of Metals—Corrosion Likelihood of Metallic Materials When Subject to Corrosion from the Outside—Part 1: General. DIN Deutsches Institut für Normung e.V.: Berlin, Germany, 2018.
Chemical Composition [wt.%] | ||||||
---|---|---|---|---|---|---|
C | Si | Mn | Ni | Al | Cr | Fe |
0.85 | 0.31 | 0.66 | 0.02 | 0.02 | 0.11 | Balance |
Parameter | Unit | |
---|---|---|
pH | pH unit | 7.8 |
Total dissolved solids | mg/L | 398 |
Dissolved oxygen | mg/L | 5.92 |
Sulfate | mg/L | 80.5 |
Chloride | mg/L | 7.4 |
Alkalinity | mg/L | 355 |
Sodium | mg/L | 182 |
Iron | mg/L | 1.39 |
Specimen ID | Packed Material | Specimens |
---|---|---|
1 | Clay, Water | simplified cable bolt |
2 | Coal, Water | simplified cable bolt |
3 | Coal/Clay, Water | simplified cable bolt |
4 | Cement, Water | simplified cable bolt |
Test Conditions | Clay | Coal and Clay | Coal | Cement |
---|---|---|---|---|
Appearance | ||||
Removal of corrosion rust | ||||
Dominant corrosion form | Galvanic corrosion (tri-wire contacts) | Suppressed corrosion of carbonaceous layers | Localized pitting | Oxygen-driven cathodic corrosion |
Key features | Alkaline pH (8.1–8.4), high Cl− trapping, alloy disparities. | Reductive coatings, Sr2+ enrichment, balanced pH (8.1) and conductivity. | Moderate pH (6.8–7.2), high Cl− mobility, sulfate accumulation, low oxygen. | Alkaline bulk (pH~11), Fe2+ release, high mass loss. |
Ca2+ (mg/L) | K+ (mg/L) | Mg2+ (mg/L) | Na+ (mg/L) | Si+ (mg/L) | S2− (mg/L) | Al3+ (mg/L) | Mn2+ (mg/L) | Cu2+ (mg/L) | Sr2+ (mg/L) | Fe3+/Fe2+ (mg/L) | TDS (mg/L) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Coal | 37.3 | 20.5 | 40.3 | 187.1 | 3.8 | 39.8 | 38.8 | 256.2 | 3.7 | 10.7 | 120.9 | 738.0 |
Cement | 9.0 | 28.3 | 13.2 | 117.4 | 1.01 | 36.7 | 15.6 | 199.8 | 4.2 | 28.9 | 6.8 | 454.1 |
Clay | 3.9 | 31.6 | 3.6 | 138.6 | 7.5 | 31.9 | 444.0 | 18.0 | 28.0 | 23.1 | 166.6 | 730.1 |
Coal/Clay | 4.8 | 28.5 | 6.4 | 147.9 | 5.0 | 31.4 | 57.5 | 3.9 | 11.5 | 37.1 | 105.6 | 885.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Cui, P.; Zheng, C.; Skrzypkowski, K.; Zagórski, K. Experimental Investigation of Environmental Factors Affecting Cable Bolt Corrosion in Simulated Underground Conditions. Materials 2025, 18, 3460. https://doi.org/10.3390/ma18153460
Wu S, Cui P, Zheng C, Skrzypkowski K, Zagórski K. Experimental Investigation of Environmental Factors Affecting Cable Bolt Corrosion in Simulated Underground Conditions. Materials. 2025; 18(15):3460. https://doi.org/10.3390/ma18153460
Chicago/Turabian StyleWu, Saisai, Pengbo Cui, Chunshan Zheng, Krzysztof Skrzypkowski, and Krzysztof Zagórski. 2025. "Experimental Investigation of Environmental Factors Affecting Cable Bolt Corrosion in Simulated Underground Conditions" Materials 18, no. 15: 3460. https://doi.org/10.3390/ma18153460
APA StyleWu, S., Cui, P., Zheng, C., Skrzypkowski, K., & Zagórski, K. (2025). Experimental Investigation of Environmental Factors Affecting Cable Bolt Corrosion in Simulated Underground Conditions. Materials, 18(15), 3460. https://doi.org/10.3390/ma18153460