The Synthesis of New Chalcogenides from the System GeTe6-Cu and a Layered Structure Based on Them and an Azo Polymer for Application in Optoelectronics
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of the New Chalcogenides from the Ge-Te-Cu System and Preparation of the Bilayer Structure
2.2. Methods Used for Characterization of the Synthesized New Chalcogenides and Measuring the Kinetics of the Photoinduced Birefringence
2.3. Optical Setup for Measuring the Photoinduced Birefringence
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Z.; Clima, S.; Garbin, D.; Degraeve, R.; Pourtois, G.; Song, Z.; Zhu, M. Chalcogenide Ovonic Threshold Switching Selector. Nanomicro Lett. 2024, 11, 16–81. [Google Scholar] [CrossRef]
- Ohta, T.; Ovshinsky, S.R. Phase-Change Optical Storage Media. In Photo-Induced Metastability in Amorphous Semiconductors, 1st ed.; Kolobov, A.V., Ed.; Wiley-VCH: Weinheim, Germany, 2003; pp. 310–326. [Google Scholar]
- Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824–832, Erratum in Nat. Mater. 2007, 6, 1004. [Google Scholar] [CrossRef]
- Fazio, A. Advanced technology and systems of cross point memory. In Proceedings of the International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 24.1.1–24.1.4. [Google Scholar]
- Yamada, N.; Ohno, E.; Akahira, N.; Nishiuchi, K.; Nagata, K.; Takao, M. High Speed Overwritable Phase Change Optical Disk Material. Jpn. J. Appl. Phys. 1987, 26, 61–66. [Google Scholar] [CrossRef]
- Iwasaki, H.; Harigaya, M.; Nonoyama, O.; Kageyama, Y.; Takahashi, M.; Yamada, K.; Deguchi, H.; Ide, Y. Completely Erasable Phase Change Optical Disc II: Application of Ag-In-Sb-Te Mixed-Phase System for Rewritable Compact Disc Compatible with CD-Velocity and Double CD-Velocity. Jpn. J. Appl. Phys. 1993, 32, 5241. [Google Scholar] [CrossRef]
- Fattorini, A.D.; Chèze, C.; García, I.L.; Petrucci, C.; Bertelli, M.; Riva, F.R.; Prili, S.; Privitera, S.M.S.; Buscema, M.; Sciuto, A.; et al. Growth, electronic and electrical characterization of Ge-rich Ge–Sb–Te alloy. Nanomater 2022, 13, 1340. [Google Scholar] [CrossRef]
- Petroni, E.; Allegra, M.; Baldo, M.; Laurin, L.; Andrea, S.; Favennec, L.; Desvoivres, L.; Sandrini, J.; Boccaccio, C.; Le-Friec, Y.; et al. Study of Ge-Rich Ge–Sb–Te device-dependent segregation for industrial grade embedded phase-change memory. PSS RRL 2024, 18, 2300449. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, X.; Xia, M.; Rao, F.; Wu, L.; Li, X.; Song, Z.; Feng, S.; Sun, H. Understanding phase-change behaviors of carbon-doped Ge2Sb2Te5 for phase-change memory application. Appl. Mater. Interfaces 2014, 6, 14207–14214. [Google Scholar] [CrossRef]
- Golovchak, R.; Plummer, J.; Kovalskiy, A.; Holovchak, Y.; Ignatova, T.; Trofe, A.; Mahlovanyi, B.; Cebulski, J.; Krzeminski, P.; Shpotyuk, Y.; et al. Phase-change materials based on amorphous equichalcogenides. Sci. Rep. 2023, 13, 2881. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, L.K.; Sripathi, Y.; Reddy, G.B. Material science aspects of phase change optical recording. Bull. Mater. Sci. 1995, 18, 725–739. [Google Scholar] [CrossRef]
- Wang, G.; Shen, X.; Nie, Q.; Chen, F.; Wang, X.; Fu, J.; Chen, Y.; Xu, T.; Dai, S.; Zhang, W.; et al. Te-based chalcogenide films with high thermal stability for phase change memory. J. Appl. Phys. 2012, 111, 093514-1. [Google Scholar] [CrossRef]
- Saito, Y.; Koike, J. Optical contrast and laser-induced phase transition in GeCu2Te3 thin film. Appl. Phys. Lett. 2013, 102, 051910. [Google Scholar] [CrossRef]
- Dongol, M.; AbouZied, M.; Gamal, G.A.; El-Denglawey, A. Synthesis and the RDF fine structure of Ge0.15Te0.78Cu0.07 bulk alloy. Optik 2016, 127, 8186–8193. [Google Scholar] [CrossRef]
- Skelton, J.M.; Kobayashi, K.; Sutou, Y.; Elliott, S.R. Origin of the unusual reflectance and density contrasts in the phase-change material Cu2GeTe3. Appl. Phys. Lett. 2013, 102, 224105. [Google Scholar]
- Saito, Y.; Sutou, Y.; Koike, J. Phase change characteristics in GeTe-CuTe pseudobinary alloy films. J. Phys. Chem. C 2014, 118, 26973–26980. [Google Scholar] [CrossRef]
- Saito, Y.; Sutou, Y.; Fons, P.; Shindo, S.; Kozina, X.; Skelton, J.M.; Kolobov, A.V.; Kobayashi, K. Electronic Structure of Transition-Metal Based Cu2GeTe3 Phase Change Material: Revealing the Key Role of Cu d Electrons. Chem. Mater. 2017, 29, 7440–7449. [Google Scholar] [CrossRef]
- Wang, M.; Chen, L. The microstructure and electrical and optical properties of Ge–Cu–Te phase-change thin films. Cryst. Eng. Comm. 2024, 26, 395–405. [Google Scholar] [CrossRef]
- Mishra, S.P.; Krishnamoorthy, K.; Sahoo, R.; Kumar, A. Organic–inorganic hybrid polymers containing 3,4-ethylenedioxythiophene and chalcogens in the main chain. J. Mater. Chem. 2006, 16, 3297–3304. [Google Scholar] [CrossRef]
- Bertelli, M.; Sfuncia, G.; De Simone, S.; Fattorini, A.D.; Calvi, S.; Mussi, V.; Arciprete, F.; Mio, A.M.; Calarco, R.; Longo, M. Stable chalcogenide Ge–Sb–Te heterostructures with minimal Ge segregation. Sci. Rep. 2024, 14, 15713. [Google Scholar] [CrossRef]
- Berberova-Buhova, N.; Nedelchev, L.; Stoykova, E.; Nazarova, D. Optical response evaluation of azopolymer thin solid films doped with gold nanoparticles with different sizes. J. Chem. Technol. Met. 2022, 57, 671–675. [Google Scholar]
- Nazarova, D.; Nedelchev, L.; Berberova-Buhova, N.; Mateev, G. Nanocomposite photoanisotropic materials for applications in polarization holography and photonics. Nanomaterials 2023, 13, 2946. [Google Scholar] [CrossRef]
- Gerbreders, A.; Teteris, J.; Kolobjonoks, V. Holographic recording in polymer composites of organic photochromes and chalcogenides. In Proceedings of the Sixth International Conference on Advanced Optical Materials and Devices, Riga, Latvia, 12 November 2008; p. 7142. [Google Scholar]
- Teteris, J.; Gertners, U. Optical field-induced surface relief formation on chalcogenide and azo-benzene polymer films. In Proceedings of the International Conference on Functional Materials and Nanotechnologies, Riga, Latvia, 17–20 April 2012. [Google Scholar]
- Stoilova, A.; Dimov, D.; Trifonova, Y.; Lilova, V.; Blagoeva, B.; Nazarova, D.; Nedelchev, L. Preparation, structural investigation and optical properties determination of composite films based on PAZO polymer doped with GeTe4-Cu chalcogenide particles. Eur. Phys. J. Appl. Phys. 2021, 95, 30301. [Google Scholar] [CrossRef]
- Nazarova, D.; Nedelchev, L.; Sharlandjev, P.; Dragostinova, V. Anisotropic hybrid organic/inorganic (azopolymer/SiO2 NP) materials with enhanced photoinduced birefringence. Appl. Opt. 2013, 52, E28–E33. [Google Scholar] [CrossRef]
- Mateev, G.; Nazarova, D.; Nedelchev, L. Increase of the Photoinduced Birefringence in Azopolymer Films Doped with TiO2 Nanoparticles. J. Phys. Technol. 2019, 3, 18–21. [Google Scholar]
- Nazarova, D.; Nedelchev, L.; Stoykova, E.; Blagoeva, B.; Mateev, G.; Karashanova, D.; Georgieva, B.; Kostadinova, D. Photoinduced birefringence in azopolymer doped with Au nanoparticles. J. Phys. Conf. Ser. 2019, 1310, 012018. [Google Scholar] [CrossRef]
- Nikolova, L.; Ramanujam, P.S. Polarization Holography; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Delgado, G.; Mora, A.; Pirela, M.; Velásquez-Velásquez, A.; Villarreal, M.; Fernández, B. Structural refinement of the ternary chalcogenide compound Cu2GeTe3 by X-ray powder diffraction. Phys. Stat. Sol. (A) 2004, 201, 2900. [Google Scholar] [CrossRef]
- Petkov, P.; Ilchev, P.; Ilcheva, V.; Petkova, T. Physico-chemical properties of Ge-Te-Ga glasses. J. Optoelectron. Adv. M. 2007, 9, 3093–3096. [Google Scholar]
- Tyona, M.D. A comprehensive study of spin coating as a thin film deposition technique and spin coating equipment. Adv. Mater. Res. 2013, 2, 181–193. [Google Scholar] [CrossRef]
- Jemelka, J.; Palka, K.; Janicek, P.; Slang, S.; Jancalek, J.; Kurka, M.; Vlcek, M. Solution processed multi-layered thin films of Ge20Sb5S75 and Ge20Sb5Se75 chalcogenide glasses. Sci. Rep. 2023, 13, 16609. [Google Scholar] [CrossRef] [PubMed]
Sample mol% | Theoretically Determined Elemental Concentration, wt.% | Elemental Concentration Determined by EDS, wt.% |
---|---|---|
Ge14Te81Cu5 | Ge—8.7 Te—88.6 Cu—2.7 | Ge—10.0 ± 0.1 Te—83.4 ± 0.1 Cu—2.7 ± 0.0 |
Ge13Te77Cu10 | Ge—8.3 Te—86.1 Cu—5.6 | Ge—6.6 ± 0.1 Te—82.2 ± 0.1 Cu—5.6 ± 0.0 |
Ge12Te73Cu15 | Ge—7.8 Te—83.6 Cu—8.6 | Ge—7.9 ± 0.1 Te—76.5 ± 0.1 Cu—9.7 ± 0.0 |
Ge11Te69Cu20 | Ge—7.3 Te—81.0 Cu—11.7 | Ge—0.7 ± 0.0 Te—71.3 ± 0.1 Cu—9.2 ± 0.0 |
Sample | Density, 103 kg/m3 | Compactness, 10−2 | Molar Volume, 10−5 m3/mol | FVP, % |
---|---|---|---|---|
Ge14Te81Cu5 | 5.950 | −3.890 | 1.961 | 4.00 |
Ge13Te77Cu10 | 6.248 | −0.015 | 1.825 | 0.12 |
Ge12Te73Cu15 | 6.140 | −2.709 | 1.814 | 2.80 |
Ge11Te69Cu20 | 6.529 | 2.378 | 1.666 | −2.28 |
Sample | τ, [s] | r300, [%] |
---|---|---|
Pure PAZO film | 25 | 92.7 |
Bilayer structure | 38 | 90.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trifonova, Y.; Stoilova, A.; Dimov, D.; Mateev, G.; Nazarova, D.; Nedelchev, L.; Ivanova, V.; Lilova, V. The Synthesis of New Chalcogenides from the System GeTe6-Cu and a Layered Structure Based on Them and an Azo Polymer for Application in Optoelectronics. Materials 2025, 18, 3387. https://doi.org/10.3390/ma18143387
Trifonova Y, Stoilova A, Dimov D, Mateev G, Nazarova D, Nedelchev L, Ivanova V, Lilova V. The Synthesis of New Chalcogenides from the System GeTe6-Cu and a Layered Structure Based on Them and an Azo Polymer for Application in Optoelectronics. Materials. 2025; 18(14):3387. https://doi.org/10.3390/ma18143387
Chicago/Turabian StyleTrifonova, Yordanka, Ani Stoilova, Deyan Dimov, Georgi Mateev, Dimana Nazarova, Lian Nedelchev, Vladislava Ivanova, and Vanya Lilova. 2025. "The Synthesis of New Chalcogenides from the System GeTe6-Cu and a Layered Structure Based on Them and an Azo Polymer for Application in Optoelectronics" Materials 18, no. 14: 3387. https://doi.org/10.3390/ma18143387
APA StyleTrifonova, Y., Stoilova, A., Dimov, D., Mateev, G., Nazarova, D., Nedelchev, L., Ivanova, V., & Lilova, V. (2025). The Synthesis of New Chalcogenides from the System GeTe6-Cu and a Layered Structure Based on Them and an Azo Polymer for Application in Optoelectronics. Materials, 18(14), 3387. https://doi.org/10.3390/ma18143387