A Review on Passivation Strategies for Germanium-Based Thermophotovoltaic Devices
Abstract
1. Introduction
2. Characterization of the Surface Passivation
3. Germanium Surface Passivation Techniques
- Reduce the density of defects (Dit) present at the semiconductor surface through chemical passivation of the interface (Figure 2a). In this way, different species are used to complete the dangling bonds found at the limit of the semiconductor lattice, and the most common are H−, S−, Cl− and N− [51,52,53].
- Reduce the number of minority carriers reaching the semiconductor surface, effectively reducing the rate of the recombination processes, through the inclusion of an internal electric field under the passivated surface that repels the charge associated with the corresponding minority carrier [51,53]. This effect can be achieved by either including a heavily doped layer in the surface region (usually referred to as back surface field or BSF) or by including a passivation layer with a fixed charge (Qf), inducing band bending near the surface (usually referred to as field-effect passivation) (Figure 2b).
3.1. Germanium Oxides
Substrate | Cleaning | Passivation | Seff [cm/s] | Reference |
---|---|---|---|---|
p-Ge (1–3 Ω·cm) 60–130 μm | Ex situ: Acetone + DI H2O + HF | GeO2 by thermal oxidation at 500 °C | 70 | Chen 2013 [58] |
3.2. Aluminum Oxides
Substrate | Cleaning | Passivation | Seff [cm/s] | Reference |
---|---|---|---|---|
p-Ge (0.2 Ω·cm) 400 μm | Ex situ: HF (90″) + DI H2O | ALD Al2O3 Annealing 425 °C (10″) under N2 | 170 | Berghuis 2021 [60] |
p-Ge (1–3 Ω·cm) 150–304 μm | Ex situ: HF (90″) + DI H2O | PECVD a-Si:H/PEALD Al2O3 Annealing 325 °C (10″) under N2 | 2.7 | Berghuis 2021 [61] |
n-Ge (18–25 Ω·cm) 185 μm | Ex situ: HF (90″) + DI H2O | ALD Al2O3 Annealing 400 °C (30″) under FG | 11 | Isometsä 2021 [62] |
n-Ge (18–25 Ω·cm) 185 μm | Ex situ: HCl (90″) | ALD Al2O3 Annealing 400 °C (30″) under N2 | 6.55 | Isometsä 2021 [62] |
p-Ge (1–3 Ω·cm) 150 μm | Ex situ: HF (90″) + DI H2O In situ: O2 plasma | PECVD POx/PEALD Al2O3 Annealing 250 °C (10″) under N2 | 8.9 | Theeuwes 2023 [63] |
p-Ge (3 Ω·cm) 140 μm | Ex situ: H3PO4 (15′) + HCl (60″) + DI H2O | e-beam Al2O3 Annealing 400 °C (5″) under N2 | 1000 * | Martín 2023 [64] |
3.3. Silicon-Based Passivation
Substrate | Cleaning | Passivation | Seff [cm/s] | Reference |
---|---|---|---|---|
p-Ge (1.1 Ω·cm) 500 μm | Ex situ: H2SO4 (10″) + H3PO4 (10′) + DI H2O In situ: H2 plasma | PECVD SiNx Annealing 400 °C (30″) under N2 | ~55 | Fernández 2010 [68] |
n-Ge (5–15 Ω·cm) 175 μm | Ex situ: HCl (90″) | PECVD SiNx Annealing 400 °C (30″) under FG | 58 | Liu 2023 [77] |
n-Ge (5–15 Ω·cm) 175 μm | Ex situ: HCl (90″) | PECVD SiNx/PEALD Al2O3 Annealing 400 °C (30″) under FG | 17.5 | Liu 2023 [77] |
p-Ge (1.1 Ω·cm) 150–500 μm | Ex situ: H2SO4 (10″) + H3PO4 (10′) + DI H2O In situ: H2 plasma | PECVD a-SixC1−x:H Annealing 400 °C (30″) under N2 | 45 | Fernández 2010 [68] |
p-Ge (0.2 Ω·cm) 250 μm | Ex situ: H2SO4 (10″) + H3PO4 (10′) + DI H2O In situ: H2 plasma | PECVD a-SixC1−x:H Annealing 400 °C (30″) under N2 | 80 | Fernández 2010 [68] |
p-Ge (0.03 Ω·cm) 250 μm | Ex situ: H2SO4 (10″) + H3PO4 (10′) + DI H2O In situ: H2 plasma | PECVD a-SixC1−x:H Annealing 400 °C (30″) under N2 | 400 | Fernández 2010 [68] |
p-Ge (0.03 Ω·cm) 150 μm | Ex situ: H2SO4 (10″) + H3PO4 (10′) + DI H2O In situ: H2 plasma | PECVD a-SixC1−x:H Annealing 400 °C (30″) under N2 | 1000 * | Fernández 2010 [68] |
p-Ge (0.2 Ω·cm) 150–500 μm | In situ: H2/Ar plasma | PECVD a-SixC1−x:H/a-SiC:H Annealing 400 °C (15″) | 17 | Janz 2017 [69] |
p-Ge (0.1 Ω·cm) 150–500 μm | In situ: H2/Ar plasma | PECVD a-SixC1−x:H/a-SiC:H Annealing 400 °C (30″) | 30 | Janz 2017 [69] |
p-Ge (0.06 Ω·cm) 150–500 μm | In situ: H2/Ar plasma | PECVD a-SixC1−x:H/a-SiC:H Annealing 400 °C (30″) | 53 | Janz 2017 [69] |
p-Ge (0.2 Ω·cm) 150 μm | In situ: H2/Ar plasma | PECVD a-SixC1−x:H/a-SiC:H Annealing 400 °C (30″) | 900 * | Weiss 2021 [79] |
n-Ge (1 Ω·cm) 180 μm | Ex situ: HCl (180″) In situ: H2 plasma | PECVD a-SixC1−x:H/a-SiC:H Laser-annealed | 14.5 | Jimenez 2022 [70] |
p-Ge (1.2 Ω·cm) 175 μm | Ex situ: HCl (180″) In situ: H2 plasma | PECVD a-SiC:H/ALD Al2O3 Annealing 400 °C (10″) under FG | 18 | Martín 2022 [72] |
p-Ge (11 Ω·cm) 160–500 μm | Ex situ: DI H2O (10′) In situ: H2 plasma | PECVD a-Si:H | 17 | Posthuma 2005 [73] |
p-Ge (0.28 Ω·cm) 317 μm | Ex situ: HF + HCl | a-Si:H | ~120 | Konagai 2022 [75] |
p-Ge (1.5 Ω·cm) 145 ± 5 μm | Not disclosed | PECVD a-Si:H/SiO2 Laser-annealed | ~50 | Fernández 2007 [43] |
p-Ge (0.9 Ω·cm) 140 μm | Not disclosed | PECVD a-SixC1−x:H/SiO2 Laser-annealed | 50 | Fernández 2008 [76] |
n-Ge (17–39 Ω·cm) 175 μm | Not disclosed | PEALD SiO2 Annealing 400 °C (30″) under N2 | 10.1 | Liu 2023 [78] |
n-Ge (17–39 Ω·cm) 175 μm | Not disclosed | PEALD SiO2/Al2O3 Annealing 400 °C (30″) under N2 | 1.3 | Liu 2023 [78] |
3.4. Other Techniques
Substrate | Cleaning | Passivation | Seff [cm/s] | Reference |
---|---|---|---|---|
p-Ge (0.1 Ω·cm) 150 μm | Ex situ: H2SO4 (10″) + H3PO4 (10′) + DI H2O In situ: H2 plasma | Al BSF Annealing 380 °C | 1000 * | Fernández 2010 [68] |
p-Ge (3 Ω·cm) 140 μm | Ex situ: H3PO4 (15′) + HCl (60″) + DI H2O | Al BSF Annealing 400 °C (5″) under N2 | 1000 * | Martín 2023 [83] |
p-Ge (0.019 Ω·cm) 160 ± 20 μm | Epi-ready (No extra surface cleaning) | Solution of I2 dissolved in polyvinyl acetate in acetone | ~850 | Poelman 2003 [84] |
i-Ge 500 μm | In situ: Arsine pre-exposition in a MOVPE | MOVPE GaInP | ~10 ** | Fernández 2010 [68] |
3.5. Effect of Surface Passivation on TPV Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fischer, M.; Woodhouse, M.; Brammer, T.; Baliozian, P. International Technology Roadmap for Photovoltaics (ITRPV)—2024 Results; VDMA e.V.: Frankfurt am Main, Germany, 2025; Available online: https://www.vdma.eu/en-GB/international-technology-roadmap-photovoltaic (accessed on 15 June 2025).
- Vicari Stefani, B.; Kim, M.; Zhang, Y.; Hallam, B.; Green, M.A.; Bonilla, R.S.; Fell, C.; Wilson, G.J.; Wright, M. Historical Market Projections and the Future of Silicon Solar Cells. Joule 2023, 7, 2684–2699. [Google Scholar] [CrossRef]
- Pastuszak, J.; Węgierek, P. Photovoltaic Cell Generations and Current Research Directions for Their Development. Materials 2022, 15, 5542. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Aierken, A.; Liu, Y.; Zhuang, Y.; Yang, X.; Mo, J.H.; Fan, R.K.; Chen, Q.Y.; Zhang, S.Y.; Huang, Y.M.; et al. A Brief Review of High Efficiency III-V Solar Cells for Space Application. Front. Phys. 2021, 8, 631925. [Google Scholar] [CrossRef]
- Rey-Stolle, I.; Olson, J.M.; Algora, C. Concentrator Multijunction Solar Cells. In Handbook of Concentrator Photovoltaic Technology; Wiley: Hoboken, NJ, USA, 2016; pp. 59–136. ISBN 9781118755655. [Google Scholar]
- Caymax, M.; Eneman, G.; Bellenger, F.; Merckling, C.; Delabie, A.; Wang, G.; Loo, R.; Simoen, E.; Mitard, J.; De Jaeger, B.; et al. Germanium For Advanced CMOS Anno 2009: A SWOT Analysis. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 7–9 December 2009; pp. 1–4. [Google Scholar]
- Kamata, Y. High-k/Ge MOSFETs for Future Nanoelectronics. Mater. Today 2008, 11, 30–38. [Google Scholar] [CrossRef]
- Pillarisetty, R. Academic and Industry Research Progress in Germanium Nanodevices. Nature 2011, 479, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Scappucci, G.; Kloeffel, C.; Zwanenburg, F.A.; Loss, D.; Myronov, M.; Zhang, J.-J.; De Franceschi, S.; Katsaros, G.; Veldhorst, M. The Germanium Quantum Information Route. Nat. Rev. Mater. 2021, 6, 926–943. [Google Scholar] [CrossRef]
- Zeng, L.-H.; Wang, M.-Z.; Hu, H.; Nie, B.; Yu, Y.-Q.; Wu, C.-Y.; Wang, L.; Hu, J.-G.; Xie, C.; Liang, F.-X.; et al. Monolayer Graphene/Germanium Schottky Junction As High-Performance Self-Driven Infrared Light Photodetector. ACS Appl. Mater. Interfaces 2013, 5, 9362–9366. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Liang, R.; Zhang, S.; Liu, Y.; Cheng, W.; Sun, C.; Xu, J. Ultrahigh Sensitive Near-Infrared Photodetectors Based on MoTe2/Germanium Heterostructure. Nano Res. 2020, 13, 127–132. [Google Scholar] [CrossRef]
- Li, H.; Zhang, S.; Zhang, Z.; Zuo, S.; Zhang, S.; Sun, Y.; Zhao, D.; Zhang, Z. Silicon Waveguide Integrated with Germanium Photodetector for a Photonic-Integrated Fbg Interrogator. Nanomaterials 2020, 10, 1683. [Google Scholar] [CrossRef] [PubMed]
- Martín, P.; Orejuela, V.; Cano, A.; García, I.; Luque, A.; Rey-Stolle, I. Cost-Effective 23.2% Efficient Germanium Thermophotovoltaic Converters for Thermal Batteries. Cell Rep. Phys. Sci. 2024, 5, 102231. [Google Scholar] [CrossRef]
- Martín, P.; Cano, A.; García, I.; Rey-Stolle, I. Review of Intrinsic vs. Extrinsic Recombination in Germanium Thermophotovoltaic Converters. Sol. Energy Mater. Sol. Cells 2025, 291, 113741. [Google Scholar] [CrossRef]
- Rappaport, P. The Photovoltaic Effect and Its Utilization. Sol. Energy 1959, 3, 8–18. [Google Scholar] [CrossRef]
- Bauer, T. Thermophotovoltaics: Basic Principles and Critical Aspects of System Design; Springer: Berlin/Heidelberg, Germany, 2011; Volume 7, ISBN 9783642199646. [Google Scholar]
- Fraas, L.; Malfa, E.; Wuenning, J.G.; Kovacik, G.; Astle, C. Thermophotovoltaics for Combined Heat and Power Using Low NOx Gas Fired Radiant Tube Burners. AIP Conf. Proc. 2003, 653, 61–70. [Google Scholar] [CrossRef]
- Jiang, D.; Yang, W.; Tang, A. Development of a High-Temperature and High-Uniformity Micro Planar Combustor for Thermophotovoltaics Application. Energy Convers. Manag. 2015, 103, 359–365. [Google Scholar] [CrossRef]
- Yang, W.M.; Chua, K.J.; Pan, J.F.; Jiang, D.Y.; An, H. Development of Micro-Thermophotovoltaic Power Generator with Heat Recuperation. Energy Convers. Manag. 2014, 78, 81–87. [Google Scholar] [CrossRef]
- Mustafa, K.F.; Abdullah, S.; Abdullah, M.Z.; Sopian, K. A Review of Combustion-Driven Thermoelectric (TE) and Thermophotovoltaic (TPV) Power Systems. Renew. Sustain. Energy Rev. 2017, 71, 572–584. [Google Scholar] [CrossRef]
- Datas, A.; Martí, A. Thermophotovoltaic Energy in Space Applications: Review and Future Potential. Sol. Energy Mater. Sol. Cells 2017, 161, 285–296. [Google Scholar] [CrossRef]
- Ungaro, C.; Gray, S.K.; Gupta, M.C. Solar Thermophotovoltaic System Using Nanostructures. Opt. Express 2015, 23, A1149–A1156. [Google Scholar] [CrossRef] [PubMed]
- Bierman, D.M.; Lenert, A.; Chan, W.R.; Bhatia, B.; Celanović, I.; Soljačić, M.; Wang, E.N. Enhanced Photovoltaic Energy Conversion Using Thermally Based Spectral Shaping. Nat. Energy 2016, 1, 16068. [Google Scholar] [CrossRef]
- Bianchi, M.; Ferrari, C.; Melino, F.; Peretto, A. Feasibility Study of a Thermo-Photo-Voltaic System for CHP Application in Residential Buildings. Appl. Energy 2012, 97, 704–713. [Google Scholar] [CrossRef]
- Licht, A.; Pfiester, N.; Demeo, D.; Chivers, J.; Vandervelde, T.E. A Review of Advances in Thermophotovoltaics for Power Generation and Waste Heat Harvesting. MRS Adv. 2019, 4, 2271–2282. [Google Scholar] [CrossRef]
- Dias, M.R.S.; Gong, T.; Duncan, M.A.; Ness, S.C.; McCormack, S.J.; Leite, M.S.; Munday, J.N. Photonics Roadmap for Ultra-High-Temperature Thermophotovoltaics. Joule 2023, 7, 2209–2227. [Google Scholar] [CrossRef]
- Burger, T.; Sempere, C.; Roy-Layinde, B.; Lenert, A. Present Efficiencies and Future Opportunities in Thermophotovoltaics. Joule 2020, 4, 1660–1680. [Google Scholar] [CrossRef]
- Datas, A.; Ramos, A.; Martí, A.; del Cañizo, C.; Luque, A. Ultra-High Temperature Latent Heat Energy Storage and Thermophotovoltaic Energy Conversion. Energy 2016, 107, 542–549. [Google Scholar] [CrossRef]
- Amy, C.; Seyf, H.R.; Steiner, M.A.; Friedman, D.J.; Henry, A. Thermal Energy Grid Storage Using Multi-Junction Photovoltaics. Energy Environ. Sci. 2019, 12, 334–343. [Google Scholar] [CrossRef]
- Schulte, K.L.; France, R.M.; Friedman, D.J.; LaPotin, A.D.; Henry, A.; Steiner, M.A. Inverted Metamorphic AlGaInAs/GaInAs Tandem Thermophotovoltaic Cell Designed for Thermal Energy Grid Storage Application. J. Appl. Phys. 2020, 128, 143103. [Google Scholar] [CrossRef]
- LDES Council; McKinsey & Company. Long Duration Energy Storage Council: 2024 Annual Report. 2024. Available online: https://ldescouncil.com/annual-report/ (accessed on 15 June 2025).
- Ziegler, M.S.; Mueller, J.M.; Pereira, G.D.; Song, J.; Ferrara, M.; Chiang, Y.M.; Trancik, J.E. Storage Requirements and Costs of Shaping Renewable Energy Toward Grid Decarbonization. Joule 2019, 3, 2134–2153. [Google Scholar] [CrossRef]
- Roy-Layinde, B.; Lim, J.; Arneson, C.; Forrest, S.R.; Lenert, A. High-Efficiency Air-Bridge Thermophotovoltaic Cells. Joule 2024, 8, 2135–2145. [Google Scholar] [CrossRef]
- LaPotin, A.; Schulte, K.L.; Steiner, M.A.; Buznitsky, K.; Kelsall, C.C.; Friedman, D.J.; Tervo, E.J.; France, R.M.; Young, M.R.; Rohskopf, A.; et al. Thermophotovoltaic Efficiency of 40%. Nature 2022, 604, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Tervo, E.J.; France, R.M.; Friedman, D.J.; Arulanandam, M.K.; King, R.R.; Narayan, T.C.; Luciano, C.; Nizamian, D.P.; Johnson, B.A.; Young, A.R.; et al. Efficient and Scalable GaInAs Thermophotovoltaic Devices. Joule 2022, 6, 2566–2584. [Google Scholar] [CrossRef]
- Schulte, K.L.; Friedman, D.J.; Dada, T.; Guthrey, H.L.; da Costa, E.W.; Tervo, E.J.; France, R.M.; Geisz, J.F.; Steiner, M.A. Sub-0.6 EV Inverted Metamorphic GaInAs Cells Grown on InP and GaAs Substrates for Thermophotovoltaics and Laser Power Conversion. AIP Conf. Proc. 2023, 14, 2302267. [Google Scholar] [CrossRef]
- King, R.R.; Law, D.C.; Edmondson, K.M.; Fetzer, C.M.; Kinsey, G.S.; Yoon, H.; Sherif, R.A.; Karam, N.H. 40% Efficient Metamorphic GaInP/GaInAs/Ge Multijunction Solar Cells. Appl. Phys. Lett. 2007, 90, 183516. [Google Scholar] [CrossRef]
- Kalyuzhnyy, N.A.; Gudovskikh, A.S.; Evstropov, V.V.; Lantratov, V.M.; Mintairov, S.A.; Timoshina, N.K.; Shvarts, M.Z.; Andreev, V.M. Germanium Subcells for Multijunction GaInP/GaInAs/Ge Solar Cells. Semiconductors 2010, 44, 1520–1528. [Google Scholar] [CrossRef]
- Posthuma, N. Highly Efficient Thin Germanium Bottom Cells for Mechanically Stacked Photovoltaic Devices. Ph.D. Thesis, Katholieke Universiteit Leuven—Faculteit Toegepaste Wetenschappen, Leuven, Belgium, 2006. [Google Scholar]
- Wedlockt, B.D. Thermo-Photo-Voltaic Energy Conversion. Proc. IEEE 1963, 51, 694–698. [Google Scholar] [CrossRef]
- Khvostikov, V.P.; Rumyantsev, V.D.; Khvostikova, O.A.; Shvarts, M.Z.; Gazaryan, P.Y.; Sorokina, S.V.; Kaluzhniy, N.A.; Andreev, V.M. Thermophotovoltaic Cells Based on Low-Bandgap Compounds. AIP Conf. Proc. 2004, 738, 436–444. [Google Scholar] [CrossRef]
- Nagashima, T.; Okumura, K.; Yamaguchi, M. A Germanium Back Contact Type Cell. AIP Conf. Proc. 2007, 890, 174–181. [Google Scholar] [CrossRef]
- Fernández, J.; Dimroth, F.; Oliva, E.; Hermle, M.; Bett, A.W. Back-Surface Optimization of Germanium TPV Cells. AIP Conf. Proc. 2007, 890, 190–197. [Google Scholar] [CrossRef]
- Gamel, M.M.A.; Jern, K.P.; Rashid, W.E.S.W.A.; Lee, H.J.; Hannan, M.A.; Jamaludin, M.Z. Bin Performance of Ge and In0.53Ga0.47as Thermophotovoltaic Cells under Different Spectral Irradiances. IEEE Access 2021, 9, 37091–37102. [Google Scholar] [CrossRef]
- Kimmerle, A.; Greulich, J.; Wolf, A. Carrier-Diffusion Corrected J0-Analysis of Charge Carrier Lifetime Measurements for Increased Consistency. Sol. Energy Mater. Sol. Cells 2015, 142, 116–122. [Google Scholar] [CrossRef]
- Sinton, R.A.; Cuevas, A. Contactless Determination of Current-Voltage Characteristics and Minority-Carrier Lifetimes in Semiconductors from Quasi-Steady-State Photoconductance Data. Appl. Phys. Lett. 1996, 69, 2510–2512. [Google Scholar] [CrossRef]
- Martín, I.; Alcañiz, A.; Jimenez, A.; Lopez, G.; Del Cañizo, C.; Datas, A. Application of Quasi-Steady-State Photoconductance Technique to Lifetime Measurements on Crystalline Germanium Substrates. IEEE J. Photovolt. 2020, 10, 1068–1075. [Google Scholar] [CrossRef]
- Luke, K.L.; Cheng, L.J. Analysis of the Interaction of a Laser Pulse with a Silicon Wafer: Determination of Bulk Lifetime and Surface Recombination Velocity. J. Appl. Phys. 1987, 61, 2282–2293. [Google Scholar] [CrossRef]
- Cuevas, A.; Macdonald, D. Measuring and Interpreting the Lifetime of Silicon Wafers. Sol. Energy 2004, 76, 255–262. [Google Scholar] [CrossRef]
- Berghuis, W.J.H.; Helmes, M.; Melskens, J.; Theeuwes, R.J.; Kessels, W.M.M.; Macco, B. Extracting Surface Recombination Parameters of Germanium-Dielectric Interfaces by Corona-Lifetime Experiments. J. Appl. Phys. 2022, 131, 195301. [Google Scholar] [CrossRef]
- Bonilla, R.S.; Hoex, B.; Hamer, P.; Wilshaw, P.R. Dielectric Surface Passivation for Silicon Solar Cells: A Review. Phys. Status Solidi (A) Appl. Mater. Sci. 2017, 214, 1700293. [Google Scholar] [CrossRef]
- Onsia, B.; Conard, T.; De Gendt, S.; Heyns, M.; Hoflijk, I.; Mertens, P.; Meuris, M.; Raskin, G.; Sioncke, S.; Teerlinck, I.; et al. A Study of the Influence of Typical Wet Chemical Treatments on the Germanium Wafer Surface. Solid State Phenom. 2005, 103–104, 27–30. [Google Scholar] [CrossRef]
- Balaji, N.; Hussain, S.Q.; Park, C.; Raja, J.; Yi, J.; Jeyakumar, R. Surface Passivation Schemes for High-Efficiency c-Si Solar Cells—A Review. Trans. Electr. Electron. Mater. 2015, 16, 227–233. [Google Scholar] [CrossRef]
- Ponath, P.; Posadas, A.B.; Demkov, A.A. Ge(001) Surface Cleaning Methods for Device Integration. Appl. Phys. Rev. 2017, 4, 021308. [Google Scholar] [CrossRef]
- Matsubara, H.; Sasada, T.; Takenaka, M.; Takagi, S. Evidence of Low Interface Trap Density in Ge O2 Ge Metal-Oxide- Semiconductor Structures Fabricated by Thermal Oxidation. Appl. Phys. Lett. 2008, 93, 032104. [Google Scholar] [CrossRef]
- Delabie, A.; Bellenger, F.; Houssa, M.; Conard, T.; Van Elshocht, S.; Caymax, M.; Heyns, M.; Meuris, M. Effective Electrical Passivation of Ge(100) for High- k Gate Dielectric Layers Using Germanium Oxide. Appl. Phys. Lett. 2007, 91, 082904. [Google Scholar] [CrossRef]
- Fukuda, Y.; Yazaki, Y.; Otani, Y.; Sato, T.; Toyota, H.; Ono, T. Low-Temperature Formation of High-Quality GeO2 Interlayer for High-κ Gate Dielectrics/Ge by Electron-Cyclotron-Resonance Plasma Techniques. IEEE Trans. Electron. Devices 2010, 57, 282–287. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Chang, H.C.; Chi, Y.H.; Huang, C.H.; Liu, C.W. GeO2 Passivation for Low Surface Recombination Velocity on Ge Surface. IEEE Electron Device Lett. 2013, 34, 444–446. [Google Scholar] [CrossRef]
- Bellenger, F.; Merckling, C.; Penaud, J.; Houssa, M.; Caymax, M.; Meuris, M.; De Meyer, K.; Heyns, M.M. Interface Properties Improvement of Ge/Al2O3 and Ge/GeO2/Al2O3 Gate Stacks Using Molecular Beam Deposition. ECS Trans. 2008, 16, 411–422. [Google Scholar] [CrossRef]
- Berghuis, W.J.H.; Melskens, J.; Macco, B.; Theeuwes, R.J.; Verheijen, M.A.; Kessels, W.M.M. Surface Passivation of Germanium by Atomic Layer Deposited Al2O3 Nanolayers. J. Mater. Res. 2021, 36, 571–581. [Google Scholar] [CrossRef]
- Berghuis, W.J.H.; Melskens, J.; Macco, B.; Theeuwes, R.J.; Black, L.E.; Verheijen, M.A.; Kessels, W.M.M. Excellent Surface Passivation of Germanium by A-Si:H/Al2O3 Stacks. J. Appl. Phys. 2021, 130, 135303. [Google Scholar] [CrossRef]
- Isometsä, J.; Fung, T.H.; Pasanen, T.P.; Liu, H.; Yli-Koski, M.; Vähänissi, V.; Savin, H. Achieving Surface Recombination Velocity below 10 Cm/s in n-type Germanium Using ALD Al2O3. APL Mater. 2021, 9, 111113. [Google Scholar] [CrossRef]
- Theeuwes, R.J.; Berghuis, W.J.H.; Macco, B.; Kessels, W.M.M. Excellent Passivation of Germanium Surfaces by POx/Al2O3 Stacks. Appl. Phys. Lett. 2023, 123, 091604. [Google Scholar] [CrossRef]
- Martín, P.; Orejuela, V.; Sanchez-Perez, C.; Garcia, I.; Rey-Stolle, I. Device Architectures for Germanium TPV Cells with Efficiencies over 30%. In Proceedings of the 2023 14th Spanish Conference on Electron Devices (CDE), Valencia, Spain, 6–8 June 2023; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2023. [Google Scholar]
- De Jaeger, B.; Bonzom, R.; Leys, F.; Richard, O.; Steenbergen, J.V.; Winderickx, G.; Moorhem, E.V.; Raskin, G.; Letertre, F.; Billon, T.; et al. Optimisation of a Thin Epitaxial Si Layer as Ge Passivation Layer to Demonstrate Deep Sub-Micron n- and p-FETs on Ge-On-Insulator Substrates. Microelectron. Eng. 2005, 80, 26–29. [Google Scholar] [CrossRef]
- Arimura, H.; Sioncke, S.; Cott, D.; Mitard, J.; Conard, T.; Vanherle, W.; Loo, R.; Favia, P.; Bender, H.; Meersschaut, J.; et al. Ge NFET with High Electron Mobility and Superior PBTI Reliability Enabled by Monolayer-Si Surface Passivation and La-Induced Interface Dipole Formation. In Proceedings of the 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015. [Google Scholar]
- Caymax, M.; Leys, F.; Mitard, J.; Martens, K.; Yang, L.; Pourtois, G.; Vandervorst, W.; Meuris, M.; Loo, R. The Influence of the Epitaxial Growth Process Parameters on Layer Characteristics and Device Performance in Si-Passivated Ge PMOSFETs. J. Electrochem. Soc. 2009, 156, H979. [Google Scholar] [CrossRef]
- Fernández, J. Development of Crystalline Germanium for Thermophotovoltaics and High-Efficiency Multi-Junction Solar Cells. Ph.D. Thesis, Universität Konstanz, Konstanz, Germany, 2010. [Google Scholar]
- Janz, S.; Weiss, C.; Mohr, C.; Kurstjens, R.; Boizot, B.; Fuhrmann, B.; Khorenko, V. Amorphous Silicon Carbide Rear-Side Passivation and Reflector Layer Stacks for Multi-Junction Space Solar Cells Based on Germanium Substrates. In Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC, USA, 25–30 June 2017; pp. 83–87. [Google Scholar]
- Jiménez, A. Development of Laser-Based Diffusion Process in Germanium for the Manufacturing of Low-Cost Thermophotovoltaic Cells. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2022. [Google Scholar]
- Jiménez, A.; Napolitani, E.; Datas, A.; Martín, I.; López, G.; Cabero, M.; Sgarbossa, F.; Milazzo, R.; Carturan, S.M.; de Salvador, D.; et al. N-Type Doping of SiC-Passivated Ge by Pulsed Laser Melting towards the Development of Interdigitated Back Contact Thermophotovoltaic Devices. Sol. Energy Mater. Sol. Cells 2022, 235, 111463. [Google Scholar] [CrossRef]
- Martín, I.; López, G.; Garín, M.; Voz, C.; Ortega, P.; Puigdollers, J. Effect of the Thickness of Amorphous Silicon Carbide Interlayer on the Passivation of C-Ge Surface by Aluminium Oxide Films. Surf. Interfaces 2022, 31, 102070. [Google Scholar] [CrossRef]
- Posthuma, N.E.; Flamand, G.; Geens, W.; Poortmans, J. Surface Passivation for Germanium Photovoltaic Cells. Sol. Energy Mater. Sol. Cells 2005, 88, 37–45. [Google Scholar] [CrossRef]
- Van Der Heide, J.; Posthuma, N.E.; Flamand, G.; Geens, W.; Poortmans, J. Cost-Efficient Thermophotovoltaic Cells Based on Germanium Substrates. Sol. Energy Mater. Sol. Cells 2009, 93, 1810–1816. [Google Scholar] [CrossRef]
- Konagai, M.; Saito, K.; Nakada, K.; Ichikawa, Y.; Suyama, N.; Ishikawa, R. Heterojunction Germanium Sooar Cells with a Record High Efficiency of 8.6%. In Proceedings of the 69th JSAP Spring Meeting, Kanagawa-ken, Japan, 22–26 March 2022. [Google Scholar]
- Fernández, J.; Janz, S.; Suwito, D.; Oliva, E.; Dimroth, F. Advanced Concepts for High-Efficiency Germanium Photovoltaic Cells. In Proceedings of the 2008 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 11–16 May 2008. [Google Scholar]
- Liu, H.; Pasanen, T.P.; Fung, T.H.; Isometsä, J.; Leiviskä, O.; Vähänissi, V.; Savin, H. Comparison of SiNx-Based Surface Passivation Between Germanium and Silicon. Phys. Status Solidi (A) Appl. Mater. Sci. 2023, 220, 2200690. [Google Scholar] [CrossRef]
- Liu, H.; Pasanen, T.P.; Leiviskä, O.; Isometsä, J.; Fung, T.H.; Yli-Koski, M.; Miettinen, M.; Laukkanen, P.; Vähänissi, V.; Savin, H. Plasma-Enhanced Atomic Layer Deposited SiO2 Enables Positive Thin Film Charge and Surface Recombination Velocity of 1.3 Cm/s on Germanium. Appl. Phys. Lett. 2023, 122, 191602. [Google Scholar] [CrossRef]
- Weiss, C.; Schon, J.; Hohn, O.; Fuhrmann, B.; Dimroth, F.; Janz, S. Passivated, Highly Reflecting, Laser Contacted Ge Rear Side for III-V Multi-Junction Solar Cells. IEEE J. Photovolt. 2021, 11, 1256–1263. [Google Scholar] [CrossRef]
- Weiss, C.; Schön, J.; Höhn, O.; Mohr, C.; Kurstjens, R.; Boizot, B.; Janz, S. Potential Analysis of a Rear-Side Passivation for Multi-Junction Space Solar Cells Based on Germanium Substrates. In Proceedings of the 34th 2018 European Photovoltaic Solar Energy Conference, Waikoloa, HI, USA, 10–15 June 2018. [Google Scholar]
- Wang, Y.; Hu, Y.Z.; Irene, E.A. In Situ Investigation of the Passivation of Si and Ge by Electron Cyclotron Resonance Plasma Enhanced Chemical Vapor Deposition of SiO2. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1996, 14, 1687–1696. [Google Scholar] [CrossRef]
- Jiménez, A.; Carturan, S.M.; Milazzo, R.; Datas, A.; De Salvador, D.; Del Caizo, C.; Napolitani, E. N-Type Doping of Ge by P Spin on Dopant and Pulsed Laser Melting. Semicond. Sci. Technol. 2020, 35, 065002. [Google Scholar] [CrossRef]
- Martín, P.; Sanchez-Perez, C.; García, I.; Rey-Stolle, I. Maximizing Infrared Reflectance in Germanium TPV Cells. In Proceedings of the 18th International Conference on Concentrator Photovoltaic Systems (CPV-18) and 13th World Conference on Thermophotovoltaic Generation of Electricity (TPV-13), Miyazaki, Japan, 25–27 April 2022; AIP Publishing: New York, NY, USA, 2023; Volume 2841. [Google Scholar]
- Poelman, D.; Clauws, P.; Depuydt, B. Chemical Surface Passivation of Low Resistivity p-type Ge Wafers for Solar Cell Applications. Sol. Energy Mater. Sol. Cells 2003, 76, 167–173. [Google Scholar] [CrossRef]
- Kaneko, T.; Kondo, M. High Open-Circuit Voltage and Its Low Temperature Coefficient in Crystalline Germanium Solar Cells Using a Heterojunction Structure with a Hydrogenated Amorphous Silicon Thin Layer. Jpn. J. Appl. Phys. 2011, 50, 120204. [Google Scholar] [CrossRef]
- Hekmatshoar, B.; Shahrjerdi, D.; Hopstaken, M.; Fogel, K.; Sadana, D.K. High-Efficiency Heterojunction Solar Cells on Crystalline Germanium Substrates. Appl. Phys. Lett. 2012, 101, 032102. [Google Scholar] [CrossRef]
- Gamel, M.; López, G.; Jawhari, T.; Olivares, A.J.; Roca I Cabarrocas, P.; Garín, M.; Martín, I. Epitaxially Grown Crystalline Silicon as Electron Selective Contact Layer for Crystalline Germanium TPV Cells. In Proceedings of the 40th European Photovoltaic Solar Energy Conference and Exhibition, Lisbon, Portugal, 18–22 September 2023. [Google Scholar]
- Alcañiz, A.; López, G.; Martín, I.; Jiménez, A.; Datas, A.; Calle, E.; Ros, E.; Gerling, L.G.; Voz, C.; del Cañizo, C.; et al. Germanium Photovoltaic Cells with MoOx Hole-Selective Contacts. Sol. Energy 2019, 181, 357–360. [Google Scholar] [CrossRef]
- Schttauf, J.W.A.; Van Der Werf, K.H.M.; Kielen, I.M.; Van Sark, W.G.J.H.M.; Rath, J.K.; Schropp, R.E.I. High Quality Crystalline Silicon Surface Passivation by Combined Intrinsic and n-type Hydrogenated Amorphous Silicon. Appl. Phys. Lett. 2011, 99, 203503. [Google Scholar] [CrossRef]
- Herasimenka, S.Y.; Tracy, C.J.; Sharma, V.; Vulic, N.; Dauksher, W.J.; Bowden, S.G. Surface Passivation of n-type c-Si Wafers by a-Si/SiO2/SiNx Stack with <1 cm/s Effective Surface Recombination Velocity. Appl. Phys. Lett. 2013, 103, 183903. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín, P.; Rey-Stolle, I. A Review on Passivation Strategies for Germanium-Based Thermophotovoltaic Devices. Materials 2025, 18, 3427. https://doi.org/10.3390/ma18153427
Martín P, Rey-Stolle I. A Review on Passivation Strategies for Germanium-Based Thermophotovoltaic Devices. Materials. 2025; 18(15):3427. https://doi.org/10.3390/ma18153427
Chicago/Turabian StyleMartín, Pablo, and Ignacio Rey-Stolle. 2025. "A Review on Passivation Strategies for Germanium-Based Thermophotovoltaic Devices" Materials 18, no. 15: 3427. https://doi.org/10.3390/ma18153427
APA StyleMartín, P., & Rey-Stolle, I. (2025). A Review on Passivation Strategies for Germanium-Based Thermophotovoltaic Devices. Materials, 18(15), 3427. https://doi.org/10.3390/ma18153427