Hydrothermal Carbonization of Pruned Persimmon Tree Branches: Optimization of Process Conditions for Enhanced Energy Recovery
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
Biomass | Temperature (°C) | Duration (h) | H/C | O/C | Solid Yield (%) |
---|---|---|---|---|---|
Wood waste [19] | 220 | 2 | 1.27 | 0.48 | ~65 |
Cellulose extracted from poplar [20] | 230 | 12 | 1.00 | 0.25 | ~38 |
Typha australis [14] | 233 | 10 | 0.90 | 0.2 | ~40 |
Persimmon tree pruning branches (this work) | 230 | 20 | 0.99 | 0.29 | 41.5 |
4. Conclusions
4.1. Process Optimization and Enhanced Fuel Properties
4.2. Reaction Mechanisms: Dehydration and Decarboxylation as Key Pathways
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, J.-L. Bio-oil from fast pyrolysis of rice husk: Yields and related properties and improvement of the pyrolysis system. J. Anal. Appl. Pyrolysis 2007, 80, 30–35. [Google Scholar] [CrossRef]
- Han, C.; Wang, M.; Ren, Y.; Zhang, L.; Ji, Y.; Zhu, W.; Song, Y.; He, J. Characterization of pruned tea branch biochar and the mechanisms underlying its adsorption for cadmium in aqueous solution. RSC Adv. 2021, 11, 26832–26843. [Google Scholar] [CrossRef] [PubMed]
- Sugie, S.; Maeda, H. Conversion of rice husks into carbonaceous materials with porous structures via hydrothermal process. Environ. Sci. Pollut. Res. 2024, 31, 45711–45717. [Google Scholar] [CrossRef] [PubMed]
- Picchi, G.; Lombardini, C.; Pari, L.; Spinelli, R. Physical and chemical characteristics of renewable fuel obtained from pruning residues. J. Clearn. Prod. 2018, 171, 457–463. [Google Scholar] [CrossRef]
- Li, M.; Li, F.; Zhou, J.; Yuan, Q.; Hu, N. Fallen leaves are superior to tree pruning as bulking agents in aerobic composting disposing kitchen waste. Bioresour. Technol. 2022, 346, 126374. [Google Scholar] [CrossRef] [PubMed]
- Cavalaglio, G.; Fabbrizi, G.; Cardelli, F.; Lorenzi, L.; Angrisano, M.; Nicolini, A. Lignocellulosic Residues from Fruit Trees: Availability Characterization, and Energetic Potential Valorization. Energies 2024, 17, 2611. [Google Scholar] [CrossRef]
- de Mesquita, R.M.F.; Dal Prá, J.C.; Fontana, R.C.; Montipó, S.; Baudel, H.M.; Diebold, E.; Schneider, W.D.H.; Camassola, M. Processing of persimmon tree pruning waste through the circular economy: Lignin nanoparticles and cellulosic ethanol production. Renew. Energy 2025, 238, 121932. [Google Scholar] [CrossRef]
- Peng, J.; Yu, J.; Chu, D.; Hou, X.; Jia, X.; Meng, B.; Yang, K.; Zhao, J.; Yang, N.; Wu, J.; et al. Synergistic effects of an artificial carbon coating layer and Cu2+-electrolyte additive for high-performance zinc-based hybrid supercapacitors. Carbon 2022, 198, 34–45. [Google Scholar] [CrossRef]
- Peng, J.; Yu, J.; Meng, B.; Wang, L.; Zhang, X.; Cheng, W.; Wen, P.; Zhao, J.; Li, L.; Fang, Z. Hierarchical porous biomass activated carbon for hybrid battery capacitors derived from persimmon branches. Mater. Exp. 2020, 10, 523–530. [Google Scholar] [CrossRef]
- Koido, K.; Hoshi, T.; Sato, M. Hardwood branch char gasification with CO2: Characterization of reactivity and proposal of a semiempirical kinetic model. Energy Fuels 2023, 37, 17359–17372. [Google Scholar] [CrossRef]
- Park, J.H.; Ok, Y.S.; Kim, S.H.; Kang, S.W.; Cho, J.S.; Heo, J.S.; Delaune, R.D.; Seo, D.C. Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 751–760. [Google Scholar] [CrossRef]
- Demirbaş, A. Relationships between lignin contents and heating values of biomass. Energy Conver. Manag. 2001, 42, 183–188. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, L.; Zhu, M.; Sun, G.; Zhang, T.; Kang, K. Comparative evaluation of hydrothermal carbonization and low temperature pyrolysis of Eucommia ulmoides Oliver for the production of solid biofuel. Sci. Rep. 2019, 9, 5535. [Google Scholar] [CrossRef] [PubMed]
- Abdeldayem, O.M.; Al Noman, M.A.; Dupont, C.; Ferras, D.; Ndiaye, L.G.; Kennedy, M. Hydrothermal carbonization of Typha australis: Influence of stirring rate. Environ. Res. 2023, 236, 116777. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hagos, F.M.; Chen, R.; Qian, H.; Mo, C.; Di, J.; Gai, X.; Yang, R.; Pan, G.; Shan, S. Rice husk hydrochars from metal chloride-assised hydrothermal carbonization as biosorbents of organics from aqueous solution. Bioresour. Bioprocess. 2021, 8, 99. [Google Scholar] [CrossRef] [PubMed]
- Segal, L.; Creely, J.J.; Martin, A.E., Jr.; Conrad, C.M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Kang, S.; Li, X.; Fan, J.; Chang, J. Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, d-xylose, and wood meal. Ind. Eng. Chem. Res. 2012, 51, 9023–9031. [Google Scholar] [CrossRef]
- Channiwala, S.A.; Parikh, P.P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002, 81, 1051–1063. [Google Scholar] [CrossRef]
- Lee, S.-J.; Oh, M.-A.; Oh, S.-J.; Cho, N.-H.; Kang, Y.-Y.; Lee, J.-Y. Effects of bioliquid recirculation on hydrothermal carbonization of lignocellulosic biomass. Energies 2022, 15, 4903. [Google Scholar] [CrossRef]
- Hao, S.; Zhang, Q.; Shi, Y.; Guo, Q.; Li, P.; Huang, J. Preparation and characterization of the poplar micro-nano cellulose sustainable carbon spheres. Biomass Convers. Biorefin. 2024, 14, 9581–9594. [Google Scholar] [CrossRef]
- Gierlinger, N.; Goswami, L.; Schmidt, M.; Burgert, I.; Coutand, C.; Rogge, T.; Schwanninger, M. In situ FT-IR microscopic study onenzymatic treatment of poplar wood cross-sections. Biomacromolecules 2008, 9, 2194–2201. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, R.H.H.; Darvell, L.I.; Jones, J.M.; Williams, A. Physicochemical characterisation of torrefied biomass. J. Anal. Appl. Pyrolysis 2013, 103, 21–30. [Google Scholar] [CrossRef]
- Ameen, M.; Zamri, N.M.; May, S.T.; Azizan, M.T.; Aqsha, A.; Sabzoi, N.; Sher, F. Effect of acid catalysts on hydrothermal carbonization of Malaysian oil palm residues (leaves, fronds, and shells) for hydrochar production. Biomass Convers. Biorefin. 2022, 12, 103–114. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Y.; Qian, F.; Lei, Z.; Zhang, Z.; Zhang, S.; Chen, J.; Ren, Z.J. Demethanation trend of hydrochar induced by organic solvent washing and its influence on hydrochar activation. Environ. Sci. Technol. 2017, 51, 10756–10764. [Google Scholar] [CrossRef] [PubMed]
- Parshetti, G.K.; Kent Hoekman, S.; Balasubramanian, R. Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches. Bioresour. Technol. 2013, 135, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Tjeerdsma, B.F.; Militz, H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz. Roh-Werkst. 2005, 63, 102–111. [Google Scholar] [CrossRef]
- Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod. Bioref. 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Brand, M.A.; Jacinto, R.C. Apple pruning residues: Potential for burning in boiler systems and pellet production. Renew. Energy 2020, 152, 458–466. [Google Scholar] [CrossRef]
- Vamvuka, D.; Sfakiotakis, S. Combustion of biomass fuels and their blends with lignite. Thermochim. Acta 2011, 526, 192–199. [Google Scholar] [CrossRef]
- Parikh, J.; Channiwala, S.A.; Ghosal, G.K. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 2005, 84, 487–494. [Google Scholar] [CrossRef]
- Cuevas, M.; Martínez Cartas, M.L.; Sánchez, S. Effect of short-time hydrothermal carbonization on the properties of hydrochars prepared from olive-fruit endocarps. Energy Fuels 2019, 33, 313–322. [Google Scholar] [CrossRef]
- Kazimierski, P.; Hercel, P.; Suchocki, T.; Smoliński, J.; Pladzyk, A.; Kardaś, D.; Łuczak, J.; Januszewicz, K. Pyrolysis of pruning residues from various types of orchards and pretreatment for energetic use of biochar. Materials 2021, 14, 2969. [Google Scholar] [CrossRef] [PubMed]
Sample Name | Temperature (°C) | Duration (h) | Solid/Liquid Ratio |
---|---|---|---|
HTC1 | 180 | 20 | 5 |
HTC2 | 205 | 20 | 5 |
HTC3 | 230 | 20 | 5 |
HTC4 | 250 | 20 | 5 |
HTC5 | 230 | 2 | 5 |
HTC6 | 230 | 8 | 5 |
HTC7 | 230 | 16 | 5 |
HTC8 | 230 | 40 | 5 |
HTC9 | 230 | 20 | 2.5 |
HTC10 | 230 | 20 | 10 |
Sample Name | C | O | H | N | S | Solid Yield (%) | CI (%) |
---|---|---|---|---|---|---|---|
HTC1 | 52.2 | 38.3 | 5.8 | 0.9 | 0.0 | 55.5 | 68 |
HTC2 | 56.1 | 34.2 | 5.8 | 1.0 | 0.0 | 51.9 | 67 |
HTC3 | 64.0 | 24.8 | 5.3 | 1.5 | 0.0 | 41.5 | - |
HTC4 | 69.2 | 20.4 | 5.6 | 1.7 | 0.0 | 35.1 | - |
HTC5 | 53.6 | 36.8 | 5.8 | 1.1 | 0.0 | 56.3 | 51 |
HTC6 | 58.1 | 31.5 | 5.6 | 1.3 | 0.0 | 50.0 | 41 |
HTC7 | 61.8 | 27.3 | 5.5 | 1.5 | 0.0 | 44.9 | 29 |
HTC8 | 65.1 | 23.0 | 5.4 | 1.7 | 0.0 | 36.5 | - |
HTC9 | 63.3 | 26.2 | 5.3 | 1.5 | 0.0 | 38.0 | 46 |
HTC10 | 63.9 | 24.6 | 5.3 | 1.6 | 0.5 | 48.1 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maeda, H.; Ueda, Y. Hydrothermal Carbonization of Pruned Persimmon Tree Branches: Optimization of Process Conditions for Enhanced Energy Recovery. Materials 2025, 18, 3425. https://doi.org/10.3390/ma18153425
Maeda H, Ueda Y. Hydrothermal Carbonization of Pruned Persimmon Tree Branches: Optimization of Process Conditions for Enhanced Energy Recovery. Materials. 2025; 18(15):3425. https://doi.org/10.3390/ma18153425
Chicago/Turabian StyleMaeda, Hirotaka, and Yuta Ueda. 2025. "Hydrothermal Carbonization of Pruned Persimmon Tree Branches: Optimization of Process Conditions for Enhanced Energy Recovery" Materials 18, no. 15: 3425. https://doi.org/10.3390/ma18153425
APA StyleMaeda, H., & Ueda, Y. (2025). Hydrothermal Carbonization of Pruned Persimmon Tree Branches: Optimization of Process Conditions for Enhanced Energy Recovery. Materials, 18(15), 3425. https://doi.org/10.3390/ma18153425