Effect of Hemp Shive Granulometry on the Thermal Conductivity of Hemp–Lime Composites
Abstract
1. Introduction
1.1. Effect of Hemp Shive Size on Thermal Conductivity
1.2. Influence of Component Proportions on Thermal Conductivity
1.3. Influence of Material Compression on Thermal Conductivity
1.4. Methods for Determining Hemp Shive Size
Origin | Bulk Density | Absolute Density | Porosity | Water Absorption | Mean Particle Length | Mean Particle Width | Mean Particle Thickness | Length Range | Width Range | Thickness Range | Major Length | Major Width | Width to Length Ratio | Source | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X | X | X | X | [26] | |||||||||||
X | X | X | X | X | [10] | ||||||||||
X | X | X | X | X | [31] | ||||||||||
X | [30] | ||||||||||||||
X | X | [32] | |||||||||||||
X | X | X | X | X | X | [33] | |||||||||
X | X | [34] | |||||||||||||
X | X | X | [35] | ||||||||||||
X | X | X | [36] | ||||||||||||
X | X | X | [16] | ||||||||||||
X | X | [37] | |||||||||||||
X | X | X | [38] | ||||||||||||
X | X | [39] | |||||||||||||
X | X | X | X | X | [9] | ||||||||||
X | X | [27] | |||||||||||||
X | X | X | X | [40] | |||||||||||
X | X | X | X | X | [4] | ||||||||||
X | X | X | X | X | [7] | ||||||||||
X | X | X | [41] | ||||||||||||
X | X | X | X | [25] | |||||||||||
Width to Length Ratio Graph | Particle Size Graph | Equivalent Diameter | Minor and Major Axis | Elongation | Particle Size Range | Grading Curve | Fiber Content | Dust Content | Particle Dimensions | Particle Surface area | Mean Particle Surface Area | Mean Particle Mass | Fraction | Extractive Proportions | Reference |
[26] | |||||||||||||||
[10] | |||||||||||||||
X | X | X | [31] | ||||||||||||
X | [30] | ||||||||||||||
X | X | X | [32] | ||||||||||||
X | [33] | ||||||||||||||
X | [34] | ||||||||||||||
X | X | X | [35] | ||||||||||||
X | X | [36] | |||||||||||||
X | X | X | X | X | [16] | ||||||||||
[37] | |||||||||||||||
X | X | X | [38] | ||||||||||||
X | X | [39] | |||||||||||||
X | [9] | ||||||||||||||
X | X | X | [27] | ||||||||||||
X | [40] | ||||||||||||||
X | [4] | ||||||||||||||
X | X | X | [7] | ||||||||||||
X | X | X | X | X | [41] | ||||||||||
X | [25] |
2. Materials and Methods
2.1. Materials
2.1.1. Binder Characteristics
2.1.2. Hemp Shives
2.2. Experimental Design
2.3. Methods
Sample Preparation
- q—heat flux (W/m2),
- λ—thermal conductivity (W/m·K),
- dT/dx—temperature gradient (K/m).
3. Results
3.1. Sample Density
3.2. Thermal Conductivity
4. Discussion
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaur, G.; Kander, R. The Sustainability of Industrial Hemp: A Literature Review of Its Economic, Environmental, and Social Sustainability. Sustainability 2023, 15, 6457. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Bhusan Das, B. A Comprehensive Review on the Use of Hemp in Concrete. Constr. Build. Mater. 2022, 341, 127857. [Google Scholar] [CrossRef]
- Collet, F.; Pretot, S. Thermal Conductivity of Hemp Concretes: Variation with Formulation, Density and Water Content. Constr. Build. Mater. 2014, 65, 612–619. [Google Scholar] [CrossRef]
- Williams, J.; Lawrence, M.; Walker, P. The Influence of Constituents on the Properties of the Bio-Aggregate Composite Hemp-Lime. Constr. Build. Mater. 2018, 159, 9–17. [Google Scholar] [CrossRef]
- Amziane, S.; Collet, F. Bio-Aggregates Based Building Materials; Springer: Dordrecht, The Netherlands, 2017; ISBN 9789402410303. [Google Scholar]
- Bourdot, A.; Moussa, T.; Gacoin, A.; Maalouf, C.; Vazquez, P.; Thomachot-Schneider, C.; Bliard, C.; Merabtine, A.; Lachi, M.; Douzane, O.; et al. Characterization of a Hemp-Based Agro-Material: Influence of Starch Ratio and Hemp Shive Size on Physical, Mechanical, and Hygrothermal Properties. Energy Build. 2017, 153, 151–164. [Google Scholar] [CrossRef]
- Niyigena, C.; Amziane, S.; Chateauneuf, A. Multicriteria Analysis Demonstrating the Impact of Shiv on the Properties of Hemp Concrete. Constr. Build. Mater. 2018, 160, 211–222. [Google Scholar] [CrossRef]
- Hussain, A.; Calabria-Holley, J.; Lawrence, M.; Jiang, Y. Hygrothermal and Mechanical Characterisation of Novel Hemp Shiv Based Thermal Insulation Composites. Constr. Build. Mater. 2019, 212, 561–568. [Google Scholar] [CrossRef]
- Brzyski, P.; Gładecki, M.; Rumińska, M.; Pietrak, K.; Kubiś, M.; Łapka, P. Influence of Hemp Shives Size on Hygro-Thermal and Mechanical Properties of a Hemp-Lime Composite. Materials 2020, 13, 5383. [Google Scholar] [CrossRef]
- Arnaud, L.; Gourlay, E. Experimental Study of Parameters Influencing Mechanical Properties of Hemp Concretes. Constr. Build. Mater. 2012, 28, 50–56. [Google Scholar] [CrossRef]
- Stevulova, N.; Kidalova, L.; Cigasova, J.; Junak, J.; Sicakova, A.; Terpakova, E. Lightweight Composites Containing Hemp Hurds. Procedia Eng. 2013, 65, 69–74. [Google Scholar] [CrossRef]
- Pundiene, I.; Vitola, L.; Pranckeviciene, J.; Bajare, D. Hemp Shive-Based Bio-Composites Bounded by Potato Starch Binder: The Roles of Aggregate Particle Size and Aspect Ratio. J. Ecol. Eng. 2022, 23, 220–234. [Google Scholar] [CrossRef] [PubMed]
- Diquélou, Y.; Gourlay, E.; Arnaud, L.; Kurek, B. Impact of Hemp Shiv on Cement Setting and Hardening: Influence of the Extracted Components from the Aggregates and Study of the Interfaces with the Inorganic Matrix. Cem. Concr. Compos. 2015, 55, 112–121. [Google Scholar] [CrossRef]
- Laborel-Préneron, A.; Magniont, C.; Aubert, J. Characterization of Barley Straw, Hemp Shiv and Corn Cob as Resources for Bioaggregate Based Building Materials. Waste Biomass Valorization 2018, 9, 1095–1112. [Google Scholar] [CrossRef]
- Sofiane, A.; Laurent, A. Bio-Aggregate-Based Building Materials: Applications to Hemp Concretes; John Wiley & Sons, Incorporated: Hoboken, NJ, USA, 2013. [Google Scholar]
- Page, J.; Sonebi, M.; Amziane, S. Design and Multi-Physical Properties of a New Hybrid Hemp-Flax Composite Material. Constr. Build. Mater. 2017, 139, 502–512. [Google Scholar] [CrossRef]
- Sutton, A.; Black, D.; Pete, W. Hemp Lime: An Introduction to Low-Impact Building Materials; BRE Information PSaper IP 14/11; IHS BRE Press: Watford, UK, 2011; pp. 1–6. [Google Scholar]
- Amziane, S.; Arnaud, L. Formulation and Implementation. In Bio-Aggregate-Based Building Materials: Applications to Hemp Concretes; Springer: Dordrecht, The Netherlands, 2013; pp. 59–92. [Google Scholar]
- Sinka, M.; Van Den Heede, P.; De Belie, N.; Bajare, D.; Sahmenko, G. Comparative Life Cycle Assessment of Magnesium Binders as an Alternative for Hemp Concrete. Resour. Conserv. Recycl. 2018, 133, 288–299. [Google Scholar] [CrossRef]
- Brzyski, P. Hemp-Lime Composite as Wall Material Meeting the Requirements for Sustainable Development in Construction Industry; Lublin University of Technology: Lublin, Poland, 2018. [Google Scholar]
- Brzyski, P. Kompozyt Wapienno-Konopny Jako Materiał Ścienny Spełniający Wymagania Zrównoważonego Rozwoju w Budownictwie; Wydawnictwo Politechniki Lubelskiej: Lublin, Poland, 2022. [Google Scholar]
- Tronet, P.; Lecompte, T.; Picandet, V.; Baley, C. Study of Lime Hemp Composite Precasting by Compaction of Fresh Mix—An Instrumented Die to Measure Friction and Stress State. Powder Technol. 2014, 258, 285–296. [Google Scholar] [CrossRef]
- Colinart, T.; Glouannec, P.; Chauvelon, P. Influence of the Setting Process and the Formulation on the Drying of Hemp Concrete. Constr. Build. Mater. 2012, 30, 372–380. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Picandet, V.; Carre, P.; Lecompte, T.; Amziane, S.; Baley, C. Effect of Compaction on Mechanical and Thermal Properties of Hemp Concrete. Eur. J. Environ. Civ. Eng. 2010, 14, 545–560. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Picandet, V.; Amziane, S.; Baley, C.; Vincent, T.N.; Sofiane, P. Influence of Compactness and Hemp Hurd Characteristics on the Mechanical Properties of Lime and Hemp Concrete. Eur. J. Environ. Civ. Eng. 2010, 13, 1039–1050. [Google Scholar] [CrossRef]
- Williams, J.; Lawrence, M.; Walker, P. The Influence of the Casting Process on the Internal Structure and Physical Properties of Hemp-Lime. Mater. Struct. 2017, 50, 108. [Google Scholar] [CrossRef]
- De Bruijn, P.B.; Jeppsson, K.H.; Sandin, K.; Nilsson, C. Mechanical Properties of Lime-Hemp Concrete Containing Shives and Fibres. Biosyst. Eng. 2009, 103, 474–479. [Google Scholar] [CrossRef]
- Hussain, A.; Calabria-Holley, J.; Lawrence, M.; Jiang, Y. Resilient Hemp Shiv Aggregates with Engineered Hygroscopic Properties for the Building Industry. Constr. Build. Mater. 2019, 212, 247–253. [Google Scholar] [CrossRef]
- Construire en Chanvre. Référentiel Label Qualité “Chanvre Bâtiment”; Construire en Chanvre: Paris, France, 2017; pp. 1–16. Available online: https://www.construire-en-chanvre.fr/documents/pdf/documentation/ReferentielQualiteChanvreBatimentCenC-ReglesPro_2017.pdf (accessed on 20 July 2025).
- Rahim, M.; Douzane, O.; Le, A.D.T.; Promis, G.; Langlet, T. Characterization and Comparison of Hygric Properties of Rape Straw Concrete and Hemp Concrete. Constr. Build. Mater. 2016, 102, 679–687. [Google Scholar] [CrossRef]
- Dhakal, U.; Berardi, U.; Gorgolewski, M.; Richman, R. Hygrothermal Performance of Hempcrete for Ontario (Canada) Buildings. J. Clean. Prod. 2017, 142, 3655–3664. [Google Scholar] [CrossRef]
- Horszczaruk, E.; Strzałkowski, J.; Głowacka, A.; Paszkiewicz, O.; Markowska-Szczupak, A. Investigation of Durability Properties for Lightweight Structural Concrete with Hemp Shives Instead of Aggregate. Appl. Sci. 2023, 13, 8447. [Google Scholar] [CrossRef]
- Zerrouki, R.; Benazzouk, A.; Courty, M.; Ben Hamed, H. Potential Use of Metakaolin as a Partial Replacement of Preformulated Lime Binder to Improve Durability of Hemp Concrete under Cyclic Wetting/Drying Aging. Constr. Build. Mater. 2022, 333, 127389. [Google Scholar] [CrossRef]
- Abdellatef, Y.; Khan, M.A.; Khan, A.; Alam, M.I.; Kavgic, M. Mechanical, Thermal, and Moisture Buffering Properties of Novel Insulating Hemp-Lime Composite Building Materials. Materials 2020, 13, 5000. [Google Scholar] [CrossRef]
- Sheridan, J.; Sonebi, M.; Taylor, S.; Amziane, S. The Effect of a Polyacrylic Acid Viscosity Modifying Agent on the Mechanical, Thermal and Transport Properties of Hemp and Rapeseed Straw Concrete. Constr. Build. Mater. 2020, 235, 117536. [Google Scholar] [CrossRef]
- Marceau, S.; Glé, P.; Guéguen-Minerbe, M.; Gourlay, E.; Moscardelli, S.; Nour, I.; Amziane, S. Influence of Accelerated Aging on the Properties of Hemp Concretes. Constr. Build. Mater. 2017, 139, 524–530. [Google Scholar] [CrossRef]
- Bennai, F.; Issaadi, N.; Abahri, K.; Belarbi, R.; Tahakourt, A. Experimental Characterization of Thermal and Hygric Properties of Hemp Concrete with Consideration of the Material Age Evolution. Heat Mass Transf. 2018, 54, 1189–1197. [Google Scholar] [CrossRef]
- Niyigena, C.; Amziane, S.; Chateauneuf, A.; Arnaud, L.; Bessette, L.; Collet, F.; Lanos, C.; Escadeillas, G.; Lawrence, M.; Magniont, C.; et al. Variability of the Mechanical Properties of Hemp Concrete. Mater. Today Commun. 2016, 7, 122–133. [Google Scholar] [CrossRef]
- De Bruijn, P.; Johansson, P. Moisture Fixation and Thermal Properties of Lime-Hemp Concrete. Constr. Build. Mater. 2013, 47, 1235–1242. [Google Scholar] [CrossRef]
- Williams, J.; Lawrence, M.; Walker, P. A Method for the Assessment of the Internal Structure of Bio-Aggregate Concretes. Constr. Build. Mater. 2016, 116, 45–51. [Google Scholar] [CrossRef]
- Bourdot, A.; Magniont, C.; Lagouin, M.; Niyigena, C.; Evon, P.; Amziane, S. Impact of Bio-Aggregates Properties on the Chemical Interactions with Mineral Binder, Application to Vegetal Concrete. J. Adv. Concr. Technol. 2019, 17, 542–558. [Google Scholar] [CrossRef]
- Amziane, S.; Collet, F.; Lawrence, M.; Magniont, C.; Picandet, V.; Sonebi, M. Recommendation of the RILEM TC 236-BBM: Characterisation Testing of Hemp Shiv to Determine the Initial Water Content, Water Absorption, Dry Density, Particle Size Distribution and Thermal Conductivity. Mater. Struct. 2017, 50, 167. [Google Scholar] [CrossRef]
- Walker, R.; Pavía, S. Moisture Transfer and Thermal Properties of Hemp–Lime Concretes. Constr. Build. Mater. 2014, 64, 270–276. [Google Scholar] [CrossRef]
- Walker, R.; Pavia, S.; Mitchell, R. Mechanical Properties and Durability of Hemp-Lime Concretes. Constr. Build. Mater. 2014, 61, 340–348. [Google Scholar] [CrossRef]
- Elfordy, S.; Lucas, F.; Tancret, F. Mechanical and Thermal Properties of Lime and Hemp Concrete (“Hempcrete”) Manufactured by a Projection Process. Constr. Build. Mater. 2008, 22, 2116–2123. [Google Scholar] [CrossRef]
- Kinnane, O.; Reilly, A.; Grimes, J.; Pavia, S.; Walker, R. Acoustic Absorption of Hemp-Lime Construction. Constr. Build. Mater. 2016, 122, 674–682. [Google Scholar] [CrossRef]
- Delannoy, G.; Marceau, S.; Glé, P.; Gourlay, E.; Guéguen-Minerbe, M.; Diafi, D.; Nour, I.; Amziane, S. Influence of Binder on the Multiscale Properties of Hemp Concretes. Eur. J. Environ. Civ. Eng. 2018, 23, 609–625. [Google Scholar] [CrossRef]
- Abdellatef, Y.; Kavgic, M. Thermal, Microstructural and Numerical Analysis of Hempcrete-Microencapsulated Phase Change Material Composites. Appl. Therm. Eng. 2020, 178, 115520. [Google Scholar] [CrossRef]
- Sheridan, J.; Sonebi, M.; Taylor, S.; Amziane, S. Effect of Linseed Oil and Metakaolin on the Mechanical, Thermal and Transport Properties of Hemp-Lime Concrete. Constr. Build. Mater. 2017, 145, 537–548. [Google Scholar] [CrossRef]
- Cassagnabère, F.; Diederich, P.; Mouret, M.; Escadeillas, G.; Lachemi, M. Impact of Metakaolin Characteristics on the Rheological Properties of Mortar in the Fresh State. Cem. Concr. Compos. 2013, 37, 95–107. [Google Scholar] [CrossRef]
- De Bruijn, P.; Jeppsson, K.-H.; Sandin, K.; Nilsson, C. Mechanical Properties, Water Sorption and Frost Resistance of Lime-Hemp Cementitious Composites. Constr. Build. Mater. 2013, 47, 1689–1699. [Google Scholar] [CrossRef]
- Piątkiewicz, W.; Narloch, P.; Pietruszka, B. Influence of Hemp-Lime Composite Composition on Its Mechanical and Physical Properties. Arch. Civ. Eng. 2020, 66, 485–503. [Google Scholar] [CrossRef]
- Khan, B.A.; Wang, J.; Warner, P.; Wang, H. Antibacterial Properties of Hemp Hurd Powder against Escherichia coli. J. Appl. Polym. Sci. 2015, 132, 41588. [Google Scholar] [CrossRef]
- Narloch, P.; Piątkiewicz, W.; Anysz, H.; Wólczyńska, Z.; Mańczak, J. Digital Image-Based Characterization of Particle Size and Shape Distribution in Industrial Hemp Shives. Zenodo 2025. [Google Scholar] [CrossRef]
- Brzyski, P.; Suchorab, Z. Capillary Uptake Monitoring in Lime-Hemp-Perlite Composite Using the Time Domain Reflectometry Sensing Technique for Moisture Detection in Building Composites. Materials 2020, 13, 1677. [Google Scholar] [CrossRef]
- Rahim, M.; Douzane, O.; Tran Le, A.D.; Promis, G.; Langlet, T. Experimental Investigation of Hygrothermal Behavior of Two Bio-Based Building Envelopes. Energy Build. 2017, 139, 608–615. [Google Scholar] [CrossRef]
- Rahim, M.; Douzane, O.; Le, A.D.T.; Promis, G.; Laidoudi, B.; Crigny, A.; Dupre, B.; Langlet, T. Characterization of Flax Lime and Hemp Lime Concretes: Hygric Properties and Moisture Buffer Capacity. Energy Build. 2015, 88, 91–99. [Google Scholar] [CrossRef]
- Rahim, M.; Douzane, O.; Tran Le, A.D.; Langlet, T. Effect of Moisture and Temperature on Thermal Properties of Three Bio-Based Materials. Constr. Build. Mater. 2016, 111, 119–127. [Google Scholar] [CrossRef]
- Hirst, E. Characterisation of Hemp-Lime as a Composite Building Material; University of Bath: Bath, UK, 2013. [Google Scholar]
Component (% of Dry Mass) | Hemp Shives from France | Hemp Shives from Germany | Hemp Shives from the United Kingdom |
---|---|---|---|
Cellulose | 47.3 | 45.6 | 49.2 |
Hemicellulose | 18.3 | 17.8 | 21 |
Lignin | 21.8 | 23.3 | 21.9 |
Extractives | 6 | 5.1 | 6.2 |
Others (including ash) | 10.3 | 10.7 | 5.1 |
Method | Reference |
---|---|
Dried and dedusted hemp shives were sieved into granulometric groups: 0.5–2 mm, 2–4 mm, 4–8 mm, and 8–16 mm. | [32] |
A 10 g sample of hemp shives was photographed using a digital camera. After applying a threshold filter and creating a binary image, particle length and width were measured using ImageJ. The width/length ratio was reported. | [33] |
Dried 100 g of hemp shives were sieved, and the percentage of particles smaller than 2.36 mm (87%) and in the range of 2.36–6.3 mm (10%) was determined according to ASTM C136–06. | [34] |
According to the RILEM TC 236-BBM protocol, a 3–6 g sample of oven-dried hemp shives (containing at least 2000 particles) is evenly spread on a scanner to prevent particle overlap. An 8-bit grayscale image with 600 dpi resolution is captured and analyzed using ImageJ software. The equivalent diameter and elongation are reported. | [16,35,36,41] |
Sieve analysis and 2D image analysis were performed on a 3 g sample using ImageJ software. The equivalent diameter was reported. | [38] |
A 112 g sample was sieved for 20 min using sieves with mesh sizes of 8, 4, 2, 1, and 0.5 mm. Subsequently, a 14.6 g sub-sample was manually sorted using a caliper into the following size fractions: <8 mm, 8–16 mm, 16–32 mm, and >32 mm. | [39] |
At least 1000 particles from each sample—10 g for coarse aggregate and 5 g for fine aggregate—were measured using an electronic caliper. Both length and width of the hemp shive fragments were recorded. | [9] |
The length and width of the particles were measured using 2D image analysis on a 20 g sample. | [40] |
A 20 g sample was scanned in batches against a blue background at a resolution of 1200 dpi. All images were processed using ImageJ software. To estimate the aggregate volume, it was assumed that the average particle thickness is proportional to its width. The width/length ratio was reported. | [4] |
Samples of 3 g for each type of hemp shive were scanned and analyzed using ImageJ software. The elongation of the particles was reported. | [7] |
Hemp Shive Group | Bulk Density [kg/m3] | Number of Particles | Mean Feret Diameter [mm] | Mean Minimum Feret Diameter [mm] | Mean Equivalent Diameter (ED) [mm] | Mean Area [mm2] | Mean Circularity [-] | Mean Elongation [-] |
---|---|---|---|---|---|---|---|---|
Fine | 108.6 | 19,841 | 9.26 | 3.15 | 4.47 | 21.33 | 0.48 | 3.09 |
Medium | 103.8 | 17,114 | 10.02 | 3.42 | 4.83 | 25.52 | 0.49 | 3.10 |
Coarse | 97.5 | 10,536 | 12.34 | 4.01 | 5.79 | 36.49 | 0.45 | 3.33 |
Series | Mixtures | Hemp Shives | Binder | Water |
---|---|---|---|---|
HL.1 | HL1.F HL1.M HL1.C | 1 | 2 | 2.74 |
HL.2 | HL2.F HL2.M HL2.C | 1 | 2 | 3.14 |
HL3 | HL3.F HL3.M HL4.C | 1 | 3 | 3.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piątkiewicz, W.; Narloch, P.; Wólczyńska, Z.; Mańczak, J. Effect of Hemp Shive Granulometry on the Thermal Conductivity of Hemp–Lime Composites. Materials 2025, 18, 3458. https://doi.org/10.3390/ma18153458
Piątkiewicz W, Narloch P, Wólczyńska Z, Mańczak J. Effect of Hemp Shive Granulometry on the Thermal Conductivity of Hemp–Lime Composites. Materials. 2025; 18(15):3458. https://doi.org/10.3390/ma18153458
Chicago/Turabian StylePiątkiewicz, Wojciech, Piotr Narloch, Zuzanna Wólczyńska, and Joanna Mańczak. 2025. "Effect of Hemp Shive Granulometry on the Thermal Conductivity of Hemp–Lime Composites" Materials 18, no. 15: 3458. https://doi.org/10.3390/ma18153458
APA StylePiątkiewicz, W., Narloch, P., Wólczyńska, Z., & Mańczak, J. (2025). Effect of Hemp Shive Granulometry on the Thermal Conductivity of Hemp–Lime Composites. Materials, 18(15), 3458. https://doi.org/10.3390/ma18153458