Alkali-Activated Dredged-Sediment-Based Fluidized Solidified Soil: Early-Age Engineering Performance and Microstructural Mechanisms
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Mixture Proportion
2.3. Preparation of Dredged-Sediment-Based FSS
2.4. Test Methods
2.4.1. Flowability Test
2.4.2. Unconfined Compressive Strength (UCS) Test
2.4.3. Shear Strength Test
2.4.4. Microscopic Parameter Testing
3. Results and Discussion
3.1. Flowability
3.1.1. Initial Flowability
3.1.2. Time-Dependent Characteristics of Flowability
3.2. Unconfined Compressive Strength (UCS)
3.3. Shear Strength
3.4. Microscopic Analysis
3.4.1. X-Ray Diffraction (XRD)
3.4.2. Scanning Electron Microscopy (SEM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Wang, Z.W.; Yang, W.C.; Jia, H.L.; You, Z.J. Characterization, pollution, and beneficial utilization assessment of dredged sediments from coastal ports in China. Mar. Pollut. Bull. 2025, 211, 117389. [Google Scholar] [CrossRef] [PubMed]
- Beljin, J.; Arsenov, D.; Slijepcevic, N.; Maletic, S.; Dukanovic, N.; Chalot, M.; Zupunski, M.; Pilipovic, D.T. Recycling of polluted dredged sediment–Building new materials for plant growing. Waste Manag. 2023, 166, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.; Ren, Z.L.; Zeng, L.L.; Zhao, F.Y.; Yao, Y.K.; Li, X.Z. Effects of biochar on the compressibility of soil with high water content. J. Clean Prod. 2024, 434, 140032. [Google Scholar] [CrossRef]
- Ding, J.W.; Wan, X.; Jiao, N.; Zhang, S.; Chen, W.H. Collaborative effects of red mud and phosphogypsum on geotechnical behavior of cement-stabilized dredged clay. Bull. Eng. Geol. Environ. 2024, 83, 200. [Google Scholar] [CrossRef]
- Song, D.B.; Chen, W.B.; Yin, Z.Y.; Shi, X.S.; Yin, J.H. Recycling dredged mud slurry using vacuum-solidification combined method with sustainable alkali-activated binder. Geotext. Geomembr. 2023, 51, 104–119. [Google Scholar] [CrossRef]
- Zentar, R.; Wang, H.W.; Wang, D.X. Comparative study of stabilization/solidification of dredged sediments with ordinary Portland cement and calcium sulfo-aluminate cement in the framework of valorization in road construction material. Constr. Build. Mater. 2021, 279, 122447. [Google Scholar] [CrossRef]
- Feng, D.z.; Liang, B.; He, X.X.; Yi, F.; Xue, J.F.; Wan, Y.; Xue, Q. Mechanical properties of dredged soil reinforced by xanthan gum and fibers. J. Rock Mech. Geotech. Eng. 2023, 15, 2147–2157. [Google Scholar] [CrossRef]
- Zhang, S.W.; Zhu, Q.C.; Devries, W.; Ros, G.H.; Chen, X.H.; Muneer, M.A.; Zhang, F.S.; Wu, L.Q. Effects of soil amendments on soil acidity and crop yields in acidic soils: A world-wide meta-analysis. J. Environ. Manag. 2023, 345, 118531. [Google Scholar] [CrossRef] [PubMed]
- Huo, P.S.; Fu, X.R.; Che, Z.; Liang, J.B.; Li, D.X.; Liu, Y.L.; Lyu, S. Simultaneous improvement of water/fertility retention and physical properties of dredged sediment using a novel composite amendment. Water Air Soil Pollut. 2024, 235, 469. [Google Scholar] [CrossRef]
- Adazabra, A.N.; Viruthagiri, G.; Atingabono, J. Developing fired clay bricks by incorporating scrap incinerated waste and river dredged sediment. Process Saf. Environ. Protect. 2023, 179, 108–123. [Google Scholar] [CrossRef]
- Deng, X.T.; Jian, R.L.; Chen, S.; Wang, X.S.; Wan, C.; Xue, Y.J.; Wang, T. Killing two birds with one stone: Preparation of ceramsite high-strength lightweight aggregate via co-sintering of dredged sediment and municipal solid waste incinerated fly ash. Constr. Build. Mater. 2023, 409, 134039. [Google Scholar] [CrossRef]
- Ghadakpour, M.; Choobbasti, A.J.; Kutanaei, S.S. Experimental study of impact of cement treatment on the shear behavior of loess and clay. Arab. J. Geosci. 2020, 13, 184. [Google Scholar] [CrossRef]
- Ho, T.O.; Chen, W.B.; Yin, J.H.; Wu, P.C.; Tsang, D.C.W. Stress-strain behaviour of cement-stabilized Hong Kong marine deposits. Constr. Build. Mater. 2021, 274, 122103. [Google Scholar] [CrossRef]
- Dermatas, D.; Dutko, P.; Balorda-Barone, J.; Moon, D. Geotechnical properties of cement treated dredged sediment to be used as transportation fill. In Dredging ’02; ASCE: Reston, VA, USA, 2002; pp. 1–14. [Google Scholar] [CrossRef]
- Donrak, J.; Horpibulsuk, S.; Arulrajah, A.; Kou, H.L.; Chinkulkijniwat, A.; Hoy, M. Wetting-drying cycles durability of cement stabilised marginal lateritic soil/melamine debris blends for pavement applications. Road Mater. Pavement Des. 2020, 21, 500–518. [Google Scholar] [CrossRef]
- Liu, C.; Berard, C.; Deng, L.j. Engineering behavior of cement-treated stiff clay subjected to freezing/thawing cycles. Cold Reg. Sci. Tech. 2023, 206, 103743. [Google Scholar] [CrossRef]
- Wan, X.; Ding, J.W.; Mou, C.; Gao, M.Y.; Jiao, N. Role of Bayer red mud and phosphogypsum in cement-stabilized dredged soil with different water and cement contents. Constr. Build. Mater. 2024, 418, 135396. [Google Scholar] [CrossRef]
- Liu, J.J.; Luo, H.P.; Lei, H.Y.; Zheng, G.; Cheng, X.S. Compressive strength and curing mechanism of alkali-activated geopolymer curing marine silty soft soil. J. Railw. Sci. Eng. 2024, 21, 2745–2754. [Google Scholar]
- Liu, F.Y.; Zhu, C.G.; Yang, K.J.; Ni, J.F.; Hai, J.; Gao, S.H. Effects of fly ash and slag content on the solidification of river-dredged sludge. Mar. Geores. Geotechnol. 2021, 39, 65–73. [Google Scholar] [CrossRef]
- Wang, C.; Jin, L.W.; Qian, Y.; Wu, Y.J.; Liang, F.Y. Investigation of the protection mechanism and failure modes of solidified soil utilized for scour mitigation. Constr. Build. Mater. 2025, 472, 140858. [Google Scholar] [CrossRef]
- Mao, Y.Z.; Jiao, D.W.; Hu, X.; Jiang, Z.; Shi, C.J. Effect of dispersion behavior of silica fume on the rheological properties and early hydration characteristics of ultra-high strength mortar. Cem. Concr. Compos. 2024, 152, 105654. [Google Scholar] [CrossRef]
- Xi, J.Y.; Liu, J.Z.; Yang, K.; Zhang, S.H.; Han, F.Y.; Sha, J.F.; Zheng, X. Role of silica fume on hydration and strength development of ultra-high performance concrete. Constr. Build. Mater. 2022, 338, 127600. [Google Scholar] [CrossRef]
- Luo, T.; Hua, C.; Sun, Q.; Tang, L.Y.; Yi, Y.; Pan, X.F. Early-age hydration reaction and strength formation mechanism of solid waste silica fume modified concrete. Molecules. 2021, 26, 5663. [Google Scholar] [CrossRef] [PubMed]
- He, Z.H.; Jiang, Y.Y.; Shi, J.Y.; Qin, J.H.; Liu, D.E.; Yalcinkaya, C.; He, Y.F. Effect of silica fume on the performance of high-early-strength UHPC prepared with magnesium ammonium phosphate cement. Case Stud. Constr. Mater. 2024, 20, e03351. [Google Scholar] [CrossRef]
- Maganti, T.R.; Boddepalli, K.R. Synergistic enhancement of compressive strength and impact resistance in alkali-activated fiber-reinforced concrete through silica fume and hybrid fiber integration. Constr. Build. Mater. 2025, 471, 140702. [Google Scholar] [CrossRef]
- Alonso, M.M.; Gismera, S.; Blanco, M.T.; Lanzon, M.; Puertas, F. Alkali-activated mortars: Workability and rheological behaviour. Constr. Build. Mater. 2017, 145, 576–587. [Google Scholar] [CrossRef]
- Fang, G.H.; Ho, W.K.; Tu, W.L.; Zhang, M.Z. Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Constr. Build. Mater. 2018, 172, 476–487. [Google Scholar] [CrossRef]
- Zhang, G.; Peng, G.F.; Zuo, X.Y.; Niu, X.J.; Ding, H. Adding hydrated lime for improving microstructure and mechanical properties of mortar for ultra-high performance concrete. Cem. Concr. Res. 2023, 167, 107130. [Google Scholar] [CrossRef]
- GB 50007-2011; Code for Design of Building Foundation. China Architecture & Building Press: Beijing, China, 2011.
- Siddique, R. Utilization of silica fume in concrete: Review of hardened properties. Resour. Conserv. Recycl. 2011, 55, 923–932. [Google Scholar] [CrossRef]
- JGJ/T 233-2011; Specification for Mix Proportion Design of Cement Soil. China Architecture & Building Press: Beijing, China, 2011.
- JHS A313-1992; Test Method for Air Mortar and Air Milk. Japan Highway Public Corporation: Tokyo, Japan, 1992.
- JGJ/T 70-2009; Standard for Test Method of Basic Properties of Construction Mortar. China Architecture & Building Press: Beijing, China, 2009.
- Li, A.B.; Melville, B.W.; Yang, Y.F.; Zhou, S.; He, F.; Shamseldin, A.Y.; Zhang, G.G. The semi-empirical model for critical bed shear stress in the local scour hole downstream of a submerged structure based on turbulent velocity distribution. Appl. Ocean Res. 2024, 153, 104238. [Google Scholar] [CrossRef]
- GB/T 50123-2019; Standard for Geotechnical Testing Method. China Planning Press: Beijing, China, 2019.
- Liu, Y.W.; Lu, C.F.; Hu, X.; Shi, C.J. Effect of silica fume on rheology of slag-fly ash-silica fume-based geopolymer pastes with different activators. Cem. Concr. Res. 2023, 174, 107336. [Google Scholar] [CrossRef]
- Panda, B.; Unluer, C.; Tan, M.J. Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing. Cem. Concr. Compos. 2018, 94, 307–314. [Google Scholar] [CrossRef]
- Zhang, R.; He, H.Y.; Song, Y.H.; Zhi, X.D.; Fan, F. Influence of mix proportioning parameters and curing regimes on the properties of ultra-high strength alkali-activated concrete. Constr. Build. Mater. 2023, 393, 132139. [Google Scholar] [CrossRef]
- Li, L.; Wei, Y.J.; Li, Z.L.; Farooqi, M.U. Rheological and viscoelastic characterizations of fly ash/slag/silica fume-based geopolymer. J. Clean Prod. 2022, 354, 131629. [Google Scholar] [CrossRef]
- Zhang, S.L.; Qi, X.Q.; Guo, S.Y.; Zhang, L.; Ren, J. A systematic research on foamed concrete: The effects of foam content, fly ash, slag, silica fume and water-to-binder ratio. Constr. Build. Mater. 2022, 339, 127683. [Google Scholar] [CrossRef]
- Taloey, N.; Aikawa, Y.; Kubota, O.; Sakai, E. Theoretical analysis of the hydration dependence of low heat Portland cements with or without silica fume on their packing fractions. J. Ceram. Soc. Jpn. 2018, 126, 706–713. [Google Scholar] [CrossRef]
- Huang, F.M.; Liu, J.P.; Li, X.C.; Li, C.; Hu, Z.L.; Shen, X.J.; Chen, B.C. Impact of silica fume on the long-term stability of cement-based materials with low water-to-binder ratio under different curing conditions. Constr. Build. Mater. 2024, 450, 138604. [Google Scholar] [CrossRef]
- Ashraf, M.; Iqbal, M.F.; Rauf, M.; Ashraf, M.U.; Ulhaq, A.; Muhammad, H.; Liu, Q.F. Developing a sustainable concrete incorporating bentonite clay and silica fume: Mechanical and durability performance. J. Clean Prod. 2022, 337, 130315. [Google Scholar] [CrossRef]
- Abbas, S.N.; Qureshi, M.I. Improved Fresh and Hardened properties of Concrete with High Density Polyethylene aggregates: Role of Silica fume, Steel Fibers, Macro synthetic fibers and Variation of water cement ratio. Mater. Chem. Phys. Sustain. Energy 2025, 2, 100010. [Google Scholar] [CrossRef]
- Oyunbileg, D.; Amgalan, J.; Batbaatar, T.; Temuujin, J. Evaluation of thermal and freeze-thaw resistances of the concretes with the silica fume addition at different water-cement ratio. Case Stud. Constr. Mater. 2023, 19, e02633. [Google Scholar] [CrossRef]
Natural Water Content/% | Natural Porosity Ratio | Liquid Limit/% | Plastic Limit/% | Plasticity Index |
---|---|---|---|---|
67.2% | 1.81 | 46.2% | 24.2% | 22 |
Material | SiO2 | CaO | Al2O3 | MgO | Fe2O3 |
---|---|---|---|---|---|
Cement | 22.31 | 54.36 | 9.76 | 1.01 | 3.13 |
Silica fume | 98.1 | / | 0.19 | / | 0.12 |
Quicklime | / | 95 | / | / | / |
No. | Water–Solid Ratio (WSR) | SF Replacement Rate/% | Proportions of Solidification Agent Components/% | ||
---|---|---|---|---|---|
Cement | SF | Quicklime | |||
SF0-L | 0.525 | 0 | 90 | 0 | 10 |
SF0-M | 0.55 | 0 | 90 | 0 | 10 |
SF0-H | 0.575 | 0 | 90 | 0 | 10 |
SF4-L | 0.525 | 4 | 86.4 | 3.6 | 10 |
SF4-M | 0.55 | 4 | 86.4 | 3.6 | 10 |
SF4-H | 0.575 | 4 | 86.4 | 3.6 | 10 |
SF8-L | 0.525 | 8 | 82.8 | 7.2 | 10 |
SF8-M | 0.55 | 8 | 82.8 | 7.2 | 10 |
SF8-H | 0.575 | 8 | 82.8 | 7.2 | 10 |
SF12-L | 0.525 | 12 | 79.2 | 10.8 | 10 |
SF12-M | 0.55 | 12 | 79.2 | 10.8 | 10 |
SF12-H | 0.575 | 12 | 79.2 | 10.8 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Q.; Wang, K.; Li, Q.; Zhang, Y. Alkali-Activated Dredged-Sediment-Based Fluidized Solidified Soil: Early-Age Engineering Performance and Microstructural Mechanisms. Materials 2025, 18, 3408. https://doi.org/10.3390/ma18143408
Ma Q, Wang K, Li Q, Zhang Y. Alkali-Activated Dredged-Sediment-Based Fluidized Solidified Soil: Early-Age Engineering Performance and Microstructural Mechanisms. Materials. 2025; 18(14):3408. https://doi.org/10.3390/ma18143408
Chicago/Turabian StyleMa, Qunchao, Kangyu Wang, Qiang Li, and Yuting Zhang. 2025. "Alkali-Activated Dredged-Sediment-Based Fluidized Solidified Soil: Early-Age Engineering Performance and Microstructural Mechanisms" Materials 18, no. 14: 3408. https://doi.org/10.3390/ma18143408
APA StyleMa, Q., Wang, K., Li, Q., & Zhang, Y. (2025). Alkali-Activated Dredged-Sediment-Based Fluidized Solidified Soil: Early-Age Engineering Performance and Microstructural Mechanisms. Materials, 18(14), 3408. https://doi.org/10.3390/ma18143408