Dynamic Strength Prediction of Brittle Engineering Materials via Stacked Multi-Model Ensemble Learning and Interpretability-Driven Feature Analysis
Abstract
1. Introduction
2. Dataset Construction and Analysis
3. Methods
3.1. Fundamental Principles of Stacking
- (1)
- Procedure 1: Base learner training and prediction
- (2)
- Procedure 2: Meta-dataset construction
- (3)
- Procedure 3: Meta-learner training and final prediction
3.2. Machine Learning Models
3.2.1. K-Nearest Neighbors (KNN)
3.2.2. Random Forest (RF)
3.2.3. Gradient Boosting Decision Tree (GBDT)
3.2.4. Light Gradient Boosting Machine (LightGBM)
3.2.5. Extreme Gradient Boosting (XGBoost)
3.2.6. Multi-Layer Perceptron Neural Network (MLPNN)
3.3. Prediction Framework Construction
4. Performance Evaluation Methodology
4.1. Evaluation Metrics
4.2. SHapley Additive exPlanations (SHAP)
5. Results and Discussion
5.1. Comparative Analysis of Model Performance
5.2. Model Interpretation
5.2.1. Feature Importance and Attribution Across Models
5.2.2. Influence Patterns and Nonlinear Responses of Key Predictors
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qian, Q.; Qi, C.; Wang, M. Dynamic Strength of Rocks and Physical Nature of Rock Strength. J. Rock Mech. Geotech. Eng. 2009, 1, 1–10. [Google Scholar] [CrossRef]
- Cai, X.; Yuan, J.F.; Zhou, Z.L.; Wang, Y.M.; Chen, L.Y.; Liu, Y.; Wang, S.F. Strain Rate-Dependency of Thermal Infrared Radiation of Sandstone Subjected to Dynamic Loading: Insights from a Lab Testing. Int. J. Rock Mech. Min. Sci. 2024, 181, 105855. [Google Scholar] [CrossRef]
- Sun, B.; Chen, R.; Ping, Y.; Zhu, Z.; Wu, N.; He, Y. Dynamic Response of Rock-like Materials Based on SHPB Pulse Waveform Characteristics. Materials 2022, 15, 210. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Zhou, Z.; Zang, H.; Song, Z. Water Saturation Effects on Dynamic Behavior and Microstructure Damage of Sandstone: Phenomena and Mechanisms. Eng. Geol. 2020, 276, 105760. [Google Scholar] [CrossRef]
- Dong, L.; Wang, J.; Li, X.; Peng, K. Dynamic Stability Analysis of Rockmass: A Review. Adv. Civ. Eng. 2018, 2018, 4270187. [Google Scholar] [CrossRef]
- Deng, Z.; Liu, X.; Liu, Y.; Liu, S.; Han, Y.; Liu, J.; Tu, Y. Model Test and Numerical Simulation on the Dynamic Stability of the Bedding Rock Slope under Frequent Microseisms. Earthq. Eng. Eng. Vib. 2020, 19, 919–935. [Google Scholar] [CrossRef]
- Whittington, W.R.; Oppedal, A.L.; Francis, D.K.; Horstemeyer, M.F. A Novel Intermediate Strain Rate Testing Device: The Serpentine Transmitted Bar. Int. J. Impact Eng. 2015, 81, 1–7. [Google Scholar] [CrossRef]
- Li, W.; Tan, Z.Y. Research on Rock Strength Prediction Based on Least Squares Support Vector Machine. Geotech. Geol. Eng. 2017, 35, 385–393. [Google Scholar] [CrossRef]
- Wang, Y.; Hasanipanah, M.; Rashid, A.S.A.; Tahir, M.; Iqbal, M.; Armaghani, D.J. Advanced Tree-Based Techniques for Predicting Unconfined Compressive Strength of Rock Material Employing Non-Destructive and Petrographic Tests. Materials 2023, 16, 3731. [Google Scholar] [CrossRef]
- Azarafza, M.; Hajialilue Bonab, M.; Derakhshani, R. A Deep Learning Method for the Prediction of the Index Mechanical Properties and Strength Parameters of Marlstone. Materials 2022, 15, 6899. [Google Scholar] [CrossRef]
- Cheng, Y.; He, D.; Liu, H.; Wang, G. Shear Strength Parameters Prediction of Rock Materials Using Hybrid Machine Learning Model. Nondestruct. Test. Eval. 2025, 40, 1–24. [Google Scholar] [CrossRef]
- Wei, M.; Meng, W.; Dai, F.; Wu, W. Application of Machine Learning in Predicting the Rate-Dependent Compressive Strength of Rocks. J. Rock Mech. Geotech. Eng. 2022, 14, 1356–1365. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, Y.; Zhou, Y.; Tang, H.; Fu, S. Assessment of Machine Learning Models for the Prediction of Rate-Dependent Compressive Strength of Rocks. Minerals 2022, 12, 731. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, R.; Zhang, A.; Shen, Y.; Ren, L.; Xie, J.; Zhang, Z.; Zhang, Z.; An, L.; Sun, J. Machine Learning Algorithms in Rock Strength Prediction: A Novel Method for Evaluating Dynamic Compressive Strength of Rocks Under Freeze–Thaw Cycles. IOP Conf. Ser. Earth Environ. Sci. 2024, 1337, 012072. [Google Scholar] [CrossRef]
- Frew, D.J.; Forrestal, M.J.; Chen, W. A Split Hopkinson Pressure Bar Technique to Determine Compressive Stress-Strain Data for Rock Materials. Exp. Mech. 2001, 41, 40–46. [Google Scholar] [CrossRef]
- Li, X.; Lok, T.; Zhao, J. Dynamic Characteristics of Granite Subjected to Intermediate Loading Rate. Rock Mech. Rock Eng. 2005, 38, 21–39. [Google Scholar] [CrossRef]
- Xia, K.; Nasseri, M.H.B.; Mohanty, B.; Lu, F.; Chen, R.; Luo, S.N. Effects of Microstructures on Dynamic Compression of Barre Granite. Int. J. Rock Mech. Min. Sci. 2008, 45, 879–887. [Google Scholar] [CrossRef]
- Wang, Y.; Tonon, F. Dynamic Validation of a Discrete Element Code in Modeling Rock Fragmentation. Int. J. Rock Mech. Min. Sci. 2011, 48, 535–545. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, J. Determination of Mechanical Properties and Full-Field Strain Measurements of Rock Material under Dynamic Loads. Int. J. Rock Mech. Min. Sci. 2013, 60, 423–439. [Google Scholar] [CrossRef]
- Zhou, Z.; Cai, X.; Chen, L.; Cao, W.; Zhao, Y.; Xiong, C. Influence of Cyclic Wetting and Drying on Physical and Dynamic Compressive Properties of Sandstone. Eng. Geol. 2017, 220, 1–12. [Google Scholar] [CrossRef]
- Zhou, Z.; Cai, X.; Li, X.; Cao, W.; Du, X. Dynamic Response and Energy Evolution of Sandstone Under Coupled Static–Dynamic Compression: Insights from Experimental Study into Deep Rock Engineering Applications. Rock Mech. Rock Eng. 2020, 53, 1305–1331. [Google Scholar] [CrossRef]
- Weng, L.; Wu, Z.; Liu, Q. Dynamic Mechanical Properties of Dry and Water-Saturated Siltstones Under Sub-Zero Temperatures. Rock Mech. Rock Eng. 2020, 53, 4381–4401. [Google Scholar] [CrossRef]
- Yu, M.; Li, S.; Sun, Q.; Wang, S. Influence of Grain Size on the Strain-Rate-Dependent Dynamic Response of Sandstones. Geomech. Geophys. Geo-Energy Geo-Resour. 2021, 7, 74. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Zhang, J.; Yang, B.; Chen, J.; Zhu, W. Experimental Investigation of the Static and Dynamic Compression Characteristics of Limestone Based on Its Initial Damage. Appl. Sci. 2021, 11, 7643. [Google Scholar] [CrossRef]
- Rae, A.S.P.; Kenkmann, T.; Padmanabha, V.; Poelchau, M.H.; Schäfer, F. Dynamic Compressive Strength and Fragmentation in Felsic Crystalline Rocks. J. Geophys. Res. Planets 2020, 125, e2020JE006561. [Google Scholar] [CrossRef]
- Jerez, J.M.; Molina, I.; García-Laencina, P.J.; Alba, E.; Ribelles, N.; Martín, M.; Franco, L. Missing Data Imputation Using Statistical and Machine Learning Methods in a Real Breast Cancer Problem. Artif. Intell. Med. 2010, 50, 105–115. [Google Scholar] [CrossRef]
- Shrestha, N. Detecting Multicollinearity in Regression Analysis. Am. J. Appl. Math. Stat. 2020, 8, 39–42. [Google Scholar] [CrossRef]
- Gutmann, M.U.; Kleinegesse, S.; Rhodes, B. Statistical Applications of Contrastive Learning. Behaviormetrika 2022, 49, 277–301. [Google Scholar] [CrossRef]
- Pérez, N.P.; López, M.A.G.; Silva, A.; Ramos, I. Improving the Mann–Whitney Statistical Test for Feature Selection: An Approach in Breast Cancer Diagnosis on Mammography. Artif. Intell. Med. 2015, 63, 19–31. [Google Scholar] [CrossRef]
- Kardani, N.; Zhou, A.N.; Nazem, M.; Shen, S.L. Improved Prediction of Slope Stability Using a Hybrid Stacking Ensemble Method Based on Finite Element Analysis and Field Data. J. Rock Mech. Geotech. Eng. 2021, 13, 188–201. [Google Scholar] [CrossRef]
- Altman, N.S. An Introduction to Kernel and Nearest-Neighbor. Am. Stat. 1992, 46, 175–185. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 3146–3154. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Franciso, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back-Propagating Errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The Coefficient of Determination R-Squared Is More Informative than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]
- Futagami, K.; Fukazawa, Y.; Kapoor, N.; Kito, T. Pairwise Acquisition Prediction with SHAP Value Interpretation. J. Financ. Data Sci. 2021, 7, 22–44. [Google Scholar] [CrossRef]
Index | Specimen Length (mm) | Specimen Diameter (mm) | Grain Size (mm) | Bulk Density (kg/m3) | P-Wave Velocity (m/s) | Strain Rate (s−1) | Static Strength (MPa) | Dynamic Strength (MPa) |
---|---|---|---|---|---|---|---|---|
Mean | 41.13 | 42.51 | 0.77 | 2499.53 | 3605.10 | 60.54 | 92.27 | 132.84 |
Std | 15.34 | 17.50 | 1.03 | 192.66 | 1230.45 | 51.80 | 55.43 | 80.89 |
Min | 10.00 | 2.50 | 0.03 | 2278.00 | 2437.00 | 5.00 × 10−6 | 28.60 | 30.03 |
1st quartile | 34.83 | 32.00 | 0.10 | 2300.00 | 2812.00 | 22.40 | 46.99 | 68.35 |
Median | 49.78 | 49.73 | 0.23 | 2405.00 | 3165.00 | 53.60 | 71.91 | 109.00 |
3rd quartile | 50.07 | 50.11 | 0.86 | 2648.00 | 3955.75 | 89.25 | 155.00 | 193.90 |
Max | 70.00 | 70.00 | 3.50 | 2850.00 | 6651.00 | 240.00 | 212.00 | 358.00 |
Model | Hyperparameter | Optimization Range | Result |
---|---|---|---|
KNN | n_neighbors | (1, 30) | 1.0 |
p | (1, 2) | 1.0 | |
RF | max_depth | (5, 20) | 18.0 |
max_features | (1, 5) | 4.0 | |
n_estimators | (100, 500) | 150.0 | |
GBDT | learning_rate | (0.01, 0.3) | 0.018 |
max_depth | (3, 10) | 9.0 | |
n_estimators | (100, 1000) | 739.0 | |
LGBM | learning_rate | (0.01, 0.3) | 0.28 |
max_depth | (3, 10) | 4.0 | |
n_estimators | (50, 500) | 450.0 | |
XGBoost | learning_rate | (0.01, 0.3) | 0.119 |
max_depth | (3, 10) | 9.0 | |
n_estimators | (100, 1000) | 364.0 | |
MLPNN | activation | (relu, tanh) | Relu |
alpha | (1 × 10−5, 1 × 10−2) | 0.0057 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, X.; Wang, Y.; Zhao, Y.; Chen, L.; Wang, P.; Wang, Z.; Li, J. Dynamic Strength Prediction of Brittle Engineering Materials via Stacked Multi-Model Ensemble Learning and Interpretability-Driven Feature Analysis. Materials 2025, 18, 3054. https://doi.org/10.3390/ma18133054
Cai X, Wang Y, Zhao Y, Chen L, Wang P, Wang Z, Li J. Dynamic Strength Prediction of Brittle Engineering Materials via Stacked Multi-Model Ensemble Learning and Interpretability-Driven Feature Analysis. Materials. 2025; 18(13):3054. https://doi.org/10.3390/ma18133054
Chicago/Turabian StyleCai, Xin, Yunmin Wang, Yihan Zhao, Liye Chen, Peiyu Wang, Zhongkang Wang, and Jianguo Li. 2025. "Dynamic Strength Prediction of Brittle Engineering Materials via Stacked Multi-Model Ensemble Learning and Interpretability-Driven Feature Analysis" Materials 18, no. 13: 3054. https://doi.org/10.3390/ma18133054
APA StyleCai, X., Wang, Y., Zhao, Y., Chen, L., Wang, P., Wang, Z., & Li, J. (2025). Dynamic Strength Prediction of Brittle Engineering Materials via Stacked Multi-Model Ensemble Learning and Interpretability-Driven Feature Analysis. Materials, 18(13), 3054. https://doi.org/10.3390/ma18133054